Skip to main content

Membrane Air Dehumidification

  • Chapter
  • First Online:
Advances in Air Conditioning Technologies

Part of the book series: Green Energy and Technology ((GREEN))

  • 800 Accesses

Abstract

Membrane-based air dehumidification (MAD), a recently emerged air dehumidification technology, separates the moisture from the humid air by using a selective membrane. MAD is carried out by permitting only vapour molecules to transfer from one side of the membrane at a high concentration to the other side at a low concentration. The MAD process has superior performance translating to favourable energy and economic benefits than other traditional dehumidification technologies. This chapter comprehensively reviews the literature on MAD including membrane characteristics, membrane configuration, membrane-related mass transport mechanism, and system design and operation as well as the mass transfer modelling. State-of–the-art developments in MAD are presented and finally recommendations on future research directions are provided. This chapter provides a comprehensive discussion of the MAD technology including membrane materials, thermophysical characterization, membrane forms and modules, system configurations, and mass transport modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua KJ, Chou SK, Yang WM, Yan J (2013) Achieving better energy-efficient air conditioning—A review of technologies and strategies. Appl Energy 104:87–104

    Article  Google Scholar 

  2. Rafique MM, Gandhidasan P, Bahaidarah HMS (2016) Liquid desiccant materials and dehumidifiers—a review. Renew Sustain Energy Rev 56:179–195

    Article  Google Scholar 

  3. Rambhad KS, Walke PV, Tidke DJ (2016) Solid desiccant dehumidification and regeneration methods—a review. Renew Sustain Energy Rev 59:73–83

    Article  Google Scholar 

  4. Sahlot M, Riffat SB (2016) Desiccant cooling systems: a review. Int J Low-Carbon Technol. ctv032

    Google Scholar 

  5. Mina EM, Newell TA, Jacobi AM (2005) A generalized coefficient of performance for conditioning moist air. Int J Refrig 28:784–790

    Article  Google Scholar 

  6. Li J, Ito A (2008) Dehumidification and humidification of air by surface-soaked liquid membrane module with triethylene glycol. J Membr Sci 325:1007–1012

    Article  Google Scholar 

  7. Scovazzo P, Scovazzo AJ (2013) Isothermal dehumidification or gas drying using vacuum sweep dehumidification. Appl Ther Eng 50:225–233

    Article  Google Scholar 

  8. Xing R, Rao Y, TeGrotenhuis W, Canfield N, Zheng F, Winiarski DW et al (2013) Advanced thin zeolite/metal flat sheet membrane for energy efficient air dehumidification and conditioning. Chem Eng Sci 104:596–609

    Article  Google Scholar 

  9. Woods J (2014) Membrane processes for heating, ventilation, and air conditioning. Renew Sustain Energy Rev. 33:290–304

    Article  Google Scholar 

  10. Bolto B, Hoang M, Xie Z (2012) A review of water recovery by vapour permeation through membranes. Water Res. 46:259–266

    Article  Google Scholar 

  11. Bui DT, Ja MK, Gordon JM, Ng KC, Chua KJ (2017) A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification. Energy 132:106–115

    Article  Google Scholar 

  12. Bui TD, Nida A, Chua KJ, Ng KC (2016) Water vapour permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes. J Membr Sci 498:254–262

    Article  Google Scholar 

  13. Zhao B, Peng N, Liang C, Yong WF, Chung T-S (2015) Hollow fiber membrane dehumidification device for air conditioning system. Membranes (Basel). 5:722–738

    Article  Google Scholar 

  14. Yang B, Yuan W, Gao F, Guo B (2013) A review of membrane-based air dehumidification. Indoor Built Environ. 24:11–26

    Article  Google Scholar 

  15. Wolińska-Grabczyk A, Jankowski A (2015a) Membranes for vapour permeation: preparation and characterization BT—pervapouration, vapour permeation and membrane distillation. In: Publ W (ed) Ser. Oxford, Energy, Woodhead Publishing, pp 145–175

    Google Scholar 

  16. Bui TD, Wong Y, Thu K, Oh SJ, KumJa M, Ng KC et al (2017) Effect of hygroscopic materials on water vapour permeation and dehumidification performance of polyvinyl alcohol membranes. J Appl Polym Sci 44765:1–9

    Google Scholar 

  17. Lin H, Thompson SM, Serbanescu-Martin A, Wijmans JG, Amo KD, Lokhandwala KA, et al (2012) Dehydration of natural gas using membranes. Part I: Composite membranes. J Membr Sci 413–414:70–81

    Google Scholar 

  18. Scovazzo P, Hoehn A, Todd P (2000) Membrane porosity and hydrophilic membrane-based dehumidification performance. J Membr Sci 167:217–225

    Article  Google Scholar 

  19. Liu S, Wang F, Chen T (2001) Synthesis of poly(ether ether ketone)s with high content of sodium sulfonate groups as gas dehumidification membrane materials. Macromol Rapid Commun. 22:579–582

    Article  Google Scholar 

  20. Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M (2008) Flue gas dehydration using polymer membranes. J Membr Sci 313:263–276

    Article  Google Scholar 

  21. Du JR, Liu L, Chakma A, Feng X (2010) Using poly(N, N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chem Eng Sci 65:4372–4381

    Article  Google Scholar 

  22. Xie W, Geise GM, Freeman BD, Lee HS, Byun G, McGrath JE (2012) Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J Membr Sc 403–404:152–161

    Article  Google Scholar 

  23. Potreck J, Nijmeijer K, Kosinski T, Wessling M (2009) Mixed water vapour/gas transport through the rubbery polymer PEBAX® 1074. J Membr Sci 338:11–16

    Article  Google Scholar 

  24. Metz SJ, Potreck J, Mulder MHV, Wessling M (2002) Water vapour and gas transport through a poly(butylene terephthalate) poly(ethylene oxide) block copolymer. Desalination 148:303–307

    Article  Google Scholar 

  25. Li Y, Jia H, Pan F, Jiang Z, Cheng Q (2012) Enhanced anti-swelling property and dehumidification performance by sodium alginate-poly(vinyl alcohol)/polysulfone composite hollow fiber membranes. J Membr Sci 407–408:211–220

    Article  Google Scholar 

  26. Pan F, Jia H, Jiang Z, Zheng X (2008) Enhanced dehumidification performance of PVA membranes by tuning the water state through incorporating organophosphorus acid. J Membr Sci 325:727–734

    Article  Google Scholar 

  27. Shin Y, Liu W, Schwenzer B, Manandhar S, Chase-Woods D, Engelhard MH et al (2016) Graphene oxide membranes with high permeability and selectivity for dehumidification of air. Carbon N. Y. 106:164–170

    Article  Google Scholar 

  28. Alina K, Kamiya T, Hirota Y, Ito A (2016) Dehumidification of air using liquid membranes with ionic liquids. J Membr Sci 499:379–385

    Article  Google Scholar 

  29. Krull FF, Fritzmann C, Melin T (2008) Liquid membranes for gas/vapour separations. J Membr Sci 325:509–519

    Article  Google Scholar 

  30. Scovazzo P (2010) Testing and evaluation of room temperature ionic liquid (RTIL) membranes for gas dehumidification. J. Membr. Sci. 355:7–17

    Article  Google Scholar 

  31. Cheng Q, Pan F, Chen B, Jiang Z (2010a) Preparation and dehumidification performance of composite membrane with PVA/gelatin-silica hybrid skin layer. J Membr Sci 363:316–325

    Article  Google Scholar 

  32. Akhtar FH, Kumar M, Peinemann K-V (2016) Pebax®1657/Graphene oxide composite membranes for improved water vapour separation. J Membr Sci

    Google Scholar 

  33. Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Membr Sci 107:1–21

    Article  Google Scholar 

  34. Metz SJ, Van Der Vegt NFA, Mulder MHV, Wessling M (2003) Thermodynamics of water vapour sorption in poly(ethylene oxide) poly(butylene terephthalate) block copolymers. J Phys Chem B 107:13629–13635

    Google Scholar 

  35. Verliefde ARD, Van der Meeren P, Van der Bruggen B, Hoek EMV, Tarabara VV (2013) Solution-diffusion processes. In: Encyclopedia of Membrane Science and Technology. Wiley

    Google Scholar 

  36. Metz SJ, Van de Ven WJC, Potreck J, Mulder MHV, Wessling M (2005) Transport of water vapour and inert gas mixtures through highly selective and highly permeable polymer membranes. J Membr Sci 251(1–2):29–41

    Article  Google Scholar 

  37. Woods J (2014) Membrane processes for heating, ventilation, and air conditioning 33:290–304

    Google Scholar 

  38. Baker RW (2001) Membrane technology. In: Encyclopedia of polymer science and technology

    Google Scholar 

  39. Bolto B, Hoang M, Gray S, Xie Z (2015) Chapter 9—New generation vapour permeation membranes. In: Pervapouration, vapour permeation and membrane distillation. Woodhead Publishing, Oxford, pp 247–73

    Google Scholar 

  40. Murali RS, Sankarshana T, Sridhar S (2013) Air separation by polymer-based membrane technology 42, pp 130–86

    Google Scholar 

  41. Chua KJ, Bui DT, M KumJa., Islam MR, Oh SJ (2017) Air Conditioning systems: cooling and dehumidification (Wiley Publication). In: Seidel A (ed) Kirk-Othmer Encyclopaedia of chemical technology. Wiley, United States, pp 1–34

    Google Scholar 

  42. Cheng Q, Pan F, Chen B, Jiang Z (2010b) Preparation and dehumidification performance of composite membrane with PVA/gelatin–silica hybrid skin layer. J Membr Sci 363(1–2):316–325

    Article  Google Scholar 

  43. Zhou H et al (2008) The polyurethane/SiO2 nano-hybrid membrane with temperature sensitivity for water vapour permeation. J Membr Sci 318(1–2):71–78

    Article  Google Scholar 

  44. Bui TD, Chen F, Nida A, Chu KJ (2015) Experimental and modeling analysis of membrane based air dehumidification. Sep Purif Technol 144(15):114–122

    Article  Google Scholar 

  45. Wolińska-Grabczyk A, Jankowski A (2015b) 6—Membranes for vapour permeation: preparation and characterization. Woodhead, Oxford, pp 145–175

    Book  Google Scholar 

  46. Okamoto K, Kita H, Horii K, Tanaka K (2001) Zeolite NaA membrane: preparation, single gas permeation, and pervapouration and vapour permeation of water/organic liquid mixtures. Ind Eng Chem Res 40:163

    Article  Google Scholar 

  47. Woodford C (2009) Zeolites. https://www.explainthatstuff.com/zeolites.html. Accessed 21 Feb 2016

  48. Zhang Y et al (2012) Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction. Chem Eng J 197:314–321

    Article  Google Scholar 

  49. Zhang J, Liu W (2011) Thin porous metal sheet-supported NaA zeolite membrane for water/ethanol separation. J Membr Sci 371(1–2):197–210

    Article  Google Scholar 

  50. Vandezande P. 5 (2015) Next-generation pervapouration membranes: recent trends, challenges and perspectives. In: Woodhead publishing series in energy. Woodhead Publishing, Oxford, pp 107–41

    Google Scholar 

  51. Lozano LJ, Godinez C, De los Rios AP (2011) Recent advances in supported ionic liquid membrane technology. J Membr Sci 376:1–14

    Google Scholar 

  52. Malik MA, Hashim MA, Nabi F (2011) Ionic liquids in supported liquid membrane technology. Chem Eng J 171:242–254

    Article  Google Scholar 

  53. Grünauer J et al (2015) Ionic liquids supported by isoporous membranes for CO2/N2 gas separation applications. J Membr Sci 494(15):224–233

    Article  Google Scholar 

  54. Ong YT, Yee KF, Cheng YK, Tan SH (2014) A review on the use and stability of supported liquid membranes in the pervapouration process. Sep Purif Re 43:62–88

    Article  Google Scholar 

  55. Kudasheva A, Kamiya T, Hirota Y, Ito A (2016) Dehumidification of air using liquid membranes with ionic liquids. J Membr Sci 499, pp 379–85

    Google Scholar 

  56. Harlacher T, Wessling M (2015) Chapter Thirteen—Gas–gas separation by membranes. In: Progress in filtration and separation. Oxford, pp 557–84

    Google Scholar 

  57. Vallieres C, Favre E (2004) Vacuum versus sweeping gas operation for binary mixtures separation by dense membrane processes. J MembrSci 244(1–2):17–23

    Google Scholar 

  58. Ito A (2000) Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. J Membr Sci 175:35–42

    Google Scholar 

  59. El-Dessouky H, Ettouney H, Bouhamra W (2000) A novel air conditioning system: membrane air drying and evapourative cooling. Chem Eng Res Des 78(7):999–1009

    Article  Google Scholar 

  60. Favre E (2010) 2.08—Polymeric membranes for gas separation. In: Comprehensive membrane science and engineering. Elsevier, Oxford, pp 155–212

    Google Scholar 

  61. Zhang LZ (2010) An analytical solution for heat mass transfer in a hollow fiber membrane based air-to-air heat mass exchanger. J Membr Sci 360:217–225

    Article  Google Scholar 

  62. Mardiana-Idayu A, Riffat SB (2011) An experimental study on the performance of enthalpy recovery system for building applications. Energy Build 43:2533–2538

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chua Kian Jon .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kian Jon, C., Islam, M.R., Kim Choon, N., Shahzad, M.W. (2021). Membrane Air Dehumidification. In: Advances in Air Conditioning Technologies . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-8477-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8477-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8476-3

  • Online ISBN: 978-981-15-8477-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics