Skip to main content

Flexible-Link Manipulators: Dynamic Analysis and Advanced Control Strategies

  • Chapter
  • First Online:
New Trends in Robot Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 270))

Abstract

This chapter contains advanced studies in dynamic modelling and nonlinear control strategies applied to flexible-link robotic manipulators increasingly in demand in many fields such as industrial domain, medical intervention, and space exploitation. Taking into consideration the flexibility effect, Hamilton’s principle and Euler–Lagrange equations are associated to determine a highly nonlinear and coupled dynamic model. Therefore, the main control goals are to reach a perfect trajectory tracking without vibration impact. That is why, PD, Fuzzy, and gain scheduling Fuzzy PD controllers are applied to a rigid-flexible two links manipulator and then compared in terms of robustness and vibration minimization. A stability study is accomplished using the candidate function of Lyapunov. To improve performances, a robust Fractional Order Fuzzy PD (FOFPD) controller is developed by using non-integer order differentiator operators in the fuzzy PD controller. The gains of the FOFPD are normalized with the Particle Swarm Optimization (PSO) algorithm. The small gain theorem is used to establish the sufficient condition for bounded input-bounded output (BIBO) stability in closed-loop. Simulation results are introduced for each case of control to discuss reached performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, A.: Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation. Elsevier Mech. Mach. Theorye 44(9), 1627–1639 (2009)

    Article  Google Scholar 

  2. Alavandar, S., Jain, T., Nigam, M.J.: Bacterial foraging optimized hybrid fuzzy precompensated pd control of two link rigid-flexible manipulator. Int. J. Comput. Intell. Syst. 2(1), 51–59 (2009)

    Google Scholar 

  3. Baroudi, M., Saad, M., Ghie, W.: State-feedback and linear quadratic regulator applied to a single-link flexible manipulators. IEEE International Conference on Robotics and Biomimetics. IEEE Press, Guilin (2009)

    Google Scholar 

  4. Bayo, E.: A finite-element approach to control the end-point motion of a single-link flexible robot. J. Robot. Syst. 4(1), 63–75 (1987)

    Article  Google Scholar 

  5. Boucetta, R., Belhadjali, S., Abdelkrim, M.N.: Global hybrid fuzzy controller for a flexible single-link manipulator. J. Eng. Appl. Sci. 6(1), 1–5 (2011)

    Google Scholar 

  6. Cao, F., Liu, J.: Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance. Int. J. Control 90(5), 1–13 (2017)

    MathSciNet  Google Scholar 

  7. Chanwikrai, S., Cole, M.O.: Modeling of a rigid-flexible manipulator using hamilton’s principle. Engng. J. CMU 17(3), 19–27 (2008)

    Google Scholar 

  8. Chen, G., Pham, T.T.: Introduction to fuzzy systems. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  9. Cost, A., Jos, S.D.A.: An introduction to fractional control. Institution of Engineering and Technology, London (2013)

    Google Scholar 

  10. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: IEEE Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya (1995)

    Google Scholar 

  11. Fenili, A.: The rigid-flexible robotic manipulator: nonlinear control and state estimation considering a different mathematical model for estimation. Hindawi Publ. Corp. Shock. Vib. 20(6), 1049–1063 (2013)

    Google Scholar 

  12. Fenili, A., Balthazar, J.: The rigid-flexible nonlinear robotic manipulator: modeling and control. Commun. Nonlinear Sci. Numer. Simul. 16(5), 2332–2341 (2011)

    Article  Google Scholar 

  13. Gao, H., He, W.: Fuzzy control of a single-link flexible robotic manipulator using assumed mode method. In: IEEE Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan (2016)

    Google Scholar 

  14. Gao, Y., Er, M.J., Leithead, W.E., Leith, D.J. Online adaptive control of robot manipulators using dynamic fuzzy neural networks. In: IEEE Proceedings American Control Conference (2001)

    Google Scholar 

  15. Hamdi, S., Boucetta, R., Belhadjali, S.: Dynamic modeling of a rigid-flexible manipulator using Hamilton’s principle. In: IEEE International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (2015)

    Google Scholar 

  16. He, W., David, A.O., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 46(6), 759–770 (2016)

    Google Scholar 

  17. Hong, J., He, W., Le, Z., Zhang, S.: Vibration control and angular tracking of a flexible link via neural networks. In: IEEE Control and Decision Conference, Chinese (CCDC) (2015)

    Google Scholar 

  18. Irani, A., Talebi, H.: Tip tracking control of a rigid-flexible manipulator based on deflection estimation using neural networks: application to needle insertion. In: IEEE ISSNIP Biosignals and Biorobotics Conference (2011)

    Google Scholar 

  19. Kumar, V., Mittal, A.P.: Parallel fuzzy p\(+\) fuzzy i\(+\) fuzzy d controller: design and performance evaluation. Int. J. Autom. Comput. 7(4), 463–471 (2010)

    Article  Google Scholar 

  20. Lee, H.H., Liang, Y.: A coupled-sliding-surface approach for the robust trajectory control of a horizontal two-link rigid-flexible robot. Int. J. Control. 80(12), 1880–1892 (2007)

    Google Scholar 

  21. Lochan, K., Roy, B.K., Subudhi, B.: Smc controlled chaotic trajectory tracking of two-link flexible manipulator with pid sliding surface. IFAC-PapersOnLine 49(1), 219–224 (2016)

    Article  Google Scholar 

  22. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Heidelberg (2010)

    Book  Google Scholar 

  23. Qiu, Z., Zhao, Z.: Pneumatic drive active vibration control for flexible manipulator using an adaptive interactive PD controller. In: Communications in Nonlinear Science and Numerical Simulation (2011)

    Google Scholar 

  24. Sabatier, J., Lanusse, P., Melchior, P., Oustaloup, A.: Fractional Order Differentiation and Robust Control Design: CRONE, H-infinity and Motion Control. Springer, Berlin (2015)

    Book  Google Scholar 

  25. Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  26. Sun, C., He, W., Hong, J.: Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans. Syst. Man Cybern. 47, 1863–1874 (2016)

    Article  Google Scholar 

  27. Hussein, T.M., Nemah, M.N.: Control of a two-link rigid-flexible manipulator. In: IEEE International Conference on Robotics and Mechatronics (ICROM) (2015)

    Google Scholar 

  28. Tarvirdizadeh, B., Alipour, K.: Trajectory optimization of two-link rigid flexible manipulators in Dynamic Object Manipulation missions. In: IEEE International Conference on Robotics and Mechatronics (ICROM) (2015)

    Google Scholar 

  29. Tian, L., Collins, C.: A dynamic recurrent neural network-based controller for a rigid-flexible manipulator system. Mechatronics 14(5), 471–490 (2004)

    Article  Google Scholar 

  30. Tian, L., Mao, Z.: Fuzzy neuro controller for a two-link rigid-flexible manipulator system. In: Proceedings of the 9th Internatioal Conference on IEEE Neural Information Processing. ICONIP’02 (2002)

    Google Scholar 

  31. Tinkir, M., Önen, Ü., Kalyoncu, M.: Modelling of neurofuzzy control of a flexible link. SAGE Publ. Proc. Inst. Mech. Eng. 224(5), 529–543 (2010)

    Google Scholar 

  32. Xilun, D., Selig, J.M.: Lumped parameter dynamic modeling for the flexible manipulator. In: IEEE Intelligent Control and Automation, WCICA 2004. Fifth World Congress (2004)

    Google Scholar 

  33. Ying, H.: Fuzzy control and modeling: analytical foundations and applications. Wiley-IEEE Press, Hoboken (2000)

    Book  Google Scholar 

  34. Zhang, S., Zhang, Y., Zhang, X., Dong, G.: Fuzzy pid control of a two-link flexible manipulator. J. Vibroengineering 18(1), 250–266 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of the Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Boucetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boucetta, R., Hamdi, S., Bel Hadj Ali, S. (2020). Flexible-Link Manipulators: Dynamic Analysis and Advanced Control Strategies. In: Ghommam, J., Derbel, N., Zhu, Q. (eds) New Trends in Robot Control. Studies in Systems, Decision and Control, vol 270. Springer, Singapore. https://doi.org/10.1007/978-981-15-1819-5_2

Download citation

Publish with us

Policies and ethics