Skip to main content

Application of Nanomaterials in the Diagnosis and Treatment of Genetic Disorders

  • Chapter
  • First Online:
Applications of Nanomaterials in Human Health

Abstract

Genetic testing is focused on identifying chromosome, gene, or protein changes between healthy and diseased cells or person. Genetic test outcomes can either verify or rule out possible genetic conditions and help determine whether a person is likely to develop or pass a genetic disorder. There are currently more than 1000 genetic testing and many more in the development pipeline. Therefore, the need to develop a susceptible and reliable method is vital in the diagnosis of genetic disorders. Nanomaterials offer a futuristic diagnosis platform for genetic diseases as it is a non-invasive, simple, portable, inexpensive diagnostic platform. Different nanomaterials have also been developed and functionlized with the target molecules to provide therapeutic selectively and for molecular imaging. For these reasons, the development of nanomaterials for the early detection of specific disease biomarkers in tiny amounts reaches to part-per-billion (ppb) levels, in real-time, with high sensitivity and selectivity and reliability is of great importance in disease diagnosis and disease progression monitoring. Such nanomaterials should have exceptionally high sensitivity and selectivity that combines the optical, magnetic, and electrical properties of nanomaterials with the biological selectivity and sensitivity toward their targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 13 August 2020

    The original version of the book was inadvertently published with a spelling error in an author’s surname in Chapter 7. The author’s (7th author) name has now been corrected as “Murtaza M. Tambuwala”.

References

  • Acquila M, Bottini F, Valetto A, Caprino D, Mori PG, Bicocchi MP (2001) A new strategy for prenatal diagnosis in a sporadic haemophilia B family. Haemophilia 7:416–418

    CAS  Google Scholar 

  • Agrawal AK, Harde H, Thanki K, Jain S (2014) Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules 15:350–360

    CAS  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    Google Scholar 

  • Alberti KGMM, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 15:539–553

    CAS  Google Scholar 

  • Aljabali AA, Evans DJ (2014) Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles. Methods Mol Biol 1108:97–103

    CAS  Google Scholar 

  • Aljabali AAA, Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, Alkilany AM, Benamara M, Evans DJ (2018a) Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials (Basel) 8. https://doi.org/10.3390/nano8030174

  • Aljabali AAA, Hussein E, Aljumaili O, Zoubi MA, Altrad B, Albatayneh K, Abd Al-Razaq MA (2018b) Rapid magnetic Nanobiosensor for the detection of Serratia marcescen. IOP Conf Ser Mater Sci Eng 305:012005

    Google Scholar 

  • Aulenta F, Drew MG, Foster A, Hayes W, Rannard S, Thornthwaite DW, Worrall DR, Youngs TG (2005) Synthesis and characterization of fluorescent poly (aromatic amide) dendrimers. J Org Chem 70:63–78

    CAS  Google Scholar 

  • Bao W, Liu R, Xia G, Wang F, Chen B (2019) Applications of daunorubicin-loaded PLGA-PLL-PEG-Tf nanoparticles in hematologic malignancies: an in vitro and in vivo evaluation. Drug Des Devel Ther 13:1107–1115

    CAS  Google Scholar 

  • Baptista PV, Doria G, Quaresma P, Cavadas M, Neves CS, Gomes I, Eaton P, Pereira E, Franco R (2011) Nanoparticles in molecular diagnostics. Prog Mol Biol Transl Sci 104:427–488

    CAS  Google Scholar 

  • Bertolini LR, Bertolini M, Anderson GB, Maga EA, Madden KR, Murray JD (2007) Transient depletion of Ku70 and Xrcc4 by RNAi as a means to manipulate the non-homologous end-joining pathway. J Biotechnol 128:246–257

    CAS  Google Scholar 

  • Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60:1–8

    Google Scholar 

  • Campbell CN, Gal D, Cristler N, Banditrat C, Heller A (2002) Enzyme-amplified amperometric sandwich test for RNA and DNA. Anal Chem 74:158–162

    CAS  Google Scholar 

  • Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    CAS  Google Scholar 

  • De La Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7:821–824

    Google Scholar 

  • Deng HH, Li GW, Hong L, Liu AL, Chen W, Lin XH, Xia XH (2014) Colorimetric sensor based on dual-functional gold nanoparticles: analyte-recognition and peroxidase-like activity. Food Chem 147:257–261

    CAS  Google Scholar 

  • Edlund U, Albertsson A-C (2002) Degradable polymer microspheres for controlled drug delivery. In: Degradable aliphatic polyesters. Springer

    Google Scholar 

  • Esteban-Fernandez De Avila B, Araque E, Campuzano S, Pedrero M, Dalkiran B, Barderas R, Villalonga R, Kilic E, Pingarron JM (2015) Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. Anal Chem 87:2290–2298

    CAS  Google Scholar 

  • Falus A, Varadi A, Rasko I (1998) The DNA-chip, a new tool for medical genetics. Orv Hetil 139:957–960

    CAS  Google Scholar 

  • Fan C, Plaxco KW, Heeger AJ (2005) Biosensors based on binding-modulated donor-acceptor distances. Trends Biotechnol 23:186–192

    CAS  Google Scholar 

  • Fang X, Li JJ, Perlette J, Tan W, Wang K (2000) Molecular beacons: novel fluorescent probes. Anal Chem 72:747A–753A

    CAS  Google Scholar 

  • Ferguson JA, Boles TC, Adams CP, Walt DR (1996) A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat Biotechnol 14:1681–1684

    CAS  Google Scholar 

  • Fiorentino F, Napoletano S, Caiazzo F, Sessa M, Bono S, Spizzichino L, Gordon A, Nuccitelli A, Rizzo G, Baldi M (2013) Chromosomal microarray analysis as a first-line test in pregnancies with a priori low risk for the detection of submicroscopic chromosomal abnormalities. Eur J Hum Genet 21:725–730

    CAS  Google Scholar 

  • Fojta M, Havran L, Vojtiskova M, Palecek E (2004) Electrochemical detection of DNA triplet repeat expansion. J Am Chem Soc 126:6532–6533

    CAS  Google Scholar 

  • Fukuhara H, Ino Y, Todo T (2016) Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 107:1373–1379

    CAS  Google Scholar 

  • Gao A, Lu N, Dai P, Fan C, Wang Y, Li T (2014) Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. Nanoscale 6:13036–13042

    CAS  Google Scholar 

  • Garcia-Carbonero R, Salazar R, Duran I, Osman-Garcia I, Paz-Ares L, Bozada JM, Boni V, Blanc C, Seymour L, Beadle J, Alvis S, Champion B, Calvo E, Fisher K (2017) Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J Immunother Cancer 5:71

    Google Scholar 

  • Georganopoulou DG, Chang L, Nam J-M, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci U S A 102:2273–2276

    CAS  Google Scholar 

  • Gharatape A, Yari Khosroushahi A (2019) Optical biomarker-based biosensors for cancer/infectious disease medical diagnoses. Appl Immunohistochem Mol Morphol 27:278–286

    CAS  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Advanced drug delivery reviews. 2008 Aug 17;60(11):1307–15

    Google Scholar 

  • Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803

    CAS  Google Scholar 

  • Guggino WB, Benson J, Seagrave J, Yan Z, Engelhardt J, Gao G, Conlon TJ, Cebotaru L (2017) A preclinical study in rhesus macaques for cystic fibrosis to assess gene transfer and transduction by AAV1 and AAV5 with a dual-luciferase reporter system. Hum Gene Ther Clin Dev 28:145–156

    CAS  Google Scholar 

  • Hahm J-I, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4:51–54

    CAS  Google Scholar 

  • Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60(8):977–985

    Google Scholar 

  • Harding CO, Blau N (2010) Advances and challenges in phenylketonuria. J Inherit Metab Dis 33:645–648

    Google Scholar 

  • Hasan AA, Madkor H, Wageh S (2013) Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv 20:120–126

    CAS  Google Scholar 

  • He H, Xia J, Peng X, Chang G, Zhang X, Wang Y, Nakatani K, Lou Z, Wang S (2013) Facile electrochemical biosensor based on a new bifunctional probe for label-free detection of CGG trinucleotide repeat. Biosens Bioelectron 49:282–289

    CAS  Google Scholar 

  • Hwang MT, Wang Z, Ping J, Ban DK, Shiah ZC, Antonschmidt L, Lee J, Liu Y, Karkisaval AG, Johnson ATC, Fan C, Glinsky G, Lal R (2018) DNA Nanotweezers and Graphene transistor enable label-free genotyping. Adv Mater:e1802440. https://doi.org/10.1002/adma.201802440

  • Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, Muir MF, Dickson GR, Prise KM, Currell FJ, O’Sullivan JM (2011) Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 79(2):531–539

    Google Scholar 

  • Jin Y, Song Y, Zhu X, Zhou D, Chen C, Zhang Z, Huang Y (2012) Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 33:1573–1582

    CAS  Google Scholar 

  • Kaufman HL, Kim DW, Deraffele G, Mitcham J, Coffin RS, Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17:718–730

    Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307

    CAS  Google Scholar 

  • Korkko J, Kaitila I, Lonnqvist L, Peltonen L, Ala-Kokko L (2002) Sensitivity of conformation sensitive gel electrophoresis in detecting mutations in Marfan syndrome and related conditions. J Med Genet 39:34–41

    CAS  Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269

    CAS  Google Scholar 

  • Lien KY, Lee GB (2010) Miniaturization of molecular biological techniques for gene assay. Analyst 135:1499–1518

    CAS  Google Scholar 

  • Liu C, Jia Q, Yang C, Qiao R, Jing L, Wang L, Xu C, Gao M (2011) Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem 83:6778–6784

    CAS  Google Scholar 

  • Liu J, Lu Y (2004) Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J Fluoresc 14:343–354

    CAS  Google Scholar 

  • Ma Y, Niu H, Zhang X, Cai Y (2011) One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk. Analyst 136:4192–4196

    CAS  Google Scholar 

  • Malekzad H, Zangabad PS, Mohammadi H, Sadroddini M, Jafari Z, Mahlooji N, Abbaspour S, Gholami S, Ghanbarpoor M, Pashazadeh R, Beyzavi A, Karimi M, Hamblin MR (2018) Noble metal nanostructures in optical biosensors: basics, and their introduction to anti-doping detection. Trends Analyt Chem 100:116–135

    CAS  Google Scholar 

  • Mallidi S, Kim S, Karpiouk A, Joshi PP, Sokolov K, Emelianov S (2015) Visualization of molecular composition and functionality of cancer cells using nanoparticle-augmented ultrasound-guided photoacoustics. Photoacoustics 3(1):26–34

    Google Scholar 

  • Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, Esposito S, Carafa M (2014) Niosomes from 80s to present: the state of the art. Adv Colloid Interf Sci 205:187–206

    CAS  Google Scholar 

  • Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60:569–578

    CAS  Google Scholar 

  • Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612

    CAS  Google Scholar 

  • Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8:728–742

    CAS  Google Scholar 

  • Mingozzi F, High KA (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122:23–36

    CAS  Google Scholar 

  • Nam JM, Wise AR, Groves JT (2005) Colorimetric bio-barcode amplification assay for cytokines. Anal Chem 77:6985–6988

    CAS  Google Scholar 

  • Nugroho FA, Iandolo B, Wagner JB, Langhammer C (2016) Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics. ACS Nano 10:2871–2879

    CAS  Google Scholar 

  • Nyman DW, Campbell KJ, Hersh E, Long K, Richardson K, Trieu V, Desai N, Hawkins MJ, Von Hoff DD (2005) Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 23:7785–7793

    CAS  Google Scholar 

  • Obeid MA, Elburi A, Young LC, Mullen AB, Tate RJ, Ferro VA (2017a) Formulation of nonionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Mol Pharm 14:2450–2458

    CAS  Google Scholar 

  • Obeid MA, Gebril AM, Tate RJ, Mullen AB, Ferro VA (2017b) Comparison of the physical characteristics of monodisperse non-ionic surfactant vesicles (NISV) prepared using different manufacturing methods. Int J Pharm 521:54–60

    CAS  Google Scholar 

  • Obeid MA, Khadra I, Mullen AB, Tate RJ, Ferro VA (2017c) The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int J Pharm 516:52–60

    CAS  Google Scholar 

  • Obeid MA, Tate RJ, Mullen AB, Ferro VA (2018) Lipid-based nanoparticles for cancer treatment. In: Lipid nanocarriers for drug targeting. Elsevier

    Google Scholar 

  • Obeid MA, Khadra I, Albaloushi A, Mullin M, Alyamani H, Ferro VA (2019) Microfluidic manufacturing of different niosomes nanoparticles for curcumin encapsulation: physical characteristics, encapsulation efficacy, and drug release. Beilstein J Nanotechnol 10:1826–1832

    CAS  Google Scholar 

  • Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    CAS  Google Scholar 

  • Pathak S, Choi SK, Arnheim N, Thompson ME (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 123:4103–4104

    CAS  Google Scholar 

  • Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18

    CAS  Google Scholar 

  • Pfister EL, Dinardo N, Mondo E, Borel F, Conroy F, Fraser C, Gernoux G, Han X, Hu D, Johnson E, Kennington L, Liu P, Reid SJ, Sapp E, Vodicka P, Kuchel T, Morton AJ, Howland D, Moser R, Sena-Esteves M, Gao G, Mueller C, Difiglia M, Aronin N (2018) Artificial miRNAs reduce human mutant Huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum Gene Ther 29:663–673

    CAS  Google Scholar 

  • Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149(1):65–71

    Google Scholar 

  • Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine 10:1001

    CAS  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    CAS  Google Scholar 

  • Raty JK, Pikkarainen JT, Wirth T, Yla-Herttuala S (2008) Gene therapy: the first approved gene-based medicines, molecular mechanisms and clinical indications. Curr Mol Pharmacol 1:13–23

    CAS  Google Scholar 

  • Rebelo R, Barbosa AI, Caballero D, Kwon IK, Oliveira JM, Kundu SC, Reis RL, Correlo VM (2019) 3D biosensors in advanced medical diagnostics of high mortality diseases. Biosens Bioelectron 130:20–39

    CAS  Google Scholar 

  • Riggs ER, Wain KE, Riethmaier D, Smith-Packard B, Faucett WA, Hoppman N, Thorland EC, Patel VC, Miller DT (2014) Chromosomal microarray impacts clinical management. Clin Genet 85:147–153

    CAS  Google Scholar 

  • Roberts JL, Hovanes K, Dasouki M, Manzardo AM, Butler MG (2014) Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders or learning disability presenting for genetic services. Gene 535:70–78

    CAS  Google Scholar 

  • Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    CAS  Google Scholar 

  • Saylan Y, Erdem O, Unal S, Denizli A (2019) An alternative medical diagnosis method: biosensors for virus detection. Biosensors (Basel) 9:65

    CAS  Google Scholar 

  • Seifati SM, Nasirizadeh N, Azimzadeh M (2018) Nano-biosensor based on reduced graphene oxide and gold nanoparticles, for detection of phenylketonuria-associated DNA mutation. IET Nanobiotechnol 12:417–422

    Google Scholar 

  • Shaffer LG, Dabell MP, Fisher AJ, Coppinger J, Bandholz AM, Ellison JW, Ravnan JB, Torchia BS, Ballif BC, Rosenfeld JA (2012) Experience with microarray-based comparative genomic hybridization for prenatal diagnosis in over 5000 pregnancies. Prenat Diagn 32:976–985

    Google Scholar 

  • Shariatifar H, Hakhamaneshi MS, Abolhasani M, Ahmadi FH, Roshani D, Nikkhoo B, Abdi M, Ahmadvand D (2019) Immunofluorescent labeling of CD20 tumor marker with quantum dots for rapid and quantitative detection of diffuse large B-cell non-Hodgkin’s lymphoma. J Cell Biochem 120:4564–4572

    CAS  Google Scholar 

  • Sherman MR, Saifer MG, Perez-Ruiz F (2008) PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv Drug Deliv Rev 60:59–68

    CAS  Google Scholar 

  • Spencer HT, Riley BE, Doering CB (2016) State of the art: gene therapy of haemophilia. Haemophilia 22(Suppl 5):66–71

    Google Scholar 

  • Sun N, Liang J, Abil Z, Zhao H (2012) Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol BioSyst 8:1255–1263

    CAS  Google Scholar 

  • Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    CAS  Google Scholar 

  • Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Res 28:3011–3016

    CAS  Google Scholar 

  • Wang Y, Tian K, Shi R, Gu A, Pennella M, Alberts L, Gates KS, Li G, Fan H, Wang MX, Gu LQ (2017) Nanolock-Nanopore facilitated digital diagnostics of cancer driver mutation in tumor tissue. ACS Sens 2:975–981

    CAS  Google Scholar 

  • Wu ZH, Ping QN, Wei Y, Lai JM (2004) Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharmacol Sin 25:966–972

    CAS  Google Scholar 

  • Xu H, Wu H, Huang F, Song S, Li W, Cao Y, Fan C (2005) Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. Nucleic Acids Res 33:e83

    Google Scholar 

  • Yang J, Zhang Y, Zhang L, Wang H, Nie J, Qin Z, Li J, Xiao W (2017) Analyte-triggered autocatalytic amplification combined with gold nanoparticle probes for colorimetric detection of heavy-metal ions. Chem Commun (Camb) 53:7477–7480

    CAS  Google Scholar 

  • Yatsenko SA, Davis S, Hendrix NW, Surti U, Emery S, Canavan T, Speer P, Hill L, Clemens M, Rajkovic A (2013) Application of chromosomal microarray in the evaluation of abnormal prenatal findings. Clin Genet 84:47–54

    CAS  Google Scholar 

  • Yatuv R, Robinson M, Dayan-Tarshish I, Baru M (2010) The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia. Int J Nanomedicine 5:581–591

    CAS  Google Scholar 

  • Zhang X, Qi J, Lu Y, Hu X, He W, Wu W (2014) Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity. Nanoscale Res Lett 9:185

    Google Scholar 

  • Zhang WW, Li L, Li D, Liu J, Li X, Li W, Xu X, Zhang MJ, Chandler LA, Lin H, Hu A, Xu W, Lam DM (2018) The first approved gene therapy product for cancer ad-p53 (Gendicine): 12 years in the clinic. Hum Gene Ther 29:160–179

    CAS  Google Scholar 

Download references

Acknowledgments

The deanship of scientific research supported this work with grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa A. Aljabali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aljabali, A.A. et al. (2020). Application of Nanomaterials in the Diagnosis and Treatment of Genetic Disorders. In: Khan, F. (eds) Applications of Nanomaterials in Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-4802-4_7

Download citation

Publish with us

Policies and ethics