Skip to main content

Treatment of Coronary Microvascular Dysfunction

  • Chapter
  • First Online:
Coronary Vasomotion Abnormalities
  • 463 Accesses

Abstract

Patients with ischemia and non-obstructive coronary artery (INOCA) often have coronary microvascular dysfunction (CMD), and they are at high risk for adverse cardiac events. Nevertheless, the management of CMD represents a major unmet need because the lack of large, randomized studies makes it difficult to generate evidence-based recommendations. Recently, it was demonstrated that stratified medical therapy guided by an interventional diagnostic procedure improves health status of patients with INOCA. Accordingly, the latest guidelines state that treatment of CMD should address the dominant mechanism of microcirculatory dysfunction. In patients with impaired microcirculatory conductance and a negative acetylcholine (ACh) provocation test, beta-blockers, ACE inhibitors, and statins, along with lifestyle modifications and weight loss, are indicated. On the other hand, patients developing ECG changes and angina in response to ACh testing but without severe epicardial coronary vasoconstriction (all suggestive of microvascular spasm) may be treated mainly by calcium channel blockers. However, in patients with INOCA, coronary functional abnormalities, including epicardial coronary spasm, reduced microvascular vasodilatation, and increased microvascular resistance, frequently coexist in various combinations. Thus, in everyday clinical practice, a combination of several types of vasodilators, such as a beta-blocker and a long-acting dihydropyridine calcium channel blocker, should constitute the second step when a single drug fails to success. In cases with refractory symptoms which seriously limit life quality, analgesic drugs or non-pharmacological interventions, including rehabilitation exercise programs, spinal cord simulation, and/or psychological treatments, might be helpful. In this section, we will discuss the treatment options for CMD, taking into consideration currently accepted pathogenic mechanisms of the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, Johnson BD, Sopko G, Bairey Merz CN. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (women’s ischemia syndrome evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–32. https://doi.org/10.1016/j.jacc.2010.01.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lin FY, Shaw LJ, Dunning AM, Labounty TM, Choi JH, Weinsaft JW, Koduru S, Gomez MJ, Delago AJ, Callister TQ, Berman DS, Min JK. Mortality risk in symptomatic patients with nonobstructive coronary artery disease: a prospective 2-center study of 2,583 patients undergoing 64-detector row coronary computed tomographic angiography. J Am Coll Cardiol. 2011;58(5):510–9. https://doi.org/10.1016/j.jacc.2010.11.078.

    Article  PubMed  Google Scholar 

  3. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K, Edvardsen T, Escaned J, Gersh BJ, Svitil P, Gilard M, Hasdai D, Hatala R, Mahfoud F, Masip J, Muneretto C, Valgimigli M, Achenbach S, Bax JJ. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–77. https://doi.org/10.1093/eurheartj/ehz425.

    Article  PubMed  Google Scholar 

  4. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (coronary spastic angina) (JCS 2013). Circ J. 2014;78(11):2779–801. https://doi.org/10.1253/circj.cj-66-0098.

    Article  Google Scholar 

  5. Lim TK, Choy AJ, Khan F, Belch JJ, Struthers AD, Lang CC. Therapeutic development in cardiac syndrome X: a need to target the underlying pathophysiology. Cardiovasc Ther. 2009;27(1):49–58. https://doi.org/10.1111/j.1755-5922.2008.00070.x.

    Article  PubMed  Google Scholar 

  6. Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135(11):1075–92. https://doi.org/10.1161/CIRCULATIONAHA.116.024534.

    Article  PubMed  Google Scholar 

  7. Bairey Merz CN, Pepine CJ, Shimokawa H, Berry C. Treatment of coronary microvascular dysfunction. Cardiovasc Res. 2020;116(4):856–70. https://doi.org/10.1093/cvr/cvaa006.

    Article  CAS  PubMed  Google Scholar 

  8. Pirat B, Bozbas H, Simsek V, Yildirir A, Sade LE, Gursoy Y, Altin C, Atar I, Muderrisoglu H. Impaired coronary flow reserve in patients with metabolic syndrome. Atherosclerosis. 2008;201(1):112–6. https://doi.org/10.1016/j.atherosclerosis.2008.02.016.

    Article  CAS  PubMed  Google Scholar 

  9. Khuddus MA, Pepine CJ, Handberg EM, Bairey Merz CN, Sopko G, Bavry AA, Denardo SJ, McGorray SP, Smith KM, Sharaf BL, Nicholls SJ, Nissen SE, Anderson RD. An intravascular ultrasound analysis in women experiencing chest pain in the absence of obstructive coronary artery disease: a substudy from the National Heart, Lung and Blood Institute-sponsored women’s ischemia syndrome evaluation (WISE). J Interv Cardiol. 2010;23(6):511–9. https://doi.org/10.1111/j.1540-8183.2010.00598.x.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000;343(1):16–22. https://doi.org/10.1056/NEJM200007063430103.

    Article  CAS  PubMed  Google Scholar 

  11. Eriksson BE, Tyni-Lenne R, Svedenhag J, Hallin R, Jensen-Urstad K, Jensen-Urstad M, Bergman K, Selvén C. Physical training in syndrome X: physical training counteracts deconditioning and pain in syndrome X. J Am Coll Cardiol. 2000;36(5):1619–25. https://doi.org/10.1016/s0735-1097(00)00931-1.

    Article  CAS  PubMed  Google Scholar 

  12. Motz W, Strauer BE. Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension. 1996;27(5):1031–8. https://doi.org/10.1161/01.hyp.27.5.1031.

    Article  CAS  PubMed  Google Scholar 

  13. Naya M, Tsukamoto T, Morita K, Katoh C, Furumoto T, Fujii S, Tamaki N, Tsutsui H. Olmesartan, but not amlodipine, improves endothelium-dependent coronary dilation in hypertensive patients. J Am Coll Cardiol. 2007;50(12):1144–9. https://doi.org/10.1016/j.jacc.2007.06.013.

    Article  CAS  PubMed  Google Scholar 

  14. Brush JE Jr, Cannon RO 3rd, Schenke WH, Bonow RO, Leon MB, Maron BJ, Epstein SE. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med. 1988;319(20):1302–7. https://doi.org/10.1056/NEJM198811173192002.

    Article  PubMed  Google Scholar 

  15. Caliskan M, Erdogan D, Gullu H, Topcu S, Ciftci O, Yildirir A, Muderrisoglu H. Effects of atorvastatin on coronary flow reserve in patients with slow coronary flow. Clin Cardiol. 2007;30(9):475–9. https://doi.org/10.1002/clc.20140.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pizzi C, Manfrini O, Fontana F, Bugiardini R. Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac syndrome X: role of superoxide dismutase activity. Circulation. 2004;109(1):53–8. https://doi.org/10.1161/01.CIR.0000100722.34034.E4.

    Article  CAS  PubMed  Google Scholar 

  17. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M. Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation. 1999;99(4):475–81. https://doi.org/10.1161/01.cir.99.4.475.

    Article  CAS  PubMed  Google Scholar 

  18. Nerla R, Tarzia P, Sestito A, Di Monaco A, Infusino F, Matera D, Greco F, Tacchino RM, Lanza GA, Crea F. Effect of bariatric surgery on peripheral flow-mediated dilation and coronary microvascular function. Nutr Metab Cardiovasc Dis. 2012;22(8):626–34. https://doi.org/10.1016/j.numecd.2010.10.004.

    Article  CAS  PubMed  Google Scholar 

  19. Quercioli A, Montecucco F, Pataky Z, Thomas A, Ambrosio G, Staub C, Di Marzo V, Ratib O, Mach F, Golay A, Schindler TH. Improvement in coronary circulatory function in morbidly obese individuals after gastric bypass-induced weight loss: relation to alterations in endocannabinoids and adipocytokines. Eur Heart J. 2013;34(27):2063–73. https://doi.org/10.1093/eurheartj/eht085.

    Article  PubMed  Google Scholar 

  20. Chiang CY, Chien CY, Qiou WY, Chang C, Yu IS, Chang PY, Chien CT. Genetic depletion of thromboxane A2/thromboxane-prostanoid receptor signalling prevents microvascular dysfunction in ischaemia/reperfusion injury. Thromb Haemost. 2018;118(11):1982–96. https://doi.org/10.1055/s-0038-1672206.

    Article  PubMed  Google Scholar 

  21. Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. Microcirculation. 2010;17(3):192–205. https://doi.org/10.1111/j.1549-8719.2009.00015.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012;33(22):2771–82b. https://doi.org/10.1093/eurheartj/ehs246.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Recio-Mayoral A, Mason JC, Kaski JC, Rubens MB, Harari OA, Camici PG. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur Heart J. 2009;30(15):1837–43. https://doi.org/10.1093/eurheartj/ehp205.

    Article  CAS  PubMed  Google Scholar 

  24. Lucas AR, Korol R, Pepine CJ. Inflammation in atherosclerosis: some thoughts about acute coronary syndromes. Circulation. 2006;113(17):e728–32. https://doi.org/10.1161/CIRCULATIONAHA.105.601492.

    Article  CAS  PubMed  Google Scholar 

  25. Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, DiMario C, Ferreira R, Gersh BJ, Gitt AK, Hulot JS, Marx N, Opie LH, Pfisterer M, Prescott E, Ruschitzka F, Sabate M, Senior R, Taggart DP, van der Wall EE, CJM V. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003. https://doi.org/10.1093/eurheartj/eht296.

    Article  Google Scholar 

  26. Kaski JC, Valenzuela Garcia LF. Therapeutic options for the management of patients with cardiac syndrome X. Eur Heart J. 2001;22(4):283–93. https://doi.org/10.1053/euhj.2000.2152.

    Article  CAS  PubMed  Google Scholar 

  27. Fragasso G, Chierchia SL, Pizzetti G, Rossetti E, Carlino M, Gerosa S, Carandente O, Fedele A, Cattaneo N. Impaired left ventricular filling dynamics in patients with angina and angiographically normal coronary arteries: effect of beta adrenergic blockade. Heart. 1997;77(1):32–9. https://doi.org/10.1136/hrt.77.1.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bugiardini R, Borghi A, Biagetti L, Puddu P. Comparison of verapamil versus propranolol therapy in syndrome X. Am J Cardiol. 1989;63(5):286–90. https://doi.org/10.1016/0002-9149(89)90332-9.

    Article  CAS  PubMed  Google Scholar 

  29. Lanza GA, Colonna G, Pasceri V, Maseri A. Atenolol versus amlodipine versus isosorbide-5-mononitrate on anginal symptoms in syndrome X. Am J Cardiol. 1999;84(7):854–6., A8. https://doi.org/10.1016/s0002-9149(99)00450-6.

    Article  CAS  PubMed  Google Scholar 

  30. Leonardo F, Fragasso G, Rossetti E, Dabrowski P, Pagnotta P, Rosano GM, Chierchia SL. Comparison of trimetazidine with atenolol in patients with syndrome X: effects on diastolic function and exercise tolerance. Cardiologia. 1999;44(12):1065–9.

    CAS  PubMed  Google Scholar 

  31. Matsuda Y, Akita H, Terashima M, Shiga N, Kanazawa K, Yokoyama M. Carvedilol improves endothelium-dependent dilatation in patients with coronary artery disease. Am Heart J. 2000;140(5):753–9. https://doi.org/10.1067/mhj.2000.110093.

    Article  CAS  PubMed  Google Scholar 

  32. Togni M, Vigorito F, Windecker S, Abrecht L, Wenaweser P, Cook S, Billinger M, Meier B, Hess OM. Does the beta-blocker nebivolol increase coronary flow reserve? Cardiovasc Drugs Ther. 2007;21(2):99–108. https://doi.org/10.1007/s10557-006-0494-7.

    Article  CAS  PubMed  Google Scholar 

  33. Nishigaki K, Inoue Y, Yamanouchi Y, Fukumoto Y, Yasuda S, Sueda S, Urata H, Shimokawa H, Minatoguchi S. Prognostic effects of calcium channel blockers in patients with vasospastic angina—a meta-analysis. Circ J. 2010;74(9):1943–50. https://doi.org/10.1253/circj.cj-10-0292.

    Article  PubMed  Google Scholar 

  34. Sorop O, Bakker EN, Pistea A, Spaan JA, VanBavel E. Calcium channel blockade prevents pressure-dependent inward remodeling in isolated subendocardial resistance vessels. Am J Physiol Heart Circ Physiol. 2006;291(3):H1236–45. https://doi.org/10.1152/ajpheart.00838.2005.

    Article  CAS  PubMed  Google Scholar 

  35. Sutsch G, Oechslin E, Mayer I, Hess OM. Effect of diltiazem on coronary flow reserve in patients with microvascular angina. Int J Cardiol. 1995;52(2):135–43. https://doi.org/10.1016/0167-5273(95)02458-9.

    Article  CAS  PubMed  Google Scholar 

  36. Cannon RO 3rd, Watson RM, Rosing DR, Epstein SE. Efficacy of calcium channel blocker therapy for angina pectoris resulting from small-vessel coronary artery disease and abnormal vasodilator reserve. Am J Cardiol. 1985;56(4):242–6. https://doi.org/10.1016/0002-9149(85)90842-2.

    Article  PubMed  Google Scholar 

  37. Luscher TF, Pieper M, Tendera M, Vrolix M, Rutsch W, van den Branden F, Gil R, Bischoff KO, Haude M, Fischer D, Meinertz T, Münzel T. A randomized placebo-controlled study on the effect of nifedipine on coronary endothelial function and plaque formation in patients with coronary artery disease: the ENCORE II study. Eur Heart J. 2009;30(13):1590–7. https://doi.org/10.1093/eurheartj/ehp151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsuburaya R, Takahashi J, Nakamura A, Nozaki E, Sugi M, Yamamoto Y, Hiramoto T, Horiguchi S, Inoue K, Goto T, Kato A, Shinozaki T, Ishida E, Miyata S, Yasuda S, Shimokawa H, NOVEL Investigators. Beneficial effects of long-acting nifedipine on coronary vasomotion abnormalities after drug-eluting stent implantation: the NOVEL study. Eur Heart J. 2016;37(35):2713–21. https://doi.org/10.1093/eurheartj/ehw256.

    Article  CAS  PubMed  Google Scholar 

  39. Munzel T, Daiber A, Gori T. More answers to the still unresolved question of nitrate tolerance. Eur Heart J. 2013;34(34):2666–73. https://doi.org/10.1093/eurheartj/eht249.

    Article  CAS  PubMed  Google Scholar 

  40. Daiber A, Wenzel P, Oelze M, Munzel T. New insights into bioactivation of organic nitrates, nitrate tolerance and cross-tolerance. Clin Res Cardiol. 2008;97(1):12–20. https://doi.org/10.1007/s00392-007-0588-7.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas GR, DiFabio JM, Gori T, Parker JD. Once daily therapy with isosorbide-5-mononitrate causes endothelial dysfunction in humans: evidence of a free-radical-mediated mechanism. J Am Coll Cardiol. 2007;49(12):1289–95. https://doi.org/10.1016/j.jacc.2006.10.074.

    Article  CAS  PubMed  Google Scholar 

  42. Gori T, Floras JS, Parker JD. Effects of nitroglycerin treatment on baroreflex sensitivity and short-term heart rate variability in humans. J Am Coll Cardiol. 2002;40(11):2000–5. https://doi.org/10.1016/s0735-1097(02)02532-9.

    Article  CAS  PubMed  Google Scholar 

  43. Heitzer T, Just H, Brockhoff C, Meinertz T, Olschewski M, Munzel T. Long-term nitroglycerin treatment is associated with supersensitivity to vasoconstrictors in men with stable coronary artery disease: prevention by concomitant treatment with captopril. J Am Coll Cardiol. 1998;31(1):83–8. https://doi.org/10.1016/s0735-1097(97)00431-2.

    Article  CAS  PubMed  Google Scholar 

  44. Rizzon P, Scrutinio D, Mangini SG, Lagioia R, de Toma L. Randomized placebo-controlled comparative study of nifedipine, verapamil and isosorbide dinitrate in the treatment of angina at rest. Eur Heart J. 1986;7(1):67–76. https://doi.org/10.1093/oxfordjournals.eurheartj.a061960.

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi J, Nihei T, Takagi Y, Miyata S, Odaka Y, Tsunoda R, Seki A, Sumiyoshi T, Matsui M, Goto T, Tanabe Y, Sueda S, Momomura S, Yasuda S, Ogawa H, Shimokawa H, Japanese Coronary Spasm Association. Prognostic impact of chronic nitrate therapy in patients with vasospastic angina: multicentre registry study of the Japanese Coronary Spasm Association. Eur Heart J. 2015;36(4):228–37. https://doi.org/10.1093/eurheartj/ehu313.

    Article  CAS  PubMed  Google Scholar 

  46. Kaski JC, Rosano GM, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA. Cardiac syndrome X: clinical characteristics and left ventricular function. Long-term follow-up study. J Am Coll Cardiol. 1995;25(4):807–14. https://doi.org/10.1016/0735-1097(94)00507-M.

    Article  CAS  PubMed  Google Scholar 

  47. Radice M, Giudici V, Pusineri E, Breghi L, Nicoli T, Peci P, Giani P, De Ambroggi L. Different effects of acute administration of aminophylline and nitroglycerin on exercise capacity in patients with syndrome X. Am J Cardiol. 1996;78(1):88–92. https://doi.org/10.1016/s0002-9149(96)00231-7.

    Article  CAS  PubMed  Google Scholar 

  48. Lanza GA, Manzoli A, Bia E, Crea F, Maseri A. Acute effects of nitrates on exercise testing in patients with syndrome X. Clinical and pathophysiological implications. Circulation. 1994;90(6):2695–700. https://doi.org/10.1161/01.cir.90.6.2695.

    Article  CAS  PubMed  Google Scholar 

  49. Russo G, Di Franco A, Lamendola P, Tarzia P, Nerla R, Stazi A, Villano A, Sestito A, Lanza GA, Crea F. Lack of effect of nitrates on exercise stress test results in patients with microvascular angina. Cardiovasc Drugs Ther. 2013;27(3):229–34. https://doi.org/10.1007/s10557-013-6439-z.

    Article  CAS  PubMed  Google Scholar 

  50. Horinaka S. Use of nicorandil in cardiovascular disease and its optimization. Drugs. 2011;71(9):1105–19. https://doi.org/10.2165/11592300-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  51. O'Rourke ST. KATP channel activation mediates nicorandil-induced relaxation of nitrate-tolerant coronary arteries. J Cardiovasc Pharmacol. 1996;27(6):831–7. https://doi.org/10.1097/00005344-199606000-00010.

    Article  CAS  PubMed  Google Scholar 

  52. Yamabe H, Namura H, Yano T, Fujita H, Kim S, Iwahashi M, Maeda K, Yokoyama M. Effect of nicorandil on abnormal coronary flow reserve assessed by exercise 201Tl scintigraphy in patients with angina pectoris and nearly normal coronary arteriograms. Cardiovasc Drugs Ther. 1995;9(6):755–61. https://doi.org/10.1007/bf00879868.

    Article  CAS  PubMed  Google Scholar 

  53. Chen JW, Lee WL, Hsu NW, Lin SJ, Ting CT, Wang SP, Chang MS. Effects of short-term treatment of nicorandil on exercise-induced myocardial ischemia and abnormal cardiac autonomic activity in microvascular angina. Am J Cardiol. 1997;80(1):32–8. https://doi.org/10.1016/s0002-9149(97)00279-8.

    Article  CAS  PubMed  Google Scholar 

  54. Nikolaidis LA, Doverspike A, Huerbin R, Hentosz T, Shannon RP. Angiotensin-converting enzyme inhibitors improve coronary flow reserve in dilated cardiomyopathy by a bradykinin-mediated, nitric oxide-dependent mechanism. Circulation. 2002;105(23):2785–90. https://doi.org/10.1161/01.cir.0000017433.90061.2e.

    Article  CAS  PubMed  Google Scholar 

  55. Camici PG, Marraccini P, Gistri R, Salvadori PA, Sorace O, L'Abbate A. Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther. 1994;8(2):221–6. https://doi.org/10.1007/bf00877330.

    Article  CAS  PubMed  Google Scholar 

  56. Kaski JC, Rosano G, Gavrielides S, Chen L. Effects of angiotensin-converting enzyme inhibition on exercise-induced angina and ST segment depression in patients with microvascular angina. J Am Coll Cardiol. 1994;23(3):652–7. https://doi.org/10.1016/0735-1097(94)90750-1.

    Article  CAS  PubMed  Google Scholar 

  57. Nalbantgil I, Onder R, Altintig A, Nalbantgil S, Kiliccioglu B, Boydak B, Yilmaz H. Therapeutic benefits of cilazapril in patients with syndrome X. Cardiology. 1998;89(2):130–3. https://doi.org/10.1159/000006768.

    Article  CAS  PubMed  Google Scholar 

  58. Chen JW, Hsu NW, Wu TC, Lin SJ, Chang MS. Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol. 2002;90(9):974–82. https://doi.org/10.1016/s0002-9149(02)02664-4.

    Article  CAS  PubMed  Google Scholar 

  59. Pauly DF, Johnson BD, Anderson RD, Handberg EM, Smith KM, Cooper-DeHoff RM, Sopko G, Sharaf BM, Kelsey SF, Merz CN, Pepine CJ. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: a double-blind randomized study from the National Heart, Lung and Blood Institute women’s ischemia syndrome evaluation (WISE). Am Heart J. 2011;162(4):678–84. https://doi.org/10.1016/j.ahj.2011.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hasenfuss G, Maier LS. Mechanism of action of the new anti-ischemia drug ranolazine. Clin Res Cardiol. 2008;97(4):222–6. https://doi.org/10.1007/s00392-007-0612-y.

    Article  CAS  PubMed  Google Scholar 

  61. Mehta PK, Goykhman P, Thomson LE, Shufelt C, Wei J, Yang Y, Gill E, Minissian M, Shaw LJ, Slomka PJ, Slivka M, Berman DS, Bairey Merz CN. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging. 2011;4(5):514–22. https://doi.org/10.1016/j.jcmg.2011.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Villano A, Di Franco A, Nerla R, Sestito A, Tarzia P, Lamendola P, Di Monaco A, Sarullo FM, Lanza GA, Crea F. Effects of ivabradine and ranolazine in patients with microvascular angina pectoris. Am J Cardiol. 2013;112(1):8–13. https://doi.org/10.1016/j.amjcard.2013.02.045.

    Article  CAS  PubMed  Google Scholar 

  63. Bairey Merz CN, Handberg EM, Shufelt CL, Mehta PK, Minissian MB, Wei J, Thomson LE, Berman DS, Shaw LJ, Petersen JW, Brown GH, Anderson RD, Shuster JJ, Cook-Wiens G, Rogatko A, Pepine CJ. A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): impact on angina and myocardial perfusion reserve. Eur Heart J. 2016;37(19):1504–13. https://doi.org/10.1093/eurheartj/ehv647.

    Article  CAS  PubMed  Google Scholar 

  64. Rambarat CA, Elgendy IY, Handberg EM, Bairey Merz CN, Wei J, Minissian MB, Nelson MD, Thomson LEJ, Berman DS, Shaw LJ, Cook-Wiens G, Pepine CJ. Late sodium channel blockade improves angina and myocardial perfusion in patients with severe coronary microvascular dysfunction: women’s ischemia syndrome evaluation-coronary vascular dysfunction ancillary study. Int J Cardiol. 2019;276:8–13. https://doi.org/10.1016/j.ijcard.2018.09.081.

    Article  PubMed  Google Scholar 

  65. Borer JS, Fox K, Jaillon P, Lerebours G, Ivabradine IG. Antianginal and antiischemic effects of ivabradine, an I(f) inhibitor, in stable angina: a randomized, double-blind, multicentered, placebo-controlled trial. Circulation. 2003;107(6):817–23. https://doi.org/10.1161/01.cir.0000048143.25023.87.

    Article  PubMed  Google Scholar 

  66. Tardif JC, Ford I, Tendera M, Bourassa MG, Fox K, Investigators I. Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J. 2005;26(23):2529–36. https://doi.org/10.1093/eurheartj/ehi586.

    Article  CAS  PubMed  Google Scholar 

  67. Skalidis EI, Hamilos MI, Chlouverakis G, Zacharis EA, Vardas PE. Ivabradine improves coronary flow reserve in patients with stable coronary artery disease. Atherosclerosis. 2011;215(1):160–5. https://doi.org/10.1016/j.atherosclerosis.2010.11.035.

    Article  CAS  PubMed  Google Scholar 

  68. Camici PG, Gloekler S, Levy BI, Skalidis E, Tagliamonte E, Vardas P, Heusch G. Ivabradine in chronic stable angina: effects by and beyond heart rate reduction. Int J Cardiol. 2016;215:1–6. https://doi.org/10.1016/j.ijcard.2016.04.001.

    Article  PubMed  Google Scholar 

  69. Crea F, Pupita G, Galassi AR, el-Tamimi H, Kaski JC, Davies G, Maseri A. Role of adenosine in pathogenesis of anginal pain. Circulation. 1990;81(1):164–72. https://doi.org/10.1161/01.cir.81.1.164.

    Article  CAS  PubMed  Google Scholar 

  70. Crea F, Gaspardone A, Araujo L, Da Silva R, Kaski JC, Davies G, Maseri A. Effects of aminophylline on cardiac function and regional myocardial perfusion: implications regarding its antiischemic action. Am Heart J. 1994;127(4 Pt 1):817–24. https://doi.org/10.1016/0002-8703(94)90548-7.

    Article  CAS  PubMed  Google Scholar 

  71. Elliott PM, Krzyzowska-Dickinson K, Calvino R, Hann C, Kaski JC. Effect of oral aminophylline in patients with angina and normal coronary arteriograms (cardiac syndrome X). Heart. 1997;77(6):523–6. https://doi.org/10.1136/hrt.77.6.523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoshio H, Shimizu M, Kita Y, Ino H, Kaku B, Taki J, Takeda R. Effects of short-term aminophylline administration on cardiac functional reserve in patients with syndrome X. J Am Coll Cardiol. 1995;25(7):1547–51. https://doi.org/10.1016/0735-1097(95)00097-n.

    Article  CAS  PubMed  Google Scholar 

  73. Shimokawa H. 2014 Williams Harvey lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J. 2014;35(45):3180–93. https://doi.org/10.1093/eurheartj/ehu427.

    Article  CAS  PubMed  Google Scholar 

  74. Ohyama K, Matsumoto Y, Takanami K, Ota H, Nishimiya K, Sugisawa J, Tsuchiya S, Amamizu H, Uzuka H, Suda A, Shindo T, Kikuchi Y, Hao K, Tsuburaya R, Takahashi J, Miyata S, Sakata Y, Takase K, Shimokawa H. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J Am Coll Cardiol. 2018;71(4):414–25. https://doi.org/10.1016/j.jacc.2017.11.046.

    Article  PubMed  Google Scholar 

  75. Suda A, Takahashi J, Hao K, Kikuchi Y, Shindo T, Ikeda S, Sato K, Sugisawa J, Matsumoto Y, Miyata S, Sakata Y, Shimokawa H. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. J Am Coll Cardiol. 2019;74(19):2350–60. https://doi.org/10.1016/j.jacc.2019.08.1056.

    Article  CAS  PubMed  Google Scholar 

  76. Shimokawa H, Sunamura S, Satoh K. RhoA/Rho-kinase in the cardiovascular system. Circ Res. 2016;118(2):352–66. https://doi.org/10.1161/CIRCRESAHA.115.306532.

    Article  CAS  PubMed  Google Scholar 

  77. Masumoto A, Mohri M, Shimokawa H, Urakami L, Usui M, Takeshita A. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation. 2002;105(13):1545–7. https://doi.org/10.1161/hc1002.105938.

    Article  CAS  PubMed  Google Scholar 

  78. Mohri M, Shimokawa H, Hirakawa Y, Masumoto A, Takeshita A. Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J Am Coll Cardiol. 2003;41(1):15–9. https://doi.org/10.1016/s0735-1097(02)02632-3.

    Article  CAS  PubMed  Google Scholar 

  79. Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart. 2005;91(3):391–2. https://doi.org/10.1136/hrt.2003.029470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsai SH, Lu G, Xu X, Ren Y, Hein TW, Kuo L. Enhanced endothelin-1/Rho-kinase signalling and coronary microvascular dysfunction in hypertensive myocardial hypertrophy. Cardiovasc Res. 2017;113(11):1329–37. https://doi.org/10.1093/cvr/cvx103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S, Eteiba H, Shaukat A, Lindsay M, Robertson K, Hood S, McGeoch R, McDade R, Yii E, Sidik N, McCartney P, Corcoran D, Collison D, Rush C, McConnachie A, Touyz RM, Oldroyd KG, Berry C. Stratified medical therapy using invasive coronary function testing in angina: The CorMicA Trial. J Am Coll Cardiol. 2018;72(23 Pt A):2841–55. https://doi.org/10.1016/j.jacc.2018.09.006.

    Article  PubMed  Google Scholar 

  82. Fukumoto Y, Ito A, Uwatoku T, Matoba T, Kishi T, Tanaka H, Takeshita A, Sunagawa K, Shimokawa H. Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Corona Artery Dis. 2006;17(1):63–70. https://doi.org/10.1097/00019501-200602000-00011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Shimokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, J., Shimokawa, H. (2021). Treatment of Coronary Microvascular Dysfunction. In: Shimokawa, H. (eds) Coronary Vasomotion Abnormalities. Springer, Singapore. https://doi.org/10.1007/978-981-15-7594-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7594-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7593-8

  • Online ISBN: 978-981-15-7594-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics