Skip to main content

RNA Binding Proteins and Non-coding RNA’s in Cardiovascular Diseases

  • Chapter
  • First Online:
Non-coding RNAs in Cardiovascular Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1229))

Abstract

Cardiovascular disease (CVD) is the leading cause of mortality as well as morbidity worldwide. The disease has been reported to be chronic in nature and the symptoms of the disease worsen progressively over a long period of time. Inspite of noteworthy achievements have been made in the therapy of CVD yet the available drugs are associated with various undesirable factors including drug toxicity, complexity, resistance and many more. The versatility of RNAs makes them crucial therapeutics candidate for many human diseases. Deeper understanding of RNA biology, exploring new classes of RNA that possess therapeutic potential will help in its successful translation to the clinic. Understanding the mode of action of various RNAs such as miRNA, RNA binding proteins and siRNA in CVD will help in improved therapeutics among patients. Multiple strategies are being planned to determine the future potential of miRNAs to treat a disease. This review embodies the recent work done in the field of miRNA and its role in cardiovascular disease as diagnostic biomarker as well as therapeutic agents. In addition the review highlights the future of miRNAs as a potential therapeutic target and need of designing micronome that may reveal potential predictive targets of miRNA-mRNA interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Bruin RG, Rabelink TJ, van Zonneveld AJ, Van der Veer EP. Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J. 2016;38(18):1380–8.

    Google Scholar 

  2. Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ. Targeting noncoding RNAs in disease. J Clin Invest. 2017;127(3):761–71.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013;9(6):e1003569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miele E. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine. 2012;7:3637.

    PubMed  PubMed Central  Google Scholar 

  5. Devaux Y. Circular RNAs in heart failure. Eur J Heart Fail. 2017;19(6):701–9.

    Article  CAS  PubMed  Google Scholar 

  6. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fu XD, Ares M Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15(10):689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kong W. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple negative breast cancer. Oncogene. 2014;33(6):679–89.

    Article  CAS  PubMed  Google Scholar 

  9. Gasparini P. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci USA. 2014;111(12):4536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang C, Li H, Wu W, Jiang T, Qiu Z. Regulation of miR155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol Rep. 2013;30:1223–30.

    Article  CAS  PubMed  Google Scholar 

  11. Krutzfeldt J. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2015;438:685–9.

    Article  CAS  Google Scholar 

  12. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57.

    Article  CAS  Google Scholar 

  13. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(Suppl 1):R17–29.

    Article  CAS  PubMed  Google Scholar 

  14. Grosjean H. Modification and editing of RNA: historical overview and important facts to remember. In: Fine-tuning of RNA functions by modification and editing. Berlin/Heidelberg: Springer; 2005. p. 1–22.

    Chapter  Google Scholar 

  15. Salehe BR. Predictive tools for the study of variations in ADP platelet responses: implications for personalised CVD risk and prevention strategies. Doctoral dissertation, University of Reading. 2017.

    Google Scholar 

  16. Castello A, Fischer B, Hentze MW, Preiss T. RNA-binding proteins in Mendelian disease. Trends Genet. 2013;29:318–27.

    Article  CAS  PubMed  Google Scholar 

  17. Chen CY, Shyu AB. Emerging mechanisms of mRNP remodeling regulation. Wiley Interdiscip Rev: RNA. 2014;5:713–22.

    Article  CAS  PubMed  Google Scholar 

  18. König J, Zarnack K, Luscombe NM, Ule J. Protein–RNA interactions: new genomic technologies and perspectives. Nat Rev Genet. 2012;13(2):77.

    Article  PubMed  CAS  Google Scholar 

  19. Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet. 2007;8(7):533.

    Article  CAS  PubMed  Google Scholar 

  20. Anderson PA, Greig A, Mark TM, Malouf NN, Oakeley AE, Ungerleider RM, Allen PD, Kay BK. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res. 1995;76(4):681–6.

    Article  CAS  PubMed  Google Scholar 

  21. Yang TP, Agellon LB, Walsh A, Breslow JL, Tall AR. Alternative splicing of the human cholesteryl Ester transfer protein Gene in transgenic mice exon exclusion modulates gene expression in response to dietary or developmental change. J Biol Chem. 1996;271(21):12603–9.

    Article  CAS  PubMed  Google Scholar 

  22. Freyermuth F. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun. 2016;7:11067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou A. mRNA stability hu proteins regulate human cardiac sodium channel expression. Circulation. 2014;130(Suppl 2):A15892.

    Google Scholar 

  24. Zhang Y, Si Y, Ma N, Mei J. The RNA-binding protein PCBP2 inhibits Ang II-induced hypertrophy of cardiomyocytes though promoting GPR56 mRNA degeneration. Biochem Biophys Res Commun. 2015;464(3):679–84.

    Article  CAS  PubMed  Google Scholar 

  25. Li J. Cold-inducible RNA-binding protein regulates cardiac repolarization by targeting transient outward potassium channels. Circ Res. 2015;116(10):1655–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hui J, Stangl K, Lane WS, Bindereif A. HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat Struct Mol Biol. 2003;10(1):33.

    Article  CAS  Google Scholar 

  27. Lorenz M. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J. 2007;21(7):1556–64.

    Article  CAS  PubMed  Google Scholar 

  28. Osera C. Induction of VEGFA mRNA translation by CoCl2 mediated by HuR. RNA Biol. 2015;12(10):1121–30.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Galbán S. RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1α. Mol Cell Biol. 2008;28(1):93–107.

    Article  PubMed  CAS  Google Scholar 

  30. Vumbaca F, Phoenix KN, Rodriguez-Pinto D, Han DK, Claffey KP. Double-stranded RNA-binding protein regulates vascular endothelial growth factor mRNA stability, translation, and breast cancer angiogenesis. Mol Cell Biol. 2008;28(2):772–83.

    Article  CAS  PubMed  Google Scholar 

  31. Blanco FJ, Bernabeu C. Alternative splicing factor or splicing factor-2 plays a key role in intron retention of the endoglin gene during endothelial senescence. Aging Cell. 2011;10(5):896–907.

    Article  CAS  PubMed  Google Scholar 

  32. Liu K, Xuekelati S, Zhang Y, Yin Y, Li Y, Chai R, Li X, Peng Y, Wu J, Guo X. Expression levels of atherosclerosis-associated miR-143 and miR-145 in the plasma of patients with hyperhomocysteinaemia. BMC Cardiovasc Disord. 2017;17(1):163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Henry JC, Azevedo-Pouly AC, Schmittgen TD. MicroRNA replacement therapy for cancer. Pharm Res. 2011;28(12):3030–42.

    Article  CAS  PubMed  Google Scholar 

  34. Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest. 2013;123(1):11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao SS. Engineering optimization: theory and practice. Hoboken: Wiley; 2009.

    Book  Google Scholar 

  36. Thum T, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980.

    Article  CAS  PubMed  Google Scholar 

  37. Pan YZ, Zhou A, Hu Z, Yu AM. Small nucleolar RNA-derived microRNA hsa-miR-1291 modulates cellular drug disposition through direct targeting of ABC transporter ABCC1. Drug Metab Dispos. 2013;41(10):1744–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seeger T, Boon RA. MicroRNAs in cardiovascular ageing. J Physiol. 2016;594(8):2085–94.

    Article  CAS  PubMed  Google Scholar 

  39. Condorelli G, Latronico MV, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol. 2014;63(21):2177–87.

    Article  CAS  PubMed  Google Scholar 

  40. Meloni M. Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol Ther. 2013;21(7):1390–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang P. Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. J Immunol. 2012;189:211–21. https://doi.org/10.4049/jimmunol.1200609.

    Article  CAS  PubMed  Google Scholar 

  42. Valeri N. Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci USA. 2010;107:6982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Icli B. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res. 2013;113(11):1231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. al DY. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One. 2013;8(8):e70644.

    Article  CAS  Google Scholar 

  45. Li HY, Zhang Y, Cai JH, Bian HL. MicroRNA-451 inhibits growth of human colorectal carcinoma cells via downregulation of Pi3k/Akt pathway. Asian Pac J Cancer Prev. 2013;14:3631–4.

    Article  PubMed  Google Scholar 

  46. Landgraf P, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raitoharju E, et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere vascular study. Atherosclerosis. 2011;219(1):211–7.

    Article  CAS  PubMed  Google Scholar 

  48. Jazbutyte V, Thum T. MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets. 2010;11(8):926–35.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou J, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci. 2011;108(25):10355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Talepoor AG, Kalani M, Dahaghani AS, Doroudchi M. Hydrogen peroxide and lipopolysaccharide differentially affect the expression of microRNAs 10a, 33a, 21, 221 in endothelial cells before and after coculture with monocytes. Int J Toxicol. 2017;36(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  51. Seddiki N, Brezar V, Ruffin N, Lévy Y, Swaminathan S. Role of mi R-155 in the regulation of lymphocyte immune function and disease. Immunology. 2014;142(1):32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCurley A. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med. 2012;18(9):1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jia QW, Chen ZH, Ding XQ, Liu JY, Ge PC, An FH, Li LH, Wang LS, Ma WZ, Yang ZJ, Jia EZ. Predictive effects of circulating miR-221, miR-130a and miR-155 for coronary heart disease: a multi-ethnic study in China. Cell Physiol Biochem. 2017;42(2):808–23.

    Article  CAS  PubMed  Google Scholar 

  54. Li K, Ching D, Luk FS, Raffai RL. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB–driven inflammation and atherosclerosis. Circ Res. 2015;117(1):e1–e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Santovito D. Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert Opin Ther Targets. 2013;17(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  56. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell. 2005;123(5):819–31.

    Article  CAS  PubMed  Google Scholar 

  57. Deiuliis JA. Visceral adipose microRNA 223 is upregulated in human and murine obesity and modulates the inflammatory phenotype of macrophages. PLoS One. 2016;11(11):e0165962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen Y. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front Neurol. 2017;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Esau C. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.

    Article  CAS  PubMed  Google Scholar 

  60. Rayner KJ. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Investig. 2011;121:2921–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Banerjee J, Sen CK. MicroRNAs in skin and wound healing. Methods Mol Biol. 2013;936:343–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Montgomery RL. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124:1537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sassi Y. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat Commun. 2017;8(1):1614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Laina A, Gatsiou A, Georgiopoulos G, Stamatelopoulos K, Stellos K. RNA therapeutics in cardiovascular precision medicine. Front Physiol. 2018;9:953.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Zhang X, Li H, Yu J, Ren X. The role of miRNA-29 family in cancer. Eur J Cell Biol. 2013;92(3):123–8.

    Article  CAS  PubMed  Google Scholar 

  66. Tijsen AJ. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106(6):1035.

    Article  CAS  PubMed  Google Scholar 

  67. Wu. MiR-328 expression is decreased in high-grade gliomas and is associated with worse survival in primary glioblastoma. PLoS One. 2012;7(10):e47270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng C, Wang Q, You W, Chen M, Xia J. MiRNAs as biomarkers of myocardial infarction: a meta-analysis. PLoS One. 2014;9(2):e88566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yang Y, Li H, Hou S, Hu B, Liu J, Wang J. The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One. 2013;8(5):e65309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31(11):2383–90.

    Article  CAS  PubMed  Google Scholar 

  71. Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J. 2011;75(2):336–40.

    Article  CAS  PubMed  Google Scholar 

  72. Ren XL. MicroRNA-206 functions as a tumor suppressor in colorectal cancer by targeting FMNL2. J Cancer Res Clin Oncol. 2016;142(3):581–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, P., Arora, M. (2020). RNA Binding Proteins and Non-coding RNA’s in Cardiovascular Diseases. In: Xiao, J. (eds) Non-coding RNAs in Cardiovascular Diseases. Advances in Experimental Medicine and Biology, vol 1229. Springer, Singapore. https://doi.org/10.1007/978-981-15-1671-9_5

Download citation

Publish with us

Policies and ethics