Skip to main content

Microbial Factories for Biofuel Production: Current Trends and Future Prospects

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

  • 679 Accesses

Abstract

The rapid depletion of fossil fuels and the increasingly growing global energy demand have paved way to find an alternative energy resource to sustain the energy crisis. Finding a cheaper and an efficient alternative energy resource could presumably be an effective method to minimize the usage of conventional fossil fuels and to combat the problem of increased greenhouse gas deposition which has adverse effects on global climate change. Directly or indirectly microorganisms play an inevitable role in the production of biofuels. The production of biofuels like bioethanol, biodiesel, biogas, and biohydrogen relies on the undeniable involvement of microbes for the conversion of a suitable substrate into a valuable biofuel. Metabolic engineering of microbes is the future of the next-generation biofuel production, which undoubtedly can lead to the engineering of superior-quality biofuel-producing microbial strains. This chapter focuses mainly on the exploitation of microbes as factories for efficient biofuel production and metabolic engineering as an effective tool to qualitatively and quantitatively increase the biofuel yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah NH, Hasan SH, Yusoff NRM (2013) Biodiesel production based on waste cooking oil (WCO). IJMSE 1(2):94–99

    Google Scholar 

  • Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78(3):409–418

    CAS  PubMed  Google Scholar 

  • Alba LG, Torri C, Samorì C, van der Spek J, Fabbri D, Kersten SRA, DWF B (2012) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuel 26:642–657

    Google Scholar 

  • Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376

    CAS  PubMed  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis. Bioresour Technol 101(13):4851–4861

    CAS  PubMed  Google Scholar 

  • Amini SR, Mousavi P, Najafabady NM, Mobasher MA, Mousavi SB, Vosough F, Dabbagh F, Ghasemi Y (2013) Biodiesel properties of native strain of Dunaliella Salina. IJRER 4:40–41

    Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    CAS  PubMed  Google Scholar 

  • Atsumi S, Wu TY, Eckl EM, Hawkins S, Buelter T, Liao J (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657

    CAS  PubMed  Google Scholar 

  • Aziz N, Prasad R, Ibrahim AIM, Ahmed AIS (2017) Promising applications for the production of biofuels through algae. In: Patra JK, Vishnuprasad CN, Das G (eds) Microbial biotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 81–103

    Google Scholar 

  • Beneman J (1996) Hydrogen biotechnology- progress and prospect. Nat Biotechnol 14(9):1101–1103

    Google Scholar 

  • Biller P, Ross AB, Skill SC, Langton AL, Balasundaram B, Hall C, Riley R, Llewellyn CA (2012) Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res 1:70–76

    CAS  Google Scholar 

  • Blanch HW, Clark DS (1997) Biochemical engineering. Marcel Dekker Inc., New York, NY

    Google Scholar 

  • Bogorad IW, Lin TS, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–697

    CAS  PubMed  Google Scholar 

  • Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15(5):867–875

    CAS  PubMed  Google Scholar 

  • Brown TR, Brown RC (2013) A review of cellulosic biofuel commercial-scale projects in the United States. Biofuels Bioprod Biorefin 7:235–245

    CAS  Google Scholar 

  • Buxy S, Diltz R, Pullammanappallil P (2013) In: Wicks G, Simon J, Zidan R, Brigmon R, Fischman G, Arepalli S, Norris A, McCluer M (eds) Biogasification of marine algae Nannochloropsis Oculata. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  • Carneiro S, Ferreira EC, Rocha I (2013) Metabolic responses to recombinant bioprocesses in Escherichia coli. J Biotechnol 164:396–408

    CAS  PubMed  Google Scholar 

  • Carrier T, Jones KL, Keasling JD (1998) mRNA stability and plasmid copy number effects on gene expression from an inducible promoter system. Biotechnol Bioeng 59:666–672

    CAS  PubMed  Google Scholar 

  • Chain PSG, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp DJ (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate Chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185:2759–2773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran NS, John S, Parvathy G, Kumar VN, Ruchitha R (2018) Ethanol production from newspaper waste. IJCRT 6(2):458–463

    Google Scholar 

  • Chang MCY, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277

    CAS  PubMed  Google Scholar 

  • Chang JJ, Ho FJ, Ho CY, Wu YC, Hou YH, Huang CC, Shih MC, Li WH (2013) Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol Biofuels 6:19–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Wang L, Qiu S, Shijian G (2018) Determination of microalgal lipid content and fatty acid for biofuel production. Biomed Res Int 2018:1–17

    Google Scholar 

  • Choi J, Ahn Y (2013) Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater. J Environ Manag 130:146–152

    CAS  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574

    CAS  PubMed  Google Scholar 

  • Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG (2016) Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl 2:16009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colletti PF, Goyal Y, Varman AM, Feng X, Wu B, Tang YJ (2011) Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables. Biotechnol Bioeng 108:893–901

    CAS  PubMed  Google Scholar 

  • Conrado RJ, Gonzalez R (2014) Envisioning the bioconversion of methane to liquid fuels. Science 343:621–623

    CAS  PubMed  Google Scholar 

  • Contreras EO, Juarez OA, Galindo DO, Barragan JM, Rosales RB, Enriquez MM, Garcia AA, Buelna MM, Machuca OG, ADL R (2018) Biohydrogen production by vermihumus-associated microorganisms using agro industrial wastes as substrate international journal of hydrogen energy. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2018.10.236s

  • Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci 31:466–487

    CAS  Google Scholar 

  • Demirbas A, Gulu D (1998) Acetic acid, methanol and acetone from lignocellulosics by pyrolysis. Energy Edu Sci Technol 1:111–115

    CAS  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microb 65(2):523

    CAS  Google Scholar 

  • Díaz I, Pérez C, Alfaro N, Fdz-Polanco F (2015) A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresour Technol 185:246–253

    PubMed  Google Scholar 

  • Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Keasling JD, Prather KLJ (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    CAS  PubMed  Google Scholar 

  • Duman G, Uddin MA, Yanik J (2014) Hydrogen production from algal biomass via steam gasification. Bioresour Technol 166:24–30

    CAS  PubMed  Google Scholar 

  • Dutta K, Daverey A, Lin J (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    CAS  Google Scholar 

  • DÏ‹rre P, Ann NY (2008) Fermentative butanol production bulk chemical and biofuel. Ann N Y Acad Sci 1125(1):353–362

    Google Scholar 

  • Evasn PJ, Wang HY (1988) Enhancement of butanol fermentation by Clostridium acetobutylicum in presence of decanol-oleyl alcohol mixed extractions. Appl Environ Microbiol 54:1662–1667

    Google Scholar 

  • Fadhil AB, Dheyab MM, Ahmed KM, Yahya MH (2012) Biodiesel production from spent fish frying oil through Acid-Base catalyzed Transesterification. Pak J Anal Environ Chem 13(1):09–15

    CAS  Google Scholar 

  • Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880

    CAS  PubMed  Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends in Biotechnol 26(7):375–381

    CAS  Google Scholar 

  • Ge X, Yang L, Sheets JP, Yu Z, Li Y (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32:1460–1475

    CAS  PubMed  Google Scholar 

  • George KW, Chen A, Jain A, Batth TS, Baidoo EE, Wang G, Adams PD, Petzold CJ, Keasling JD, Lee TS (2014) Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnol Bioeng 111:1648–1658

    CAS  PubMed  Google Scholar 

  • Ghaly AE, Dave D, Brooks MS, Budge S (2010) Production of biodiesel by enzymatic Transesterification: review. Am J Biochem Biotechnol 6(2):54–76

    CAS  Google Scholar 

  • Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36:2086–2097

    Google Scholar 

  • Gray CT, Gest H (1965) Biological formation of molecular hydrogen. Science 148(3667):186–192

    CAS  PubMed  Google Scholar 

  • Gude VG, Patil PD, Grant GE, Deng S (2012) Sustainable biodiesel production, second world sustainable forum, pp 1–14. www.wsforum.org

    Google Scholar 

  • Güllü D, Demirbas A (2001) Biomass to methanol via pyrolysis process. Energy Convers Manag 42:1349–1356

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewiez MR, Tang YJ, Peng L (2014) Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng 111(3):575–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Wang X, Yin XB, Li Q, Li X, Zhang YF, Deng Y (2018) Insights into biomethane production and microbial community succession during semi-continuous anaerobic digestion of waste cooking oil under different organic loading rates. AMB Expr 8(1):92

    Google Scholar 

  • Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77(8):2727–2733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoehler TM, Jorgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83–94

    CAS  PubMed  Google Scholar 

  • Huang Y, Chen Y, Xie J, Liu H, Yin X, Wu C (2016) Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild cyanobacteria sp. and cultivated Bacillariophyta sp. Fuel 183:9–19

    CAS  Google Scholar 

  • Hyman MR, Wood PM (1983) Methane oxidation by Nitrosomonas europaea. Biochem J 212:31–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inglesby AE, Fisher AC (2012) Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energy Environ Sci 5:7996–8006

    CAS  Google Scholar 

  • Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yamono LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58(2–3):204–214

    CAS  PubMed  Google Scholar 

  • Ire FS, Ezebuiro V, Jason CO (2016) Production of bioethanol by bacterial co-culture from agro-waste-impacted soil through simultaneous saccharification and co-fermentation of steam-exploded bagasse. Bioresour Bioprocess 3(26):1–12

    Google Scholar 

  • Jambo SA, Abdulla R, Azhar SHM, Marbawi H, Gansau JA, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769

    CAS  Google Scholar 

  • Jones KL, Kim SW, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2:328–338

    CAS  PubMed  Google Scholar 

  • Kaminski W, Tomczak E, Górak A (2011) Biobutanol - production and purification methods. Ecol Chem Eng S 18(1):31–37

    CAS  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo HH, Koh CY, Shaik MS, Sharratt PN (2013) Bioenergy co-products derived from microalgae biomass via thermochemical conversion-life cycle energy balances and CO2 emissions. Bioresour Technol 143:298–307

    CAS  PubMed  Google Scholar 

  • Kind S, Becker J, Wittmann C (2013) Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway- metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab Eng 15:184–195

    CAS  PubMed  Google Scholar 

  • Kolesinska B, Fraczyk J, Binczarski M, Modelska M, Berlowska J, Dziugan P, Antolak H, Kaminski ZJ, Witonska IA, Kregiel D (2019) Butanol synthesis routes for biofuel production: trends and perspectives. Materials 12:350

    CAS  PubMed Central  Google Scholar 

  • Koppolu V, Vasigala VK (2016) Role of Escherichia coli in biofuel production. Microbiol Insights 9:29

    PubMed  PubMed Central  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pre-treatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    CAS  Google Scholar 

  • Lam MK, Lee KT (2015) Bioethanol production from microalgae. Academic Press, Handbook of Marine Microalgae, pp 197–208

    Google Scholar 

  • Lamonica M (2014) Why the promise of cheap fuel from super bugs fell short? MIT Technology Review, Cambridge, MA

    Google Scholar 

  • Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109:6018–6023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lardon L, Helias A, Sialve B (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    CAS  PubMed  Google Scholar 

  • Lawier A, Bill W (1995) To boost hydrogen sparks democratic grumbling. Science 267(5198):613

    Google Scholar 

  • Lee JW, Greenbaum E (1995) Bioelectronics and biometallo-catalysis for production of fuels and chemicals by photosynthetic water splitting. Appl Biochem Biotechnol 51(1):295–305

    Google Scholar 

  • Li Z, Yao L, Kong L, Liu H (2008) Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresour Technol 99(6):1650–1655

    CAS  PubMed  Google Scholar 

  • Li S, Di H, Li Y, Wen J, Jia X (2012) Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microb Cell Factories 101:1–12

    CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    CAS  PubMed  Google Scholar 

  • Lohit KS, Gujjala SP, Kumar J, Talukdar B, Dash A, Kumar S, Sherpa KC, Banerjee R (2017) Biodiesel from oleaginous microbes: opportunities and challenges. Biofuels 10:45–59

    Google Scholar 

  • Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34:135–141

    CAS  PubMed  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571

    CAS  PubMed  Google Scholar 

  • Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466

    Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mamun MRA, Torii S (2017) Enhancement of methane concentration by removing contaminants from biogas mixtures using combined method of absorption and adsorption. Int J Chem Eng 2017:1–10

    Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34(1):1–5

    Google Scholar 

  • Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71:855–863

    CAS  Google Scholar 

  • Min B, Kim JR, Oh SE, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    CAS  PubMed  Google Scholar 

  • Miyamoto K, Hallenbeck PC, Benemann JR (1979) Hydrogen production by the thermophilic alga Mastigocladus laminosus: effects of nitrogen, temperature, and inhibition of photosynthesis. Appl Environ Microbiol 38:440–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammady N, Hawash SI, El-Khatib KM, El-Galad MI, El Diwani G (2015) Biodiesel production from Chlorella Sp: process design and preliminary economic evaluation. Int J ChemTech Res 8:297–304

    CAS  Google Scholar 

  • Mohan SV, Srikanth S, Chiranjeevi P, Arora S, Chandra R (2014) Algal biocathode for in situ terminal electron acceptor (TEA) production: synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell. Bioresour Technol 166:566–574

    Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M (2005) Features of promising technologies for pre-treatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    CAS  PubMed  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84

    CAS  PubMed  Google Scholar 

  • Nayak BK, Roy S, Das D (2014) Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. Int J Hydrog Energy 39:7553–7560

    CAS  Google Scholar 

  • Ndimba BK, Ndiba RJ, Johnson TS, Sirisattha RW, Baba M, Sirisattha S, Shiraiwa Y, Agarwal GK, Rakwal R (2013) Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. J Prot 93:234–244

    CAS  Google Scholar 

  • Nguyen T, Roddick FA, Fan L (2015) Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser. Environ Technol 36:556–565

    CAS  PubMed  Google Scholar 

  • Nigam G, Singh R, Chaturvedi AK (2010) Finite duration root nyquist pulses with maximum in-band fractional energy. IEEE Commun Lett 14:797–799

    Google Scholar 

  • Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11(11):4558–4569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowroozi F, Baidoo EK, Ermakov S, Johanson AR, Batth T, Petzold C, Keasling JD (2014) Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Microbiol Biotechnol 98:1567–1581

    CAS  PubMed  Google Scholar 

  • Ogunwole OA (2012) Production of biodiesel from Jatropha oil (Curcas oil). J Chem Sci 2(11):30–33

    CAS  Google Scholar 

  • Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A 110:1249–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oncel SS, Kose A, Faraloni C, Imamoglu E, Elibol M, Torzillo G, Vardar Sukan F (2015) Biohydrogen production from model microalgae Chlamydomonas reinhardtii: a simulation of environmental conditions for outdoor experiments. Int J Hydrog Energy 40:7502–7510

    CAS  Google Scholar 

  • Onwudili JA, Lea-Langton AR, Ross AB, Williams PT (2013) Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling. Bioresour Technol 127:72–80

    CAS  PubMed  Google Scholar 

  • Peralta-Yahya PP, Zhang F, Stephen B, del Cardayre JD, Keasling (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    CAS  PubMed  Google Scholar 

  • Phillips VD, Kinoshita CM, Neill DR, Takashi PK (1990) Thermochemical production of methanol from biomass in Hawaii. Appl Energy 35:167–175

    CAS  Google Scholar 

  • Poust S, Hagen A, Katz L, Keasling JD (2014) Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Curr Opin Biotechnol 30:32–39

    CAS  PubMed  Google Scholar 

  • Qureshi N, Maddox IS (1995) Continuous production of acetone-butanol-ethanol using immobilized cells of Clostridium acetobutylicum and integration with product removal by liquid-liquid extraction. J Ferment Bioeng 80(2):185–189

    CAS  Google Scholar 

  • Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59

    CAS  Google Scholar 

  • Rizzo AM, Prussi M, Bettucci L, Libelli IM, Chiaramonti D (2013) Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl Energy 102:24–31

    CAS  Google Scholar 

  • Robak K, Balcerek M (2018) Review of second-generation bioethanol production from residual biomass. FTB 56(2):174–187

    CAS  Google Scholar 

  • Roffler SR, Blanch HW, Wilke CR (1988) In situ extraction fermentation of acetone and butanol. Biotechnol Bioeng 31:135–143

    CAS  PubMed  Google Scholar 

  • Rosenthal E (2007) UN report describes risks of inaction on climate change. The New York Times 2007

    Google Scholar 

  • Rossi M, Amaretti A, Raimondi S, Alan L (2011) Getting lipids for biodiesel production from oleaginous fungi. In: Stoytcheva M, Montero G (eds) Biodiesel – feedstocks and processing technologies. InTech, Krautzeka

    Google Scholar 

  • Rotaru DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 19(59):1

    Google Scholar 

  • Saad MG, Dosoky NS, Zoromba MS, Shafik HM (2019) Algal biofuels: current status and key challenges. Energies 12:1–22

    Google Scholar 

  • Sanchez-Silva L, López-González D, Garcia-Minguillan AM, Valverde JL (2013) Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol 130:321–323

    CAS  PubMed  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agriculture wastes: an overview. Renew Energ 37(1):19–27

    CAS  Google Scholar 

  • Shabestary K, Hudson EP (2016) Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis. Metab Eng Commun 3:216–226

    PubMed  PubMed Central  Google Scholar 

  • Shahid EM, Jamal Y, Shah AN, Rumzan N, Munsha M (2012) Effect of used cooking oil methyl ester on compression ignition engine. JQTM VIII(II):91–104

    Google Scholar 

  • Soleimani SS, Adiguzel A, Nadaroglu H (2017) Production of bioethanol by facultative anaerobic bacteria. J Inst Brew 123(3):402–406

    CAS  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    CAS  PubMed  Google Scholar 

  • Stein LY, Arp DJ, Berube PM, Chain PSG, Hauser L, Jetten MSM, Klotz MG, Larimer FW, Norton JM, Op den Camp HJM, Shin M, Weim X (2007) Whole genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9:2993–3007

    CAS  PubMed  Google Scholar 

  • Stephanopoulos G, Aristidou A, Nielsen J (1998) Metabolic engineering: principles and methodologies, 1st edn. Academic Press, San Diego, CA

    Google Scholar 

  • Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2:535–541

    CAS  Google Scholar 

  • Sun N, Zhao H (2013) Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 110:1811–1821

    CAS  PubMed  Google Scholar 

  • Svensson M (2013) Biomethane for transport applications. In: The biogas handbook, science, production and applications. Woodhead Publishing, Sawston, pp 428–443

    Google Scholar 

  • Taher E, Chandran K (2013) High-rate, high-yield production of methanol by ammonia oxidizing bacteria. Environ Sci Technol 47:3167–3173

    CAS  PubMed  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki L (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    CAS  PubMed  Google Scholar 

  • Thirumarimurugan M, Sivakumar VM, Xavier AM, Prabhakaran D, Kannadasan T (2012) Preparation of biodiesel from sunflower oil by transesterification. IJBBB 2(6):441–444

    Google Scholar 

  • Tilche A, Galatola M (2008) The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Wat Sci Tech 57(11):1683–1692

    CAS  Google Scholar 

  • Tran HTM, Cheirsilp B, Hodgson B, Umsakul K (2009) Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone-butanol-ethanol production from cassava starch. Biochem Eng J 48(2):260–267

    Google Scholar 

  • Trinh CT (2012) Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. Appl Microbiol Biotechnol 95(4):1083–1094

    CAS  PubMed  Google Scholar 

  • Varman A, He L, You L, Hollinshead W, Tang Y (2014) Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis. Microb Cell Factories 13:13–42

    Google Scholar 

  • Vasudevan P, Sharma S, Kumar A (2005) Liquid fuel from biomass: an overview. J Sci Ind Res 64:822–831

    CAS  Google Scholar 

  • Wang L, Tabata K, Kamachi T, Okura I (2010) Effect of electron donor on methanol production by ammonia-oxidizing bacterium Nitrosomonas europaea. J Jpn Petrol Inst 53:319–326

    CAS  Google Scholar 

  • Watson VJ, Logan BE (2010) Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnol Bioeng 105(3):489–498

    CAS  PubMed  Google Scholar 

  • Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33:15–26

    CAS  PubMed  Google Scholar 

  • Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, Shimizu K, Tang YJ, Bao FS (2016) Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming. PLoS Comput Biol 12(4):e1004838

    PubMed  PubMed Central  Google Scholar 

  • Xing LZ, Xiao-an N, Yi-gang W (2013) Study on Technology of Comprehensive Utilization of biodiesel and dimers from rapeseed oil. JFPI 2(4):5–8

    Google Scholar 

  • Yagishita T, Sawayama S, Tsukahara K, Ogi T (1997) Behavior of glucose degradation in Synechocystis sp. M-203 in bioelectrochemical fuel cells. Bioelectrochem Bioenerg 43(1):177–180

    CAS  Google Scholar 

  • Yagishita T, Sawayama S, Tsukahara K, Ogi T (1998) Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M-3 in discharge/culture cycles. J Ferment Bioeng 85(5):546–549

    CAS  Google Scholar 

  • Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 9(6):699–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao S, Mikkelsen MJ (2010) Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 88(1):199–208

    CAS  PubMed  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energy 92:733–738

    CAS  Google Scholar 

  • Zhang YHP (2009) A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction? Energy Environ Sci 2:272–282

    CAS  Google Scholar 

  • Zhang FZ, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359

    CAS  PubMed  Google Scholar 

  • Zhao G, Maa F, Wei L, Chua H, Chang CC, Zhang XJ (2012) Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Manag 32:1651–1658

    CAS  PubMed  Google Scholar 

  • Zhe S, Zhi Z (2019) Nature-inspired virus-assisted algal cell disruption for cost-effective biofuel production. Appl Energy 251:113330

    Google Scholar 

  • Zullaikh S, TjiptoUtomo A, Yasmin M, Ong LK, HsuJu Y (2019) Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel. Advances in Eco-Fuels for Sustainable Environment, WP, pp 237–276. https://doi.org/10.1016/B978-0-08-102728-8.00009-7

    Book  Google Scholar 

  • Zuo Y, Xing D, Regan JM, Logan BE (2008) Isolation of the exoelectrogenic bacterium ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74(10):3130–3137

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangeline Christina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christina, E., Rajendran, V. (2021). Microbial Factories for Biofuel Production: Current Trends and Future Prospects. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_3

Download citation

Publish with us

Policies and ethics