Skip to main content

Waste from Dairy Processing Industries and its Sustainable Utilization

  • Chapter
  • First Online:
Sustainable Food Waste Management

Abstract

Mostly, the waste materials from dairy processing industries are the waste water and generally considered to be the largest source of food processing wastewater in many countries. Dairy industries throughout the world varies in their sizes and the types of manufactured products due to which, it is hard to give any general characteristics. The dairy industry can be divided into several production divisions. Each division produces wastewater of a characteristic composition, depending on the kind of product that is produced (liquid milk product, cheese, butter, ice cream, powdered dairy product, concentrated milk like condensed milk, evaporated milk, etc.). Waste water in the dairy processing mainly arise from heating and cooling processes, the cleaning of equipment, spillage of milk and milk products, whey, pressing and brining, Clean-In-Place (CIP), and resulting from equipment malfunctions and even operational errors. Waste waters from dairy plants generally have a high organic load due to the presence of diluted milk and milk products; significant quantities of cleaning compounds and sanitizers and are high in sodium content (use of caustic soda for cleaning). The pH of the waste water varies widely due to the use of acidic and caustic cleaning agents. There are also large variations in the characteristics, volume, flow rate, and composition of the effluent generated on an hourly, daily, and seasonal basis. Like any other industries, the effluent from the dairy industry poses environmental problems like water and soil pollution due to the high amounts of nutrients and organic matter. Currently, sustainable innovational technologies have been targeted towards utilization of the waste for generation of compounds which have application in food, chemical, plastic, fuel, pharmaceutical, and other industries simultaneously solving pollution problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BOD5:

Biological Oxygen Demand 5 days

COD:

Chemical oxygen demand

FOG:

Fats, oil, and grease

NH4+-N:

Ammonium nitrogen

TDS:

Total dissolved solids

TKN:

Total Kjeldahl nitrogen

TN:

Total nitrogen

TP:

Total phosphorus

TS:

Total solids

TSS:

Total suspended solids

VSS:

Volatile suspended solids

References

  • Al-Shammari SB, Bou-Hamad S, Al-Saffar A, Salman M, Al-Sairafi A (2015) Treatment of dairy processing wastewater using integrated submerged membrane microfiltration system. J Environ Anal Toxicol 5:278

    Google Scholar 

  • Ana L, Torres-Sánchez, López-Cervera SJ, de la Rosa C, Maldonado-Vega M, Maldonado-Santoyo M, Peralta-Hernández JM (2014) Electrocoagulation process coupled with advance oxidation techniques to treatment of dairy industry waste water. Int J Electrochem Sci 9:6103–6112

    Google Scholar 

  • Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G (2008) Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 47(15):5227–5233

    CAS  Google Scholar 

  • Arbeli Z, Brenner A, Abeliovich A (2006) Treatment of high strength dairy waste water in an anaerobic deep reservoir: analysis of the Methanogenic fermentation pathway and the rate limiting step. Water Res 40:3653–3659

    Article  CAS  PubMed  Google Scholar 

  • Babu M, Raj SP, Nirmala CB, Deccaraman M, Sagadevan E (2014) Production of single cell protein using Kluyveromyces marxianus isolated from paneer whey. Int J Biomed Adv Res 5(5):255–258

    Google Scholar 

  • Balasubramanian R, Sircar A, Sivakumar P, Anbarasu K (2018) Production of biodiesel from dairy wastewater sludge: a laboratory and pilot scale study. Egypt J Pet 27(4):939–943

    Article  Google Scholar 

  • Borja R, Banks CJ (1995) Response of an anaerobic fluidized bed reactor treating ice-cream wastewater to organic, hydraulic, temperature and pH shocks. J Biotechnol 39(3):251–259

    Article  CAS  Google Scholar 

  • Bosco F, Chiampo F (2010) Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge: production of bioplastics using dairy residues. J Biosci Bioeng 109(4):418–421

    Article  CAS  PubMed  Google Scholar 

  • Briao VB, Granhen Tavares CR (2007) Effluent generation by the dairy industry: preventive attitude and opportunities. Braz J Chem Eng 24(4):487–497

    Article  CAS  Google Scholar 

  • Britz TJ, Schalkwyk C, Hung YT (2006) Treatment of dairy processing wastewater. In: Wang LK, Hung YT, Lo HH, Yapijakis C (eds) Waste treatment in the food processing industry. Taylor and Francis Group, New York, pp 1–27

    Google Scholar 

  • Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445:385–396

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri SR (2018) Dairy effluent conversion into biofertilizer using tailor-made microbial consortium: the waste to wealth approach. J Food Microbiol Saf Hyg 3. https://doi.org/10.4172/2476-2059-C4-017

  • Choi HJ, Choi HJ (2016) Dairy wastewater treatment using microalgae for potential biodiesel application. Environ Eng Res 21(4):393–400

    Article  CAS  Google Scholar 

  • Colak AK, Kahraman H (2013) The use of raw cheese whey and olive oil mill wastewater for rhamnolipid production by recombinant Pseudomonas aeruginosa. Environ Exp Biol 11(3):125–130

    Google Scholar 

  • Colombo B, Sciarria TP, Reis M, Scaglia B, Adani F (2016) Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresour Technol 218:692–699

    Article  PubMed  CAS  Google Scholar 

  • Crothers G (2007) Water use in the dairy processing industry. Retrieved from http://www.abare.gov.au/interactive/Outlook08/files/day_1/Crothers_food.pdf

  • da Silva AN, Macêdo WV, Sakamoto IK, Pereyra DDLAD, Mendes CO, Maintinguer SI, Caffaro Filho RA, Damianovic MHZ, Varesche MBA, de Amorim ELC (2019) Biohydrogen production from dairy industry wastewater in an anaerobic fluidized-bed reactor. Biomass Bioenergy 120:257–264

    Article  CAS  Google Scholar 

  • de Carvalho KG, Gómez JE, Vallejo M, Marguet ER, Peroti NI, Donato M, Itri R, Colin VL (2019) Production and properties of a bioemulsifier obtained from a lactic acid bacterium. Ecotoxicol Environ Saf 183:109553

    Article  CAS  Google Scholar 

  • Decesaro A, Machado TS, Cappellaro ÂC, Rempel A, Margarites AC, Reinehr CO, Eberlin MN, Zampieri D, Thomé A, Colla LM (2020) Biosurfactants production using permeate from whey ultrafiltration and bioproduct recovery by membrane separation process. J Surfactant Deterg 23(3):539–551

    Google Scholar 

  • Donkin J (1997) Bulking in aerobic biological systems treating dairy processing waste waters. Int J Dairy Technol 50:67–72

    Article  Google Scholar 

  • Dubey S, Joshi YP (2015) Characterization and treatment of ice cream industry wastewater using UASB reactor. Int J New Technol Sci Eng 2(5):69–76

    Google Scholar 

  • Dubey KV, Charde PN, Meshram SU, Shendre LP, Dubey VS, Juwarkar AA (2012) Surface-active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J at extreme environmental conditions. Bioresour Technol 126:368–374

    Google Scholar 

  • Durham RJ, Hourigan JA (2007) Waste management and co-product recovery in dairy processing. In: Waldron K (ed) Handbook of waste management and co-product recovery in food processing, vol 1. Woodhead/CRC Press, Cambridge/Boca Raton, pp 332–387

    Chapter  Google Scholar 

  • Farizoglu B, Keskinler B, Yildiz E, Nuhoglu A (2007) Simultaneous removal of C, N, P from cheese whey by jet loop membrane bioreactor (JLMBR). J Hazard Mater 146(1–2):399–407

    Article  CAS  PubMed  Google Scholar 

  • Gadhe A, Sonawane SS, Varma MN (2015) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. Int J Hydrog Energy 40(13):4502–4511

    Article  CAS  Google Scholar 

  • Gul A, Baig S, Naz M, Nadeem M (2012) Efficient utilization of dairy industry waste for hyper production and characterization of a novel cysteine protease. Pak J Zool 44:713–721

    CAS  Google Scholar 

  • Halder N, Gogoi M, Sharmin J, Gupta M, Banerjee S, Biswas T, Agarwala BK, Gantayet LM, Sudarshan M, Mukherjee I, Roy A (2020) Microbial consortium–based conversion of dairy effluent into biofertilizer. J Hazard Toxic Radioact Waste 24(1):04019039

    Article  CAS  Google Scholar 

  • Hale N, Bertsch R, Barnett J, Duddleston WL (2003) Sources of wastage in the dairy industry. In: Guide for dairy managers on wastage prevention in dairy plants, IDF Bull, 382:7–30.

    Google Scholar 

  • Hawkes FR, Donnelly T, Anderson GK (1995) Comparative performance of anaerobic digesters operating on ice-cream wastewater. Water Res 29(2):525–533

    Article  CAS  Google Scholar 

  • Hegazy A, El-Nawawy M, Ali A, El-Samragy Y (2019) Isolation and identification of halophilic bacteria producing exopolysaccharides from whey and milk permeate. Arab Univ J Agric Sci 27(2):1491–1501

    Google Scholar 

  • Hwang S, Hansen CL (1998) Characterization of and bioproduction of short-chain organic acids from mixed dairy-processing wastewater. Trans ASAE 41(3):795–802

    Article  CAS  Google Scholar 

  • Janczukowicz W, Zielinski MD, Bowski M (2008) Biodegradability evaluation of dairy effluents originated in selected sections of dairy production. Bioresour Technol 99(10):4199–4205

    Article  CAS  PubMed  Google Scholar 

  • Kadu PA, Landge RB, Rao YRM (2013) Treatment of dairy wastewater using rotating biological contactors 3. Eur J Exp Biol 3(4):257–260

    Google Scholar 

  • Kannahi M, Sangeetha A (2014) Physico chemical and bacteriological characterization of cheese processing effluent and their effect on Vigna mungo growth. Int J Pharm Sci Rev Res 29(2):179–182

    CAS  Google Scholar 

  • Kebbouche-Gana S, Gana ML (2014) Algerian yeast strains: isolation, identification and production of single cell protein from whey with strain candida kefyr. Int J Biosci Biochem Bioinforma 4(3):160

    CAS  Google Scholar 

  • Khanam R, Prasuna RG, Akbar S (2013) Evaluation of total phenolic content in ghee residue: contribution to higher laccase production. Microbiol J 3:12–20

    Article  Google Scholar 

  • Klemes J, Smith R, Kuk Kim J (2008) Handbook of energy and water management in food processing. Woodhead, Cambridge, pp 3–43

    Book  Google Scholar 

  • Koller M (2015) Recycling of waste streams of the biotechnological poly (hydroxyalkanoate) production by Haloferax mediterranei on whey. Int J Polym Sci 2015:370164

    Article  CAS  Google Scholar 

  • Kothari R, Prasad R, Kumar V, Singh DP (2013) Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour Technol 144:499–503

    Article  CAS  PubMed  Google Scholar 

  • Kothari R, Kumar V, Pathak VV, Tyagi VV (2017) Sequential hydrogen and methane production with simultaneous treatment of dairy industry wastewater: bioenergy profit approach. Int J Hydrog Energy 42(8):4870–4879

    Article  CAS  Google Scholar 

  • Koyuncu I, Turan M, Topacik D, Ates A (2000) Application of low pressure nanofiltration membranes for the recovery and reuse of dairy industry effluents. Water Sci Technol 41(1):213–221

    Article  CAS  Google Scholar 

  • Kumar S, Gupta N, Pakshirajan K (2015) Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J Environ Chem Eng 3(3):1630–1636

    Article  CAS  Google Scholar 

  • Lee H, Song M, Yu Y, Hwang S (2003) Production of Ganoderma lucidum mycelium using cheese whey as an alternative substrate: response surface analysis and biokinetics. Biochem Eng J 5(2):93–99

    Google Scholar 

  • Liu YY, Haynes RJ (2011) Origin, nature, and treatment of effluents from dairy and meat processing factories and the effects of their irrigation on the quality of agricultural soils. Crit Rev Environ Sci Technol 41(17):1531–1599

    Article  CAS  Google Scholar 

  • Liu J, Dantoft SH, Würtz A, Jensen PR, Solem C (2016) A novel cell factory for efficient production of ethanol from dairy waste. Biotechnol Biofuels 9(1):33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu P, Zheng Z, Xu Q, Qian Z, Liu J, Ouyang J (2018) Valorization of dairy waste for enhanced D-lactic acid production at low cost. Process Biochem 71:18–22

    Article  CAS  Google Scholar 

  • Lu W, Wang Z, Wang X, Yuan Z (2015) Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresour Technol 192:382–388

    Article  CAS  PubMed  Google Scholar 

  • Lule VK, Singh R, Pophaly SD, Tomar SK (2016) Production and structural characterisation of dextran from an indigenous strain of Leuconostoc mesenteroides BA 08 in whey. Int J Dairy Technol 69(4):520–531

    Article  CAS  Google Scholar 

  • Madhu PC (2016) Utilization of dairy effluent for food grade protease production using Bacillus sp. Am J Biosci Bioeng 4(6):90–95

    CAS  Google Scholar 

  • Malaka R, Maruddin F, Dwyana Z, Vargas MV (2020) Assessment of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus ropy strain in different substrate media. Food Sci Nutr 8(3):1657–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann B, Athira S, Sharma R, Kumar R, Sarkar P (2019) Bioactive peptides from whey proteins. In: Whey proteins. Academic Press, Samford, pp 519–547

    Chapter  Google Scholar 

  • Moreno-Dávila IMM, Ríos-González LJ, Garza-García Y, Rodríguez-de la Garza JA, Rodríguez-Martínez J (2011) Biohydrogen production from diary processing wastewater by anaerobic biofilm reactors. Afr J Biotechnol 10(27):5320–5326

    Google Scholar 

  • Murari CS, da Silva DCMN, Schuina GL, Mosinahti EF, Del Bianchi VL (2019) Bioethanol production from dairy industrial coproducts. BioEnerg Res 12(1):112–122

    Article  CAS  Google Scholar 

  • Myint KT, Otsuka M, Okubo A, Mitsuhashi R, Oguro A, Maeda H, Shigeno T, Sato K, Nakajima-Kambe T (2020) Isolation and identification of flower yeasts for the development of mixed culture to produce single-cell protein from waste milk. Bioresour Technol Rep 10:100401

    Article  Google Scholar 

  • Nayeem M, Chauhan K, Khan S, Rattu G, Dhaka RK, Sidduqui H (2017) Optimization of low-cost substrate for the production of single cell protein using Kluyveromyces marxianus. Pharm Innov J 6:22–25

    Article  CAS  Google Scholar 

  • Ngome MT, Alves JGLF, Piccoli RH, de Carmo DE, Pinto SA, Bernal OLM (2017) Inoculum concentration and inoculation time for propionic acid production from whey using mixed culture of Lactobacillus helveticus and Propionibacterium freudenreichii PS-1. Acta Sci Technol 39:543–550

    Article  Google Scholar 

  • Pais J, Serafim LS, Freitas F, Reis MA (2016) Conversion of cheese whey into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnol 33(1):224–230

    Google Scholar 

  • Pais-Chanfrau JM, Acosta LDC, Cóndor PMA, Pérez JN, Guerrero MJC (2018) Small-scale process for the production of kefiran through culture optimization by use of central composite design from whey and kefir granules. In: Current topics in biochemical engineering. IntechOpen, London. https://doi.org/10.5772/intechopen.82257

  • Pal P, Nayak J (2016) Development and analysis of a sustainable technology in manufacturing acetic acid and whey protein from waste cheese whey. J Clean Prod 112:59–70

    Article  CAS  Google Scholar 

  • Pandian SR, Deepak V, Kalishwaralal K, Rameshkumar N, Jeyaraj M, Gurunathan S (2010) Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresour Technol 101(2):705–711

    Article  PubMed  CAS  Google Scholar 

  • Passeggi M, Lopez I, Borzacconi L (2009) Integrated anaerobic treatment of dairy industrial wastewater and sludge. Water Sci Technol 59:501–506

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Modi DA, Rathod NP, Chavda GR, Parmar DK (2013) Physico chemical analysis of effluent from Havmor ice cream industry. Int J Adv Biosci 1(1):07–09

    Google Scholar 

  • Patowary R, Patowary K, Kalita MC, Deka S (2016) Utilization of paneer whey waste for cost-effective production of rhamnolipid biosurfactant. Appl Biochem Biotechnol 180(3):383–399

    Article  CAS  PubMed  Google Scholar 

  • Prazeres AR, Carvalho F, Rivas FJ (2012) Cheese whey management: a review. J Environ Manag 110:48–68

    Article  CAS  Google Scholar 

  • Qasim W, Mane AV (2013) Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resour Ind 4L:1–12

    Article  Google Scholar 

  • Rad SJ, Lewis MJ (2014) Water utilisation, energy utilisation and waste water management in the dairy industry: a review. Int J Dairy Technol 67(1):1–20

    Article  CAS  Google Scholar 

  • Rivas J, Prazeres AR, Carvalho F (2011) Aerobic biodegradation of precoagulated cheese whey wastewater. J Agric Food Chem 59(6):2511–2517

    Article  CAS  PubMed  Google Scholar 

  • Ryder K, Ali MA, Billakanti J, Carne A (2020) Evaluation of dairy co-product containing composite solutions for the formation of bioplastic films. J Polym Environ 28(2):725–736

    Article  CAS  Google Scholar 

  • Sampaio FC, de Faria JT, da Silva MF, de Souza Oliveira RP, Converti A (2019) Cheese whey permeate fermentation by Kluyveromyces lactis: a combined approach to wastewater treatment and bioethanol production. Environ Technol 13:1–9

    Article  CAS  Google Scholar 

  • Scharnagl N, Bunse U, Peinemann K (2000) Recycling of washing waters from bottle cleaning machines using membranes. Desalination 131:55–63

    Article  CAS  Google Scholar 

  • Schwarzenbeck N, Borges JM, Wilderer PA (2005) Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biotechnol 66:711–718

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Saharan BS, Chauhan N, Bansal A, Procha S (2014) Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Sci World J 2014:493548

    Google Scholar 

  • Singh NB, Singh R, Imam MM (2014) Waste water management in dairy industry: pollution abatement and preventive attitudes. Int J Sci Environ Technol 3(2):672–683

    Google Scholar 

  • ÅžiÅŸman T, Gur O, Dogan N, Ozdal M, Algur OF, Ergon T (2013) Single-cell protein as an alternative food for zebrafish, Danio rerio: a toxicological assessment. Toxicol Ind Health 29(9):792–799

    Article  PubMed  CAS  Google Scholar 

  • Sparling GP, Schipper LA, Russell JM (2001) Changes in soil properties after application of dairy factory effluent to New Zealand volcanic ash and pumice soils. Aust J Soil Res 39:505–518

    Article  CAS  Google Scholar 

  • Srisuk N, Sakpuntoon V, Nutaratat P (2018) Production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206 using sweet whey as a low-cost feed stock. J Microbiol Biotechnol 28(9):1511–1516

    Article  CAS  PubMed  Google Scholar 

  • Strydom JP, Britz TJ, Mostert JF (1997) Two-phase anaerobic digestion of three different dairy effluents using a hybrid bioreactor. Water SA 23:151–156

    CAS  Google Scholar 

  • Tamime AY, Robinson RK (eds) (1999) Yoghurt science and technology. Woodhead, Cambridge

    Google Scholar 

  • Tetra Pak (2003) Dairy processing handbook. Tetra Pak Processing Systems, Lund

    Google Scholar 

  • Tetrapak (1995) Dairy effluents. In: Dairy processing handbook. Tetrapak Printers, London, pp 415–424

    Google Scholar 

  • Torrijos M, Vuitton V, Moletta R (2001) The SBR process: an efficient and economic solution for the treatment of wastewater at small cheese making dairies in the Jura Mountains. Water Sci Technol 43:373–380

    Article  CAS  PubMed  Google Scholar 

  • Truan L, Marques N, Souza A, Rubio-Ribeaux D, Cine A, Andrade R, Silva T, Okada K, Takaki G (2020) Sustainable biotransformation of barley and milk whey for biosurfactant production by Penicillium Sclerotiorum Ucp 1361. Chem Eng Trans 79:259–264

    Google Scholar 

  • Veeravalli SS, Mathews AP (2018) Exploitation of acid-tolerant microbial species for the utilization of low-cost whey in the production of acetic acid and propylene glycol. Appl Microbiol Biotechnol 102(18):8023–8033

    Article  CAS  PubMed  Google Scholar 

  • Vera ECS, de Azevedo PODS, Domínguez JM, de Souza Oliveira RP (2018) Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochem Eng J 133:168–178

    Google Scholar 

  • Victoria Environmental Protection Authority (1997) The dairy processing industry. Environmental Protection Authority, State Government Environmental guidelines for of Victoria, Melbourne

    Google Scholar 

  • Wendorff WL (2001) Treatment of dairy wastes. In: Marth EH, Steele JL (eds) Applied dairy microbiology, 2nd edn. Marcel Dekker, New York, pp 681–704

    Google Scholar 

  • Yadav JSS, Bezawada J, Ajila CM, Yan S, Tyagi RD, Surampalli R (2014) Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresour Technol 164:119–127

    Article  CAS  PubMed  Google Scholar 

  • Yadav JSS, Yan S, Ajila CM, Bezawada J, Tyagi RD, Surampalli RY (2016) Food-grade single-cell protein production, characterization and ultrafiltration recovery of residual fermented whey proteins from whey. Food Bioprod Process 99:156–165

    Article  CAS  Google Scholar 

  • Yadavalli R, Heggers GRVN (2013) Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa. J Environ Health Sci Eng 11(1):36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Duary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patra, F., Duary, R.K. (2020). Waste from Dairy Processing Industries and its Sustainable Utilization. In: Thakur, M., Modi, V.K., Khedkar, R., Singh, K. (eds) Sustainable Food Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-8967-6_8

Download citation

Publish with us

Policies and ethics