Skip to main content

The Concept of Receptor and Molecule Interaction in Drug Discovery and Development

  • Chapter
  • First Online:
Drug Discovery and Development

Abstract

The mechanisms by which drugs act are different and unique to each class as they involve interactions with pharmacological receptors, enzymes, ion channels, and cellular transport processes. Hormones, neurotransmitters, and autocoids are natural chemical messengers that have a role in physiological and pathological regulatory processes. The interpretation of their action is determined by the localization and functional capacity of the specific receptor with which the “first messenger” interacts and the concentration of the chemical to which the receptor is exposed.

This chapter focuses on physiological receptors where many of the drugs act in a manner similar to endogenous agonists or interfere with their interaction at the target to alleviate the symptoms of a disease. While doing so, many of these molecules have shown selectivity for receptor subtypes and signaling pathways. This is based on pharmacological scales such as affinity and intrinsic efficacy, and methods to quantify them are described within a theoretical concept. Based on these two drug properties, the overt action of a drug may be agonism or antagonism. Added to this gallery are allosteric modulators (positive or negative), partial agonists, inverse agonists, and biased agonists and antagonists. These are discussed with examples.

Such new drug development is believed to improve the treatment of diseases with fewer adverse effects as a drug’s therapeutic and adverse effects are mediated by distinct pathways. In this chapter, we have extended the classical concept of the initiation of a pharmacological response with the binding of a drug to a receptor to the complexity of selectivity for receptor subtypes and signaling pathways.

The opinions expressed herein are those of GJ and do not necessarily reflect those of the US Food and Drug Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1:727–30.

    Article  CAS  PubMed  Google Scholar 

  2. Goh K-II, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network. PNAS. 2007;104:8685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Swinney, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2017;10:507–829. https://doi.org/10.1038/nrd3480.

    Article  CAS  Google Scholar 

  4. Yıldırım MA, Goh K, Cusick ME, Barabási A-L, Vidal M. Drug–target network. Nat Biotechnol. 2007;25(10):1119–26. https://doi.org/10.1038/nbt1338.

    Article  CAS  PubMed  Google Scholar 

  5. Rask-Andersen M, Sällman Almén M, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov. 2011;10:579–90. https://doi.org/10.1038/nrd3478.

    Article  CAS  PubMed  Google Scholar 

  6. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829. https://doi.org/10.1038/nrd.2017.178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Disc. 2017;16:19–34.

    Article  CAS  Google Scholar 

  8. Sriram K, Insel PA. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol. 2018;93:251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kenakin TP. Pharmacology in drug discovery and development, understanding drug response. 2nd ed. New York: Academic Press; 2017.

    Google Scholar 

  10. Limbird LE. Evolution of the receptor concept. Mol Interv. 2004;4:326–35.

    Article  CAS  PubMed  Google Scholar 

  11. Prüll C-R, Maehle A-H, Halliwell RF. A short history of the drug receptor concept. New York: Palgrave Macmillan; 2009. https://doi.org/10.1057/9780230583740.

    Book  Google Scholar 

  12. Kaufmann SHE. Paul Ehrlich: founder of chemotherapy. Nat Rev Drug Discov. 2008;7:373.

    Article  CAS  PubMed  Google Scholar 

  13. Limbird LL. Cell surface receptors. A short course on theory and methods. 3rd ed. New York: Springer; 2005.

    Google Scholar 

  14. Kenakin TP. Prescient indices of activity: the application of functional system sensitivity to measurement of drug effect. Trends Pharmacol Sci. 2019;40:529–39.

    Article  CAS  PubMed  Google Scholar 

  15. Berg KA, Clarke WP. Making sense of pharmacology: inverse agonism and functional selectivity. Int J Neuropsychopharmacol. 2018;21:962–77. https://doi.org/10.1093/ijnp/pyy071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Papoian T, Chiu HJ, Elayan I, Jagadeesh G, et al. Secondary pharmacology data to assess potential off-target activity of new drugs: a regulatory perspective. Nat Rev Drug Discov. 2015;14:294–6. https://doi.org/10.1038/nrd3845-c1.

    Article  CAS  PubMed  Google Scholar 

  17. Papoian T, Jagadeesh G, Saulnier M, et al. Regulatory forum review: utility of in vitro secondary pharmacology data to assess risk of drug-induced valvular heart disease in humans: regulatory considerations. Toxicol Pathol. 2017;45:381–8. https://doi.org/10.1177/0192623317690609.

    Article  CAS  PubMed  Google Scholar 

  18. ICH Expert Working Group. Safety pharmacology studies for human pharmaceuticals S7A; 2011. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S7A/Step4/S7A_Guideline.pdf

  19. Ruffolo RR Jr. Important concepts of receptor occupation theory. J Auton Pharmacol. 1982;2:277–95.

    Article  CAS  PubMed  Google Scholar 

  20. Balakumar P, Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal. 2014;26:2147–60.

    Article  CAS  PubMed  Google Scholar 

  21. Perez DM, Hwa J, Gaivin R, et al. Constitutive activation of a single effector pathway: evidence for multiple activation sites of a G protein-coupled receptor. Mol Pharm. 1996;49:112–22.

    CAS  Google Scholar 

  22. Karnik SS. Conformational theories on receptor activation from studies of the AT1 receptor. In: Husain A, Graham RM, editors. Drugs, enzymes and receptors of the renin–angiotensin system: celebrating a century of discovery. The Netherlands: Harwood Academic Publishers; 2000. p. 117–30.

    Google Scholar 

  23. Ghanouni P, Bryzcynski Z, Steenhuis JJ, et al. Functionally different agonists induce distinct conformations in the G protein-coupling domain of the β2-adrenergic receptor. J Biol Chem. 2001;276:24,433–6.

    Article  CAS  Google Scholar 

  24. Seifert R, Wenzel-Seifert K, Gether U, Kobilka BK. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. J Pharm Exp Ther. 2001;297:1218–26.

    CAS  Google Scholar 

  25. Groblewski T, Maigret B, Larguier R, et al. Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation. J Biol Chem. 1997;272:1822–6. https://doi.org/10.1074/jbc.272.3.1822.

    Article  CAS  PubMed  Google Scholar 

  26. Balmforth AJ, Lee AJ, Warburton P, Donnelly D, Ball SG. The conformational change responsible for the AT1 receptor activation is dependent upon two juxtaposed asparagine residues on transmembrane helices III and VII. J Biol Chem. 1997;272:4245–51. https://doi.org/10.1074/jbc.272.7.4245.

    Article  CAS  PubMed  Google Scholar 

  27. Singh KD, Unal H, Desnoyer R, Karnik SS. Mechanism of hormone peptide activation of a GPCR: angiotensin II activated state of AT1R initiated by van der Waals attraction. J Chem Inf Model. 2019;59:373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hunyady L, Ji H, Jagadeesh G, et al. Dependence of AT1 angiotensin receptor function on adjacent asparagine residues in the seventh transmembrane helix. Mol Pharmacol. 1998;54:427–34.

    Article  CAS  PubMed  Google Scholar 

  29. Balakumar P, Jagadeesh G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol. 2014;53:R71–92.

    Article  CAS  PubMed  Google Scholar 

  30. Miura S, Kiya Y, Hanzawa H, et al. Small molecules with similar structures exhibit agonist, neutral antagonist or inverse agonist activity toward angiotensin II type 1 receptor. PLoS One. 2012;7:e37974. https://doi.org/10.1371/journal.pone.0037974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ross EM, Kenakin TP. Pharmacodynamics. Mechanisms of drug action and the relationship between drug concentration and effect, Chapter 2. In: Hardman JG, et al., editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  32. Wilkes BC, Masaro L, Schiller PW, Carpenter KA. Angiotensin II vs its type I antagonists: conformational requirements for receptor binding assessed from NMR spectroscopic and receptor docking experiments. J Med Chem. 2002;45:4410–8. https://doi.org/10.1021/jm0103155.

    Article  CAS  PubMed  Google Scholar 

  33. Fillion D, Lemieux G, Basambombo LL, et al. The amino-terminus of angiotensin II contacts several ectodomains of the angiotensin II receptor AT1. J Med Chem. 2010;53:2063–75. https://doi.org/10.1021/jm9015747.

    Article  CAS  PubMed  Google Scholar 

  34. Kobilka BK. Commentary: conformational theories on receptor activation from studies of the AT1 receptor. In: Husain A, Graham RM, editors. Drugs, enzymes and receptors of the renin–angiotensin system: celebrating a century of discovery. The Netherlands: Harwood Academic Publishers; 2000. p. 131–5.

    Google Scholar 

  35. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20:953–70. https://doi.org/10.1210/me.2004-0536.

    Article  CAS  PubMed  Google Scholar 

  36. Fillion D, Cabana J, Guillemette G, et al. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode. J Med Chem. 2013;288:8187–97. https://doi.org/10.1074/jbc.M112.442053.

    Article  CAS  Google Scholar 

  37. Verma S, Kumar A, Tripathi T, Kumar A. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy. J Pharm Pharmacol. 2018;70:985–93. https://doi.org/10.1111/jphp.12919.

    Article  CAS  PubMed  Google Scholar 

  38. Mandai T, Kasahara M, Kurimoto E, et al. In vivo pharmacological comparison of TAK-071, a positive allosteric modulator of muscarinic M1 receptor, and xanomeline, an agonist of muscarinic M1/M4 receptor, in rodents. Neuroscience. 2019;414:60–76.

    Article  CAS  PubMed  Google Scholar 

  39. Morgan SJ, Elangbam CS, Berens S, et al. Use of animal models of human disease for nonclinical safety assessment of novel pharmaceuticals. Toxicol Pathol. 2013;41:508–18.

    Article  PubMed  Google Scholar 

  40. Tiwari P. Characterization of postsynaptic alpha-adrenoceptors in rabbit thoracic aorta, vas deferens and rat vas deferens. A thesis submitted for the degree of master of pharmacy in pharmacology of Banaras Hindu University, Varanasi, India; 1986.

    Google Scholar 

  41. Sundberg SA. High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opinion Biotechnol. 2000;11:47–53.

    Article  CAS  Google Scholar 

  42. Thomsen W, Frazer J, Unett D. Functional assays for screening GPCR targets. Curr Opin Biotechnol. 2005;16:655–65. https://doi.org/10.1016/j.copbio.2005.10.008.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng Z, Garvin D, Paguio A, et al. Luciferase reporter assay system for deciphering GPCR pathways. Curr Chem Genomics. 2010;4:84–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paguio A, Stecha P, Wood KV, Fan F. Improved dual-luciferase reporter assays for nuclear receptors. Curr Chem Genomics. 2010;4:43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Messier TL, Dorman CM, Braiiner-Osborne H, Eubanks D, Brann MR. High throughput assays of cloned adrenergic, muscarinic, neurokinin, and neurotrophin receptors in living mammalian cells. Pharmacol Toxicol. 1995;16:308–11.

    Article  Google Scholar 

  46. Munson PJ, Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding system. Anal Biochem. 1980;107:220–39.

    Article  CAS  PubMed  Google Scholar 

  47. Jagadeesh G, Deth RC. Different affinity states of alpha-1 adrenergic receptors defined by agonists and antagonists in bovine aorta plasma membranes. J Pharmacol Exp Ther. 1987;243:430–6.

    CAS  PubMed  Google Scholar 

  48. Jagadeesh G, Cragoe EJ, Deth RC. Modulation of bovine aortic alpha-2 receptors by Na+, 5′-guanylylimidodiphosphate, amiloride and ethylisopropylamiloride: evidence for receptor G-protein precoupling. J Pharmacol Exp Ther. 1990;252:1184–96.

    CAS  PubMed  Google Scholar 

  49. Cheng Y-C, Prusoff WH. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–108.

    Article  CAS  PubMed  Google Scholar 

  50. McKinney M. Practical aspects of radioligand binding. In: Enna SJ, Williams M, Ferkany JW, Kenakin T, Porsolt RD, Sullivan JP, editors. Current protocols in pharmacology, vol. 1. New York: Wiley; 2002. p. 1.3.1–1.3.33.

    Google Scholar 

  51. Eglen RM, Whiting RL. Problems associated with the application of the Cheng-Prusoff relationship to estimate atropine affinity constants using functional tissue responses. Life Sci. 1989;44:81–94.

    Article  CAS  PubMed  Google Scholar 

  52. Schwartz KR. The principles of receptor binding studies. In: Fozzard HA, et al., editors. The heart and cardiovascular system. New York: Raven Press; 1986. p. 169–88.

    Google Scholar 

  53. Christopoulos A, El-Fakahany EE. Qualitative and quantitative assessment of relative agonist efficacy. Biochem Pharmacol. 1999;58:735–48.

    Article  CAS  PubMed  Google Scholar 

  54. Christopoulos A, Grant MKO, El-Fakahany EE. Transducer abstraction. A novel approach to the detection of partial agonist efficacy in radioligand binding studies. J Pharmacol Toxicol Methods. 2000;43:55–67.

    Article  CAS  PubMed  Google Scholar 

  55. Tian W-N, Miller DD, Deth RC. Bidirectional allosteric effects of agonists and GTP at αa2A/D-adrenoceptors. J Pharmacol Exp Ther. 2000;292:664–71.

    CAS  PubMed  Google Scholar 

  56. Schild HO. Drug antagonism and pAx. Pharmacol Rev. 1957;9:242–6.

    CAS  PubMed  Google Scholar 

  57. Schild HO. pA2 and competitive drug antagonism. Br J Pharmacol. 1949;4:277–80.

    CAS  Google Scholar 

  58. Tallarida RJ, Murray RB. Manual of pharmacological calculations with computer programs. 2nd ed. New York: Springer; 1987.

    Google Scholar 

  59. Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. Br J Pharmacol. 1959;14:48–58.

    CAS  Google Scholar 

  60. Furchgott RF. The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. In: Harper NJ, Simmonds AB, editors. Advances in drug research, vol. 3. London: Academic Press; 1966. p. 21–55.

    Google Scholar 

  61. Stephenson RP. A modification of receptor theory. Br J Pharmacol. 1956;11:379–93.

    CAS  Google Scholar 

  62. Thal DM, Glukhova A, Sexton PM, Christopoulos A. Structural insights into G-protein coupled receptor allostery. Nature. 2018;559:45–53. https://doi.org/10.1038/s41586-018-0259-z.

    Article  CAS  PubMed  Google Scholar 

  63. Wootten D, Christopoulos A, Sexton PM. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov. 2013;12:630–44. https://doi.org/10.1038/nrd4052.

    Article  CAS  PubMed  Google Scholar 

  64. Panarese JD, Engers DW, Wu YJ, et al. Discovery of VU2957 (valiglurax): an mGlu4 positive allosteric modulator evaluated as a preclinical candidate for the treatment of Parkinson’s disease. ACS Med Chem Lett. 2018;10:255–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Broad LM, Sanger HE, Mogg AJ, et al. Identification and pharmacological profile of SPP1, a potent, functionally selective and brain penetrant agonist at muscarinic M1 receptors. Brit J Pharmacol. 2019;176:110–26.

    Article  CAS  Google Scholar 

  66. Chan WY, McKinzie DL, Bose S, et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA. 2008;105:10978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Massink A, Amelia T, Karamychev A, IJzerman AP. Allosteric modulation of G protein-coupled receptors by amiloride and its derivatives. Perspectives for drug discovery? Med Res Rev. 2019;40:1–26. https://doi.org/10.1002/med.21633.

    Article  CAS  Google Scholar 

  68. Christopoulos A, Changeux J-P, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, et al. International union of basic and clinical pharmacology. XC. Multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev. 2014;66:918–47.

    Article  CAS  PubMed  Google Scholar 

  69. Maillet EL, Pellegrini N, Valant C, et al. A novel, conformation-specific allosteric inhibitor of the tachykinin NK2 receptor (NK2R) with functionally selective properties. FASEB J. 2007;21:2124–34.

    Article  CAS  PubMed  Google Scholar 

  70. Qile M, Beekman HDM, Sprenkeler DJ, Houtman MJC, van Ham WB, Stary-Weinzinger A, et al. LUF7244, an allosteric modulator/activator of Kv11.1 channels, counteracts dofetilide-induced torsades de pointes arrhythmia in the chronic atrioventricular block dog model. Br J Pharmacol. 2019;176:3871–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cerione RA, Codina J, Benovic JL, et al. The mammalian beta 2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Biochemistry. 1984;23:4519–25.

    Article  CAS  PubMed  Google Scholar 

  72. Costa T, Herz A. Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U S A. 1989;86:7321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Samama P, Cotecchia S, Costa T, Lefkowitz RJ. A mutation-induced activated state of the β2-adrenergic receptor: extending the ternary complex model. J Biol Chem. 1993;268:4625–36.

    Article  CAS  PubMed  Google Scholar 

  74. Pauwels P, Wurch T. Review: amino acid domains involved in constitutive activation of G-protein-coupled receptors. Mol Neurobiol. 1998;17:109–35.

    Article  CAS  PubMed  Google Scholar 

  75. Kenakin T. The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol Rev. 1996;48:413–63.

    CAS  PubMed  Google Scholar 

  76. Miura S, Saku K, Karnik SS. Molecular analysis of the structure and function of the angiotensin II type 1 receptor. Hypertens Res. 2003;26:937–43.

    Article  CAS  PubMed  Google Scholar 

  77. Liu G, Duranteau L, Carel JC, et al. Leydig-cell tumors caused by an activating mutation of the gene encoding the luteinizing hormone receptor. N Engl J Med. 1999;341:1731–6.

    Article  CAS  PubMed  Google Scholar 

  78. Zhao H, Guo L, Zhao H, et al. CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget. 2015;6:5022–40.

    Article  PubMed  Google Scholar 

  79. Xu C, Zheng L, Li D, et al. CXCR4 overexpression is correlated with poor prognosis in colorectal cancer. Life Sci. 2018;208:333–40.

    Article  CAS  PubMed  Google Scholar 

  80. Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Drug Discov. 2007;7:79–94.

    Article  CAS  Google Scholar 

  81. Insel PA, Sriram K, Gorr MW, et al. GPCRomics: an approach to discover GPCR drug targets. Trends Pharmacol Sci. 2019;40:378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nieto Gutierrez A, McDonald PH. GPCRs: emerging anti-cancer drug targets. Cell Signal. 2018;41:65–74.

    Article  CAS  PubMed  Google Scholar 

  83. Lanoue KF, Martin LF. Abnormal A1 adenosine receptor function in genetic obesity. FASEB J. 1994;8:72–80.

    Article  CAS  PubMed  Google Scholar 

  84. Uemur H, Hasumi H, Ishiguro H, et al. Renin-angiotensin system is an important factor in hormone refractory prostate cancer. Prostate. 2006;66:822–30.

    Article  CAS  Google Scholar 

  85. Saikawa S, Kaji K, Nishimura N, et al. Angiotensin receptor blockade attenuates cholangiocarcinoma cell growth by inhibiting the oncogenic activity of yes-associated protein. Cancer Lett. 2018;434:120–9.

    Article  CAS  PubMed  Google Scholar 

  86. Dethlefsen C, Hansen LS, Lillelund C, et al. Exercise-induced catecholamines activate the hippo tumor suppressor pathway to reduce risks of breast cancer development. Cancer Res. 2017;77:4894–904.

    Article  CAS  PubMed  Google Scholar 

  87. Lee Z, Swaby RF, Liang Y, et al. Lysophosphatidic acid is a major regulator of growth-regulated oncogene alpha in ovarian cancer. Cancer Res. 2006;66:2740–8.

    Article  CAS  PubMed  Google Scholar 

  88. Kijima T, Maulik G, Ma PC, et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res. 2002;62:6304–11.

    CAS  PubMed  Google Scholar 

  89. Almofti A, Uchida D, Begum NM, et al. The clinicopathological significance of the expression of CXCR4 protein in oral squamous cell carcinoma. Int J Oncol. 2004;25:65–71.

    CAS  PubMed  Google Scholar 

  90. Wang Z, Liu P, Zhou X, et al. Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ. Cancer Res. 2017;77:2413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Katoh M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases. Int J Mol Med. 2017;40:587–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Szepeshazi K, Schally AV, Nagy A, Halmos G. Inhibition of growth of experimental human and hamster pancreatic cancers in vivo by a targeted cytotoxic bombesin analog. Pancreas. 2005;31:275–82.

    Article  CAS  PubMed  Google Scholar 

  93. Liu G, Duranteau L, Caarel JC, et al. Leydig-cell tumors caused by an activating mutation of the gene encoding the luteinizing hormone receptor. N Engl J Med. 1999;341:1731–6.

    Article  CAS  PubMed  Google Scholar 

  94. Hwa J, Klein-Seetharaman J, Khorana HG. Structure and function in rhodopsin: mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa. Proc Natl Acad Sci U S A. 2001;98:4872–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Spiegel AM. Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol. 1996;58:143–70.

    Article  CAS  PubMed  Google Scholar 

  96. Parma J, Duprez L, Van Sande J, et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature. 1993;365:649–51.

    Article  CAS  PubMed  Google Scholar 

  97. Rosenthal W, Antaramian A, Gilbert S, Birnbaumer M. Nephrogenic diabetes insipidus: a V2 vasopressin receptor unable to stimulate adenylyl cyclase. J Biol Chem. 1993;268:13,030–3.

    Article  CAS  Google Scholar 

  98. Smit MJ, Leurs R, Alewijnse AE, et al. Inverse agonism of histamine H2 antagonist accounts for upregulation of spontaneously active histamine H2 receptors. PNAS USA. 1996;93:6802–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Onaran HO, Costa T. Where have all the active receptor states gone? Nat Chem Biol. 2012;8:674–7.

    Article  CAS  PubMed  Google Scholar 

  100. Wisler JW, et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc Natl Acad Sci U S A. 2007;104:16,657–62.

    Article  CAS  Google Scholar 

  101. Fitzgerald LW, Burn TC, Brown BS, et al. Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol. 2000;57:75–81.

    CAS  PubMed  Google Scholar 

  102. Huang XP, Setola V, Yadav PN, et al. Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment. Mol Pharmacol. 2009;76:710–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luttrell LM, Maudsley S, Bohn LM. Fulfilling the promise of “biased” G protein-coupled receptor agonism. Mol Pharmacol. 2015;88:579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nikiforovich GV, Zhang M, Yang Q, et al. Interactions between conserved residues in transmembrane helices 2 and 7 during angiotensin AT1 receptor activation. Chem Biol Drug Des. 2006;68:239–49.

    Article  CAS  PubMed  Google Scholar 

  105. Zimmerman B, Beautrait A, Aguila B, Charles R, Escher E, Claing A, Bouvier M, Laporte SA. Differential b-arrestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. Sci Signal. 2012;5:ra33. https://doi.org/10.1126/scisignal.2002522.

    Article  PubMed  Google Scholar 

  106. Valero TR, Sturchler E, Jafferjee M, et al. Structure–activity relationship study of angiotensin II analogs in terms of β-arrestin-dependent signaling to aldosterone production. Pharmacol Res Per. 2016;4(2):e00226, pp 1–10. https://doi.org/10.1002/prp2.226.

    Article  CAS  Google Scholar 

  107. Ehlert FJ. Analysis of biased agonism. Prog Mol Biol Transl Sci. 2018;160:63–104. https://doi.org/10.1016/bs.pmbts.2018.08.001.

    Article  CAS  PubMed  Google Scholar 

  108. Lymperopoulos A. Arrestins in the cardiovascular system: an update. Prog Mol Biol Transl Sci. 2018;159:27–57. https://doi.org/10.1016/bs.pmbts.2018.07.003.

    Article  CAS  PubMed  Google Scholar 

  109. Kenakin T. What is pharmacological ‘affinity’? Relevance to biased agonism and antagonism. Trends Pharmacol Sci. 2014;35:434–41.

    Article  CAS  PubMed  Google Scholar 

  110. Silva GM, Barcelos MP, JGC P, et al. Allosteric modulators of potential targets related to Alzheimer’s disease: a review. ChemMedChem. 2019;14:1467–83. https://doi.org/10.1002/cmdc.201900299.

    Article  CAS  PubMed  Google Scholar 

  111. Hamm HE. How activated receptors couple to G proteins. Proc Natl Acad Sci USA. 2001;98:4819–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jakubík J, Bačáková L, El-fakahanY EE, and Tuček S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol. 1997; 52:172–179

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. John Turner of the US FDA for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gowraganahalli Jagadeesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poduri, R., Jagadeesh, G. (2021). The Concept of Receptor and Molecule Interaction in Drug Discovery and Development. In: Poduri, R. (eds) Drug Discovery and Development. Springer, Singapore. https://doi.org/10.1007/978-981-15-5534-3_3

Download citation

Publish with us

Policies and ethics