Skip to main content

Status of Silicon in Ecosystem, Silicon Solubilization by Rhizospheric Microorganisms and Their Impact on Crop Productivity

  • Chapter
  • First Online:
Rhizosphere Microbes

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 23))

  • 892 Accesses

Abstract

Silicon (Si), a beneficial element, plays an overwhelming role in not only improving the crop productivity but also provides resistance against various biotic (insects and pathogens) and abiotic (salt stress, heavy metal toxicity, nutrient toxicity, ultraviolet radiation, drought condition) stresses. It may be considered as the only element which has multifaceted role in boosting the crop productivity in future against various environmental stresses. In spite of the abundance of Si in soil, it is not available for plant uptake. As a result, present scenario of agriculture demands to improve plant available Si for improving crop productivity across the world. One way is to apply silicon fertilizers which sometimes become very costly for the farmers to afford. However, an alternative is to utilize the potential of soil microorganisms in solubilizing silicates from minerals. Numerous studies have indicated that soil microorganisms, viz., bacteria and fungi, have the capacity to dissolve silicon from different primary minerals. Hence, in this chapter, we made an attempt to explore how silicon accumulates in different microorganisms, sources and sinks of terrestrial silicon cycle, role of microbes in silicate weathering, importance of rhizosphere microbes in solubilizing silicates, and the impact of silicate solubilizing bacteria on crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AAPFCO (2014) In official publication: AAPFCO, Association of American Plant Food Control Officials, Publ. No. 67, In: Slater JV (ed) West Lafayette, p. 95

    Google Scholar 

  • Abelmann A, Gowing MM (1996) Horizontal and vertical distribution pattern of living radiolarians along a transect from the Southern-Ocean to the South Atlantic subtropical region. Deep-Sea Res Part I 43:361–382

    Article  Google Scholar 

  • Adamonis S, Concheyro AY, Alder V (2008) Protistas autótrofos y heterótrofos: silicoflagelados, ebridianos y tintínidos. En: Camacho H, Longobucco M (eds) Invertebrados fósiles. Fundación de Historia Natural Félix de Azara, Tomo I, pp 133–145

    Google Scholar 

  • Afanasieva MS, Amon EO (2003) A new classification of the Radiolaria. Paleontol J 37(6):630–645

    Google Scholar 

  • Afanasieva MS, Vishnevskaya VS (1992) Possible reasons for the appearance of siliceous skeletons in radiolarians. Dokl Akad Nauk 325(3):590–596

    Google Scholar 

  • Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    Article  CAS  Google Scholar 

  • Anderson OR (1983) Radiolaria. Springer, New York

    Book  Google Scholar 

  • Anderson OR (2001) Protozoa, radiolarians. In: Encyclopedia of ocean science, 2nd edn

    Google Scholar 

  • Anderson OR (2019) Marine biogeochemistry. In: Encyclopedia of ocean science, 3rd edn

    Google Scholar 

  • Aoki Y, Hoshino M, Matsubara T (2007) Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142:29–35

    Article  CAS  Google Scholar 

  • Aristovskaya TV, Kutuzova RS (1968) Microbiological factors in the mobilization of silicon from poorly soluble natural compounds. Pochvovedenie 12:59–66

    Google Scholar 

  • Armstrong E, Rogerson A, Leftley JW (2000) Utilisation of seaweed carbon by three surface-associated heterotrophic protists, Stereomyxa ramosa, Nitzschia alba and Labyrinthula sp. Aquat Microb Ecol 21:49–57. https://doi.org/10.3354/ame021049

    Article  Google Scholar 

  • Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avakyan ZA, Pivovarova TA, Karavaiko GI (1986) Properties of a new species, Bacillus mucilaginosus. Mikrobiologiya 55:477–482

    CAS  Google Scholar 

  • Babalola OO, Glick BR (2012) Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci Res Essays 7:2431–2439

    Google Scholar 

  • Barker WW, Welch SA, Banfield JF (1997) Biogeochemical weathering of silicate minerals. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals, Reviews in mineralogy, vol. 35. Mineralogical Society of America, Washington, DC, pp 391–428

    Chapter  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilising microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Bennett PC, Melcer ME, Siegel DI, Hassett JP (1988) The dissolution of quartz in dilute aqueous solutions of organic acids at 25 in. Geochim Cosmochim Acta 52:1521–1530

    Article  CAS  Google Scholar 

  • Berthelsen S, Noble A, Garside A (2001) Silicon research down under: past, present, and future. In: Datnoff LE, Snyder G, Korndörfer G (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 241–256

    Chapter  Google Scholar 

  • Boltovskoy D, Alder VA, Abelmann A (1993) Annual flux of radiolaria and other shelled plankters in the eastern equatorial Atlantic at 853 m: seasonal variations and polycystine species-specific responses. Deep-Sea Res, Part I 40:1863–1895

    Article  Google Scholar 

  • Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Brydson R, Benning LG (2009) Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37:615–618

    Article  CAS  Google Scholar 

  • Brindavathy R, Dhara N, Rajasundari K (2012) Biodissolution of silica by silicon bacteria in sugarcane rhizosphere. Res J Agr Sci 3(5):1042–1044

    Google Scholar 

  • Brunner E, Gröger C, Lutz K, Richthammer P, Spinde K, Sumper M (2009) Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms. Appl Microbiol Biotechnol 84:607–616. https://doi.org/10.1007/s00253-009-2140-3

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Kristensen E, Thamdrup B (2005) The silicon cycle. Adv Mar Biol 48:441–463

    Article  Google Scholar 

  • Casey RE (1993) Radiolaria. In: Lipps JH (ed) Fossil prokaryotes and protists. Blackwell, Boston, pp 249–284

    Google Scholar 

  • Chakrabarty AN, Das S, Mukherjee K (1988) Silicon utilization by Chemoautotrophic nocardiaform bacteria isolated from human and animal tissues infected with leprosy Bacillus. J Exp Biol 26:839–844

    Google Scholar 

  • Chandrakala C, Voleti SR, Bandeppa S, Sunil Kumar N, Latha PC (2019) Silicate solubilization and plant growth promoting potential of rhizobium Sp. Isolated from rice rhizosphere. Silicon. https://doi.org/10.1007/s12633-019-0079-2

  • Chu JWF, Maldonado M, Yahel G, Leys SP (2011) Glass sponge reefs as a silicon sink. Mar Ecol Prog Ser 441:1–14

    Article  CAS  Google Scholar 

  • Ciobanu I (1961) Investigation on the efficiency on for biocontrol of Macrophomina phaseolina bacterial fertilizers applied to cotton. J Biol Cent Exp Control 8:41–44

    Google Scholar 

  • Clarke J (2003) The occurrence and significance of biogenic opal in the regolith. Earth Sci Rev 60:175–194

    Article  CAS  Google Scholar 

  • Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8:2281–2293

    Article  CAS  Google Scholar 

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16(4):68-1–68-8

    Article  CAS  Google Scholar 

  • Cornelis JT, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378

    Article  CAS  Google Scholar 

  • Das S, Mandal S, Chakraborty AN, Dastidar SG (1992) Metabolism of silica as a probable pathogenicity factor for mycobacterium. Indian J Med Res 95:59–65

    CAS  PubMed  Google Scholar 

  • Del Amo Y, Brzezinski MA (1999) The chemical form of dissolved Si taken up by diatoms. J Phycol 35:1162–1170

    Google Scholar 

  • DeMaster DJ (2001) Marine silica cycle. In: Encyclopedia of ocean sciences, 2nd edn. Elsevier

    Google Scholar 

  • de Vrind-de Jong EW, de Vrind JPM (1997) Algal deposition of carbonates and silicates. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals, Reviews in mineralogy, vol. 35. Mineralogical Society of America, Washington, DC, pp 267–307

    Google Scholar 

  • De Wever P, Dumitrica P, Caulet JP, Nigrini C, Caridroit M (2001) Radiolarians in the sedimentary record. Gordon and Breach, Amsterdam

    Google Scholar 

  • Dietzel M (2002) Interaction of polysilicic and monosilicic acid with mineral surfaces. In: Stober I, Bucher K (eds) Water-rock interaction. Kluwer, Dordrecht, The Netherlands, pp 207–235

    Chapter  Google Scholar 

  • Drees LR, Wilding LP, Smeck NE, Sankayi AL (1989) Silica in soils: quartz and disordered silica polymorphs. In: Dixon JB, Weed SB (eds) Minerals in soil environments, Soil Science Society of America Book Series no. 1. Wiley, Madison, pp 913–974

    Google Scholar 

  • Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58(10):2325–2332

    Article  CAS  Google Scholar 

  • Eckhardt FEW (1980) Microbial degradation of silicates. Release of cations from aluminosilicate minerals by yeast and filamentous fungi. In: Oxley TA, Becker G, Allsopp D (eds) Biodeterioration. Proceedings of the 4th international biodeterioration symposium. Pitman, London, UK, pp 107–116

    Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17. https://doi.org/10.1073/pnas.91.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principals and perspectives. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  CAS  PubMed  Google Scholar 

  • Farooq MA, Dietz K-J (2015) Silicon as versatile player in plant and human biology: overlooked and poorly understood. Front Plant Sci 6:994

    Article  PubMed  PubMed Central  Google Scholar 

  • Farshad M (2011) Analytical global demand in the use of advanced ceramics with silicon carbide growth. Aust J Basic Appl Sci 5:3205–3208

    Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Meunier JD (2010) Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochim Cosmochim Acta 74:70–84

    Article  CAS  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999a) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1–4):3–30

    Google Scholar 

  • Gaillardet J, Dupré B, Allègre CJ (1999b) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63(23–24):4037–4051

    Article  Google Scholar 

  • Gallinari M, Ragueneau O, Corrin L, Demaster DJ, Treguer P (2002) The importance of water column processes on the dissolution properties of biogenic silica in deep-sea sediments I. Solubility. Geochim Cosmochim Acta 66:2701–2717

    Article  CAS  Google Scholar 

  • Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127

    Article  CAS  PubMed  Google Scholar 

  • Greenwood JE, Truesdale VW, Rendell AR (2001) Biogenic silica dissolution in seawater—in vitro chemical kinetics. Prog Oceanogr 48:1–23

    Article  Google Scholar 

  • Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213. https://doi.org/10.1007/s13593-011-0039-8

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1(2):176–180

    Google Scholar 

  • Han HS, Supanjani P, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130–136

    Article  CAS  Google Scholar 

  • Hansen HCB, Raben-Lange B, Raulund-Rasmussen K, Borggaard OK (1994) Monosilicate adsorption by ferrihydrite and goethite at pH 3-6. Soil Sci 158:40–46

    Article  CAS  Google Scholar 

  • Harriss RC (1966) Biological buffering of oceanic silica. Nature 212:275–276

    Article  CAS  Google Scholar 

  • Heinen W (1962) Silicium stoffweschel bei mikro-organismen. II. Beziehungen Zischen siliate and phosphate stoffweschel bei Bakterin. Arch Mikrobiology 41:229–246

    Article  CAS  Google Scholar 

  • Henderson MEK, Duff RB (1965) The release of metallic and silicate ions from mineral rocks and soils by fungal activity. J Soil Sci 14:236–246

    Article  Google Scholar 

  • Hildebrand M (2008) Diatoms, biomineralization processes, and genomics. Chem Rev 108:4855–4874

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand M, Volcani BE, Gassmann W, Schroeder JI (1997) A gene family of silicon transporters. Nature 385:688–689

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Barros ONF, Benedetti MF, Novack Y, Callot G (2001) Plant induced weathering of a basaltic rock: experimental evidence. Geochim Cosmochim Acta 65:137–152

    Article  CAS  Google Scholar 

  • Holzapfel L, Engel W (1954) Der Einfluss organischer Kieselsaureverbindungen auf das Wachstum von Aspergillus niger und Triticum. Z Naturforsch 9b:602–606

    Article  CAS  Google Scholar 

  • Huebner JS (November 1982) Rock-forming minerals. Volume 2A: single-chain silicates. W. A. Deer, R. A. Howie, J. Zussman. J Geol 90(6):748–749

    Article  Google Scholar 

  • Hutchens E, Valsami-Jones E, McEldowney S, Gaze W, McLean J (2003) The role of heterotrophic bacteria in feldspar dissolution—an experimental approach. Mineral Mag 67:1157–1170. https://doi.org/10.1180/0026461036760155

    Article  CAS  Google Scholar 

  • Imsiecke G, Steffen R, Custodio M, Borojevic R, Muller WEG (1995) Formation of spicules by sclerocytes from the freshwater sponge Ephydatia muelleri in short term culture in vitro. In Vitro Cell Dev Biol Anim 31:528–535

    Article  CAS  PubMed  Google Scholar 

  • IPNI (2015) Nutri-facts. International Plant Nutrition Institute, Silicon No. 14. http://www.ipni.net/publication/nutrifactsna.nsf/0/A7B4AB4D,FILE/NutriFacts-NA-14.pdf. Accessed 17 Sep 2019

  • Jochum KP, Wang X, Vennemann TW, Sinha B, Müller WEG (2012) Siliceous deep-sea sponge Monorhaphis chuni: a potential paleoclimate archive in ancient animals. Chem Geol 300–301:143–151

    Article  CAS  Google Scholar 

  • Jochum KP, Schuessler JA, Wang XH, Stoll B, Weis U, Müller WEG, Haug GH, Andreae MO, Froelich PN (2017) Whole-ocean changes in silica and Ge/Si ratios during the last deglacial deduced from long-lived giant glass sponges. Geophys Res Lett 44(11):555–564. https://doi.org/10.1002/2017GL073897

    Article  CAS  Google Scholar 

  • Jones CW (1979) The mierastrueture and genesis of sponge biominerals. In: Levi C, Esnault NB (eds) Biologie des Spongiaires. Colloques internat, vol 291. C N R S, pp 425–447

    Google Scholar 

  • Jongmans AG, Van Breemen N, Lundström US, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock-eating fungi. Nature 389:682–683. https://doi.org/10.1038/39493

  • Kang SM, Waqas M, Shahzad R, You YH, Asaf S, Khan MA, Lee KE, Joo GJ, Kim SJ, Lee IJ (2017) Isolation and characterization of a novel silicate solubilizing bacterial strain Burkholderia eburnean CS4-2 that promotes growth of japonica rice (Oryzasativa L. cv. Dongjin). Soil Sci Plant Nutr 63(3):233–241. https://doi.org/10.1080/00380768.2017.1314829

    Article  CAS  Google Scholar 

  • Kannan MN (1996) Biodissolution of silicate: a new formulation system for the application of phosphate and potassium by silicate solubilizing bacteria in rice ecosystem. MSc (Agri.) thesis, Tamil Nadu Agricultural University, pp 1–59

    Google Scholar 

  • Kannan MN, Raj AS (1998) Occurrence of silicate solubilizing bacteria in rice ecosystem. Madras Agric J 85:47–50

    Google Scholar 

  • Karavaiko GI, Belkanova NP, Eroshchev-Shak VA, Avakyan ZA (1984) Role of microorganisms and some physicochemical factors of the medium in quartz destruction. Mikrobiologiya 53:976–981 (English translation pp 795–800)

    Google Scholar 

  • Kaur S, Kaur N, Siddique KHM, Nayyar H (2016) Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Archi Agron Soil Sci 62(7):905–920. https://doi.org/10.1080/03650340.2015.1101070

    Article  Google Scholar 

  • Kelly EF, Chadwick OA, Hilinski TE (1998) The effect of plants on mineral weathering. Biogeochemistry 42:21–53

    Article  Google Scholar 

  • Kutuzova RS (1969) Release of silica from minerals as result of microbial activity. Mikrobiologiya 38:714–721 (English translation pp 596–602)

    Google Scholar 

  • Lauwers AM, Heinen W (1974) Bio-degradation and utilization of silica and quartz. Arch Microbiol 95:67–78

    Article  CAS  Google Scholar 

  • Lazarus DB, Benjamin K, Gerwin W, Daniela NS (2009) PNAS 106(23):9333–9338. https://doi.org/10.1073/pnas.0812979106

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KE, Adhikari A, Kang SM, You YH, Joo GJ, Kim JH, Kim SJ, Lee IJ (2019) Isolation and characterization of the high silicate and phosphate solubilizing novel strain Enterobacter ludwigii GAK2 that promotes growth in rice plants. Agronomy 9:144. https://doi.org/10.3390/agronomy9030144

  • Lewin JC (1955) Silicon metabolism in diatoms II. Sources of silicon for growth of Navicula pelliculosa. Plant Physiol 30:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewin JC (1965) Silicification. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic Press, New York, pp 445–455

    Google Scholar 

  • Lewin J, Lewin RA (1967) Culture and nutrition of some apochlorotic diatoms of the genus Nitzschia. Microbiology 46(3):361–367. https://doi.org/10.1099/00221287-46-3-361

    Article  CAS  Google Scholar 

  • Liang YC, Nikolic M, Belanger R, Gong H, Song A (2015) Silicon in agriculture: from theory to practice. Springer, Dordrecht/Heidelberg/New York/London

    Book  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. John Wiley & Sons, New York, NY, pp 1–383

    Google Scholar 

  • Lisitzin AP (1985) The silica cycle during the last ice age. Palaeogeogr Palaeoclimatol Palaeoecol 50:241–270

    Article  Google Scholar 

  • Macaskie LE, Empson RM, Cheetham AK, Gey CP, Skarnulis AJ (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4. Science 257:782–784

    Article  CAS  PubMed  Google Scholar 

  • Maldonado M, Carmona MC, Velásquez Z, Puig A, Cruzado A, López A, Young CM (2005) Siliceous sponges as a silicon sink: an overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnol Oceanogr 50(3):799–809. https://doi.org/10.4319/lo.2005.50.3.0799

    Article  CAS  Google Scholar 

  • Maldonado M, Riesgo A, Bucci A, Rützler K (2010) Revisiting silicon budgets at a tropical continental shelf: silica standing stocks in sponges surpass those in diatoms. Limnol Oceanogr 55:2001–2010

    Article  CAS  Google Scholar 

  • Maldonado M, Navarro L, Grasa A, Gonzalez A, Vaquerizo I (2011) Silicon uptake by sponges: a twist to understanding nutrient cycling on continental margins. Sci Rep 1:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maldonado M, Ribes M, Van Duyl FC (2012) Nutrient fuxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol 62:114–182

    Google Scholar 

  • Maldonado M, López-Acosta M, Sitjà C, García-Puig M, Galobart C, Ercilla G, Leynaert A (2019) Sponge skeletons as an important sink of silicon in the global oceans. Nat Geosci 12(10):1–8. https://doi.org/10.1038/s41561-019-0430-7

    Article  CAS  Google Scholar 

  • Maleva M, Borisova G, Koshcheeva O, Sinenko O (2017) Biofertilizer based on silicate solubilizing bacteria improves photosynthetic function of Brassica Juncea. Agrofor Int J 2(3):13–19

    Google Scholar 

  • Mann DG (1999) The species concept of diatoms. Phycologia 38:437–494

    Article  Google Scholar 

  • Markantonis M, Zecchin S, Corsini A, Colombo M, Lucchini G, Oberti R, Cavalca L (2017) Silicate solubilizing rhizosphere bacteria reduce arsenic uptake into rice plants. 6th international conference on food safety and regulatory measures. J Food Microbiol Saf Hyg 2(2 (Suppl)). https://doi.org/10.4172/2476-2059-C1-002

  • Maurice PA, Vierkoen MA, Hersman LE, Fulghum JE, Ferryman A (2001) Enhancement of kaolinite dissolution by an aerobic Pseudomonas mendocina bacterium. Geomicrobiol J 18:21–35

    Article  CAS  Google Scholar 

  • McCartney K (1993) Silicoflagellates. In: Lipps JH (ed) Fossil prokaryotes and protists. Blackwell Science, Boston, MA, pp 143–154

    Google Scholar 

  • McCartney K, Loper DE (1989) Optimized skeletal morphologies of silicoflagellate genera Dictyocha and Distephanus. Palaeobiol 15(3):283–298

    Article  Google Scholar 

  • Meena VD, Dotaniya ML, Coumar V, Rajendiram S, Ajay KS, Subba RA (2014) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India Sect B Biol Sci 84(3):505–518

    Article  CAS  Google Scholar 

  • Meybeck MH (1994) Origin and variable composition of present day riverine material. In: Council NR (ed) Material fluxes on the surface of the earth, Studies in geophysics. National Academy of Press, Washington, DC, pp 61–73

    Google Scholar 

  • Mihin EA (1910) Sponge-spicules. A summary of present knowledge. Ergebn Fortsehr Zool 2:171–274

    Google Scholar 

  • Mishra M, Arukha AP, Bashir T, Yadav D, Prasad GBKS (2017) All new faces of diatoms: potential source of nanomaterials and beyond. Front Microbiol 8:1239. https://doi.org/10.3389/fmicb.2017.01239

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. In: Bonini NM (ed) Annual review of genetics, vol 50. Annual Reviews, Palo Alto, CA, pp 211–234

    Google Scholar 

  • Murali Gopal, Alka G, Nair RV (2005) Variations in hosting beneficial plant associated microorganisms by root wilt diseased and field tolerant coconut palms of West Coast Tall variety. Curr Sci 89(11):1922–1927

    Google Scholar 

  • Olsen S, Paasche E (1986) Variable kinetics of silicon-limited growth in Thalassiosira pseudonana (Bacillariophycea) in response to charged chemical composition of the growth medium. Br Phycol J 21:183–190

    Article  Google Scholar 

  • Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2(6):347–353

    Article  CAS  PubMed  Google Scholar 

  • Parkinson SM, Wainwright M, Killham K (1989) Observations on oligotrophic growth of fungi on silica gel. Mycol Res 93:529-534

    Google Scholar 

  • Parr JF, Sullivan LA (2005) Soil carbon sequestration in phytoliths. Soil Biol Biochem 37:117–124

    Article  CAS  Google Scholar 

  • Peera SKPG, Balasubramaniam P, Mahendran PP (2016) Effect of silicate solubilizing bacteria and fly ash on silicon uptake and yield of rice under low land eco system. J Appl Nat Sci 8(1):55–59

    Article  CAS  Google Scholar 

  • Prakash NB, Savant NK, Sonar KR (2018) Silicon in Indian agriculture. Westville Publishing House, New Delhi, p 204

    Google Scholar 

  • Ragueneau O, Treguer P, Leynaert A, Anderson RF, Brzezin Ski MA, Demaster DJ, Dugdale RC, Dymond J, Fischer G, Francois R, Heinze C, Maier-Reimer E, Martin-Jaze Quell V, Nelson DM, Queguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as paleoproductivity proxy. Glob Planet Chang 26:317–365

    Article  Google Scholar 

  • Raj SA (2004) Solubilization of silicate and concurrent release of phosphorus and potassium in rice ecosystem. In: Kanyan S, Kumar K, Govindarajan K (eds) Biofertilizer technology. Scientific Publishers, Jodhpur, pp 372–378

    Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  CAS  PubMed  Google Scholar 

  • Rickert D, Schluter M, Wallmann K (2002) Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim Cosmochim Acta 66:439–455

    Article  CAS  Google Scholar 

  • Rogall E (1939) Uber den Feinbau der Kieselmembran der Diatomeen. Planta 29:279–291

    Article  Google Scholar 

  • Sadzawka RMA, Aomine S (1977) Adsorption of silica in river waters by soils in Central Chile. Soil Sci Plant Nutr 23:297–309

    Article  Google Scholar 

  • Santi LP, Goenadi DH (2017) Solubilization of silicate from quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan 85(2):95–104

    Google Scholar 

  • Sauer D, Saccone L, Conley DJ, Hermann L, Sommer M (2006) Review of methodologies for extracting plant available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    Article  CAS  Google Scholar 

  • Schultze-Lam S, Ferris FG, Konhauser KO, Wiese RG (1995) In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation. Can J Earth Sci 32:2021–2026

    Article  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922. https://doi.org/10.1016/j.soilbio.2005.02.026

    Article  CAS  Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064-1068

    Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329

    Article  CAS  Google Scholar 

  • Soomro FM (2000) Effect of silicon compounds on microbial transformations in soils. PhD thesis, University of Sheffield, UK

    Google Scholar 

  • Staudt C, Horn H, Hempel DC, Neu TR (2004) Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 88(5):585–592

    Article  CAS  PubMed  Google Scholar 

  • Struyf E, Conley DJ (2009) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7:88–94

    Article  Google Scholar 

  • Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009) The global biogeochemical silicon cycle. Silicon 1:207–213

    Google Scholar 

  • Sugiyama K, Anderson OR (1997) Experimental and observational studies of radiolarian physiological ecology: part 6. Effects of silicate-supplemented seawater on the longevity and weight-gain of spongiose radiolarians Spongaster tetras and Dictyocoryne truncatum. Mar Micropaleontol l29:159–172

    Article  Google Scholar 

  • Sulizah A, Rahayu YS, Dewi SK (2018) Isolation and characterization of silicate solubilizing bacteria from paddy rhizosphere (Oryza sativa L.). J. Phys.: Conf. Ser. 1108 012046, doi :10.1088/1742-6596/1108/1/012046

    Google Scholar 

  • Sumper M, Brunner E (2006) Learning from diatoms: nature’s tool for the production of nanostructured silica. Adv Funct Mater 16:17–26

    Article  CAS  Google Scholar 

  • Sumper M, Brunner E (2008) Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana. ChemBioChem 9:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Taylor N, Edith LT, Michael K (2009) Paleobotany: the biology and evolution of fossil plants, 2nd edn. Academic Press

    Google Scholar 

  • Thamatrakoln K, Hildebrand M (2008) Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiol 146:1397–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treguer P, Pondaven P (2000) Silica control of carbon dioxide. Nature 406:358–359

    Article  CAS  PubMed  Google Scholar 

  • Tréguer P, Nelson DM, van Bennekom AJ, DeMaste DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379

    Google Scholar 

  • Tréguer PJ, La Rocha D, Christina L (2013) The world ocean silica cycle. Annu Rev Mar Sci 5(1):477–501

    Google Scholar 

  • Tribe HT, Madadaje SA (1972) Growth of moulds on media prepared without organic nutrients. Trans Br Mycol Soc 58:127–137

    Article  Google Scholar 

  • Tripti KA, Usmani Z, Kumar V, Anshumali A (2017) Biochar and fly ash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J Environ Manag 190:20–27

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DL (1994) Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microb Ecol 27:241–251

    Article  CAS  PubMed  Google Scholar 

  • Vasanthi N, Saleena LM, Raj SA (2018) Silica solubilization potential of certain bacterial species in the presence of different silicate minerals. Silicon 10:267–275

    Article  CAS  Google Scholar 

  • Vijayapriya M, Mahalakshmi S, Prabudoss V, Pandeeswari N (2019) Natural efficiency of Bacillus mucilaginosus on the solubilization of silicates. J Pharmacogn Phytochem SP2:549–552

    Google Scholar 

  • Vinogradov AP (1953) The elementary chemical composition of marine organisms. Mem Sears Fd Mar Res 2:1–647

    Google Scholar 

  • Vinticova H (1964) A contribution to the study on the efficiency of silicate bacteria. Restl Vyroba 37:1219–1228

    Google Scholar 

  • Volcani BE (1983) Aspects of silicification in biological systems. In: Westbroek P, de Jong EW (eds) Biomineralization and biological metal accumulation. Reidel, Dordrecht, pp 389–405

    Google Scholar 

  • Webley DM, Duff RB, Mitchell WA (1960) A plate method for studying the breakdown of synthetic and natural silicates by soil bacteria. Nature 188:766–767

    Article  CAS  PubMed  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  • Welch SA, Ullman WJ (1993) The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim Cosmochim Acta 57:2725–2736

    Article  CAS  Google Scholar 

  • Werner D, Roit R (1983) Silica metabolism. In: Lauch A, Bielsky RL (eds) Inorganic plant nutrition. Springer Verlag, New York, p 6

    Google Scholar 

  • Wilding LP (1967) Radiocarbon dating of biogenic opal. Science 156:66–67

    Article  CAS  PubMed  Google Scholar 

  • Yool A, Tyrell T (2003) Role of diatoms in regulating the ocean’s silicon cycle. Global Biogeochem Cy 17:14–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to profusely thank Dr. Sushil K. Sharma, Principal Scientist (Agricultural Microbiology), ICAR-National Bureau of Agriculturally Important Microorganisms, Mau Nath Bhanjan, Uttar Pradesh, India for the invitation to contribute this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagabovanalli, P.B., Majumdar, S., Kollalu, S. (2020). Status of Silicon in Ecosystem, Silicon Solubilization by Rhizospheric Microorganisms and Their Impact on Crop Productivity. In: Sharma, S.K., Singh, U.B., Sahu, P.K., Singh, H.V., Sharma, P.K. (eds) Rhizosphere Microbes. Microorganisms for Sustainability, vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-15-9154-9_16

Download citation

Publish with us

Policies and ethics