Skip to main content

Measurements of Pollution in the Troposphere (MOPITT) Observations from EOS/Terra

  • Living reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

The Measurements of Pollution in the Troposphere (MOPITT) Experiment project began in 1988 as a joint effort by Dr. James Drummond (University of Toronto and Dalhousie University) and Dr. John Gille at the National Center for Atmospheric Research (NCAR). The MOPITT instrument was launched on the NASA Terra satellite in 1999 and is the first instrument to make global long-term measurements of tropospheric carbon monoxide (CO) concentrations. CO plays a key role in tropospheric chemistry and climate and is useful for tracking pollution transport from fires and urban sources due to a lifetime of weeks to months in the atmosphere. The MOPITT instrument measures atmospheric CO abundance using gas correlation radiometers in a nadir-viewing geometry. Analyses of MOPITT data products, combined with chemical transport models and in situ observations, are clarifying and expanding the knowledge of tropospheric chemical processes and the sources of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Drummond JR, Zou J, Nichitiu F, Kar J, Deschambaut R, Hackett J (2010) A review of 9-year performance and operation of the MOPITT instrument. Adv Space Res 45(6):760–774. https://doi.org/10.1016/j.asr.2009.11.019

    Article  Google Scholar 

  2. Drummond JR, Houghton JT, Peskett DG, Rodgers CD, Wale MJ, Whitney J, Williamson EJ (1980) The stratospheric and mesospheric sounder on NIMBUS 7. Philos Trans R Soc Lond Ser A 296:219–241

    Article  Google Scholar 

  3. Drummond JR (1989) Novel correlation radiometer: the length modulated radiometer. Appl Opt 28:2451

    Article  Google Scholar 

  4. MOPITT Algorithm theoretical basis document (ATBD) level 0 to level 1, version 2, 1995. https://www2.acom.ucar.edu/sites/default/files/mopitt/ATBD-MOP-01.PDF

  5. MOPITT Algorithm Theoretical Basis Document (ATBD) Level 1 to Level 2, Version 2, 2017. https://www2.acom.ucar.edu/sites/default/files/mopitt/ATBD_5_June_2017.pdf

  6. Rogers CD (2000) Inverse methods for atmospheric sounding, theory and practice. World Scientific, Singapore

    Book  Google Scholar 

  7. Deeter MN, Emmons LK, Francis GL, Edwards DP, Gille JC, Warner JX, Khattatov B, Ziskin D, Lamarque J-F, Ho S-P, Yudin V, Attié J-L, Packman D, Chen J, Mao D, Drummond JR (2003) Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J Geophys Res Atmos 108(D14):n/a–n/a. https://doi.org/10.1029/2002JD003186

    Article  Google Scholar 

  8. Deeter MN, Edwards DP, Francis GL, Gille JC, Mao D, Martinez-Alonso S, Worden HM, Ziskin D, Andreae MO (2019) Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product. Atmos Meas Tech 12(8):4561–4580. https://doi.org/10.5194/amt-12-4561-2019

    Article  Google Scholar 

  9. Gelaro et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim. https://doi.org/10.1175/JCLI-D-16-0758.1

  10. https://gmao.gsfc.nasa.gov/GMAO_products/NRT_products.php

  11. https://worldview.earthdata.nasa.gov/

  12. Worden HM, Deeter MN, Edwards DP, Gille J, Drummond J, Emmons LK, Francis G, Martínez-Alonso S (2014) 13 years of MOPITT operations: lessons from MOPITT retrieval algorithm development. Ann Geophys 56(0). https://doi.org/10.4401/ag-6330

  13. Deeter MN, Edwards DP, Francis GL, Gille JC, Martinez-Alonso S, Worden HM, Sweeney C (2017) A climate-scale satellite record for carbon monoxide: the MOPITT version 7 product. Atmos Meas Tech Discuss 2017:1–34. https://doi.org/10.5194/amt-2017-71

    Article  Google Scholar 

  14. Tang W, Worden HM, Deeter MN, Edwards DP, Emmons LK, Martínez-Alonso S, Gaubert B, Buchholz RR, Diskin GS, Dickerson RR, Ren X, He H, Kondo Y (2020) Assessing measurements of pollution in the troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions. Atmos Meas Tech 13:1337–1356. https://doi.org/10.5194/amt-13-1337-2020

    Article  Google Scholar 

  15. Worden HM, Deeter MN, Frankenberg C, George M, Nichitiu F, Worden J, Aben I, Bowman KW, Clerbaux C, Coheur PF, de Laat ATJ, Detweiler R, Drummond JR, Edwards DP, Gille JC, Hurtmans D, Luo M, Martínez-Alonso S, Massie S, Pfister G, Warner JX (2013b) Decadal record of satellite carbon monoxide observations. Atmos Chem Phys 13(2):837–850. https://doi.org/10.5194/acp-13-837-2013

    Article  Google Scholar 

  16. Jiang Z, Worden JR, Worden H, Deeter M, Jones DBA, Arellano AF, Henze DK (2017) A 15-year record of CO emissions constrained by MOPITT CO observations. Atmos Chem Phys 17(7):4565–4583. https://doi.org/10.5194/acp-17-4565-2017

    Article  Google Scholar 

  17. Zheng B, Chevallier F, Ciais P, Yin Y, Deeter MN, Worden HM, Wang Y, Zhang Q, He K (2018) Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ Res Lett 13(4):044007. https://doi.org/10.1088/1748-9326/aab2b3

    Article  Google Scholar 

  18. Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, DeFries RS, Collatz GJ, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton JR, Yue C, Randerson JT (2017) A human-driven decline in global burned area. Science 356(6345):1356–1362. https://doi.org/10.1126/science.aal4108

    Article  Google Scholar 

  19. Buchholz RR et al (2021) Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions. Remote Sens Environ 256:112275. https://doi.org/10.1016/j.rse.2020.112275

    Article  Google Scholar 

  20. Flemming J, Huijnen V, Arteta J, Bechtold P, Beljaars A, Blechschmidt A-M, Diamantakis M, Engelen RJ, Gaudel A, Inness A, Jones L, Josse B, Katragkou E, Marecal V, Peuch V-H, Richter A, Schultz MG, Stein O, Tsikerdekis A (2015) Tropospheric chemistry in the integrated forecasting system of ECMWF. Geosci Model Dev 8:975–1003. https://doi.org/10.5194/gmd-8-975-2015

    Article  Google Scholar 

  21. Inness A, Blechschmidt A-M, Bouarar I, Chabrillat S, Crepulja M, Engelen RJ, Eskes H, Flemming J, Gaudel A, Hendrick F, Huijnen V, Jones L, Kapsomenakis J, Katragkou E, Keppens A, Langerock B, de Mazière M, Melas D, Parrington M, Peuch VH, Razinger M, Richter A, Schultz MG, Suttie M, Thouret V, Vrekoussis M, Wagner A, Zerefos C (2015) Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s composition-IFS. Atmos Chem Phys 15:5275–5303. https://doi.org/10.5194/acp-15-5275-2015

    Article  Google Scholar 

  22. Inness A, Ades M, Agustí-Panareda A, Barré J, Benedictow A, Blechschmidt A-M, Dominguez JJ, Engelen R, Eskes H, Flemming J, Huijnen V, Jones L, Kipling Z, Massart S, Parrington M, Peuch V-H, Razinger M, Remy S, Schulz M, Suttie M (2019) The CAMS reanalysis of atmospheric composition. Atmos Chem Phys 19(6):3515–3556. https://doi.org/10.5194/acp-19-3515-2019

    Article  Google Scholar 

  23. Zheng B, Chevallier F, Yin Y, Ciais P, Fortems-Cheiney A, Deeter MN, Parker RJ, Wang Y, Worden HM, Zhao Y (2019) Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth Syst Sci Data 11(3):1411–1436. https://doi.org/10.5194/essd-11-1411-2019

    Article  Google Scholar 

  24. Jiang Z, McDonald BC, Worden H, Worden JR, Miyazaki K, Qu Z, Henze DK, Jones DBA, Arellano AF, Fischer EV, Zhu L, Boersma KF (2018) Unexpected slowdown of US pollutant emission reduction in the past decade. PNAS 201801191. https://doi.org/10.1073/pnas.1801191115

  25. Strode SA, Worden HM, Damon M, Douglass AR, Duncan BN, Emmons LK, Lamarque J-F, Manyin M, Oman LD, Rodriguez JM, Strahan SE, Tilmes S (2016) Interpreting space-based trends in carbon monoxide with multiple models. Atmos Chem Phys 16:7285–7294. https://doi.org/10.5194/acp-16-7285-2016

    Article  Google Scholar 

  26. Tilmes S, Lamarque J-F, Emmons LK, Kinnison DE, Marsh D, Garcia RR, Smith AK, Neely RR, Conley A, Vitt F, Val Martin M, Tanimoto H, Simpson I, Blake DR, Blake N (2016) Representation of the community earth system model (CESM1) CAM4-chem within the chemistry-climate model initiative (CCMI). Geosci Model Dev 9:1853–1890. https://doi.org/10.5194/gmd-9-1853-2016

    Article  Google Scholar 

  27. Buchwitz M, de Beek R, Noël S, Burrows JP, Bovensmann H, Bremer H, Bergamaschi P, Körner S, Heimann M (2005) Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set. Atmos Chem Phys 5:3313–3329. https://doi.org/10.5194/acp-5-3313-2005

    Article  Google Scholar 

  28. Warner J, Comer MM, Barnet CD, McMillan WW, Wolf W, Maddy E, Sachse G (2007) A comparison of satellite tropospheric carbon monoxide measurements from AIRS and MOPITT during INTEX-A. J Geophys Res Atmos 112(d11):12. https://doi.org/10.1029/2006JD007925

    Article  Google Scholar 

  29. Rinsland CP, Luo M, Logan JA, Beer R, Worden H, Kulawik SS, Rider D, Osterman G, Gunson M, Eldering A, Goldman A, Shephard M, Clough SA, Rodgers C, Lampel M, Chiou L (2006) Nadir measurements of carbon monoxide distributions by the tropospheric emission Spectrometer instrument onboard the Aura Spacecraft: overview of analysis approach and examples of initial results. Geophys Res Lett 33(22). https://doi.org/10.1029/2006GL027000

  30. George M, Clerbaux C, Hurtmans D, Turquety S, Coheur P-F, Pommier M, Hadji-Lazaro J, Edwards DP, Worden H, Luo M, Rinsland C, McMillan W (2009) Carbon monoxide distributions from the IASI/METOP mission: evaluation with other space-borne remote sensors. Atmos Chem Phys 9(21):8317–8330. https://doi.org/10.5194/acp-9-8317-2009

    Article  Google Scholar 

  31. Gambacorta A et al (2014) An experiment using high spectral resolution CrIS measurements for atmospheric trace gases: carbon monoxide retrieval impact study. IEEE Geosci Remote Sens Lett 11(9):1639–1643. https://doi.org/10.1109/LGRS.2014.2303641

    Article  Google Scholar 

  32. Martínez-Alonso S, Deeter M, Worden H, Borsdorff T, Aben I, Commane R, Daube B, Francis G, George M, Landgraf J, Mao D, McKain K, Wofsy S (2020) 1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom. Atmos Meas Tech 13(9):4841–4864. https://doi.org/10.5194/amt-13-4841-2020

    Article  Google Scholar 

  33. Borsdorff T, Aan de Brugh J, Hu H, Aben I, Hasekamp O, Landgraf J (2018b) Measuring carbon monoxide with TROPOMI: first results and a comparison with ECMWF-IFS analysis data. Geophys Res Lett 45(6):2826–2832. https://doi.org/10.1002/2018GL077045

    Article  Google Scholar 

Download references

Acknowledgments

The MOPITT project is supported by the Canadian Space Agency (CSA) and the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Program. The MOPITT project also acknowledges support from Natural Sciences and Engineering Research Council (NSERC) and Environment Canada, along with the contributions of COMDEV (the prime contractor) and ABB BOMEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen M. Worden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Drummond, J.R., Worden, H.M. (2022). Measurements of Pollution in the Troposphere (MOPITT) Observations from EOS/Terra. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics