Skip to main content

Great Oxidation Event and Snowball Earth

  • Chapter
  • First Online:
Astrobiology

Abstract

The atmosphere of early Earth contained little molecular oxygen. A significant increase in oxygen occurred ca. 2.4–2.0 billion years ago in what is called the Great Oxidation Event (GOE). A large positive excursion in carbon isotopic composition in sedimentary carbonates is known to have occurred 2.2–2.0 billion years ago (the Lomagundi-Jatuli event), which provides evidence for an enhanced rate of organic carbon burial, i.e., enhanced net production of oxygen. The Proterozoic snowball Earth event (global glaciation) occurred 2.3–2.2 billion years ago, roughly coinciding with the GOE. Thus, a causal relationship between the GOE and the snowball Earth event has been suggested. The snowball Earth event could have been triggered by an increase in oxygen in the atmosphere because it would have resulted in a significant reduction of atmospheric methane level, thereby reducing the greenhouse effect of the atmosphere and causing global glaciation. On the other hand, termination of the snowball Earth event may have triggered the production of a large amount of oxygen because the extremely hot climate (~60 °C) immediately after the termination of the snowball Earth event must have significantly increased the supply of phosphate to the oceans, resulting in large-scale blooms of cyanobacteria, which could have produced large amounts of oxygen. The postglacial transition of atmospheric oxygen levels may have promoted an ecological shift and biological innovations for oxygen-dependent life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anbar AD, Duan YT, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C (2007) A whiff of oxygen before the great oxidation event? Science 317(5846):1903–1906

    Article  CAS  Google Scholar 

  • Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett 317:295–304

    Article  Google Scholar 

  • Bekker A, Holland HD, Wang P-L, Rumble D III, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427(6970):117–120

    Article  CAS  Google Scholar 

  • Bekker A, Karhu JA, Kaufman AJ (2006) Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambrian Res 148:145–180

    Article  CAS  Google Scholar 

  • Berkner LV, Marshall LC (1965) On the origin and rise of oxygen concentration in the Earth’s atmosphere. J Atmos Sci 22:225–261

    Article  CAS  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  CAS  Google Scholar 

  • Caldeira K, Kasting JF (1992) Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359:226–228

    Article  CAS  Google Scholar 

  • Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann A-C, El Albani A (2013) Oxygen dynamics in the aftermath of the great oxidation of Earth’s atmosphere. Proc Natl Acad Sci U S A 110:16736–16741

    Article  CAS  Google Scholar 

  • Catling DC, Kasting JF (2017) Atmospheric evolution on inhabited and lifeless worlds. Cambridge University Press, Cambridge, UK, 592p

    Book  Google Scholar 

  • Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–843

    Article  CAS  Google Scholar 

  • Chandler FW (1980) Proterozoic redbed sequences of Canada. Can Geol Surv Bull 311:1–53

    Google Scholar 

  • Claire MW, Catling DC, Zahnle KJ (2006) Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4(4):239–269

    Article  CAS  Google Scholar 

  • Cloud P (1972) Working model of primitive Earth. Am J Sci 272(6):537–548

    Article  CAS  Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68:1135–1143

    Article  CAS  Google Scholar 

  • Crowe SA, Dossing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Candield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538

    Article  CAS  Google Scholar 

  • Embleton BJJ, Williams GE (1986) Low palaeolatitude of deposition for late Precambrian periglacial varvites in South Australia: implications for palaeoclimatology. Earth Planet Sci Lett 79:419–430

    Article  Google Scholar 

  • Evans DA, Beukes NJ, Kirschvink JL (1997) Low-latitude glaciation in the Palaeoproterozoic era. Nature 386:262–266

    Article  CAS  Google Scholar 

  • Farquhar J, Bao H, Thiemans M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Article  CAS  Google Scholar 

  • Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kauf-man AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709

    Article  CAS  Google Scholar 

  • Frei R, Gaucher C, Paulton SW, Canfield DE (2009) Fluctuations in precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–254

    Article  CAS  Google Scholar 

  • Gaillard F, Scaillet B, Arndt NT (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232

    Article  CAS  Google Scholar 

  • Gnos E, Armbruster T, Villa IM (2003) Norrishite, K (Mn2 3+Li)Si4O10(O)2, an oxymica associated with sugilite from the Wessels Mine, South Africa: Crystal chemistry and 40Ar-39Ar dating. Am Mineral 88:189–194

    Article  CAS  Google Scholar 

  • Goldblatt C, Lenton TM, Watson AJ (2006) Bistability of atmospheric oxygen and the great oxidation. Nature 443:683–686

    Article  CAS  Google Scholar 

  • Goto KT, Sekine Y, Suzuki K, Tajika E, Senda R, Nozaki T, Tada R, Goto K, Yamamoto S, Maruoka T, Ohkouchi N, Ogawa NO (2013) Redox conditions in the atmosphere and shallow-marine environments during the first Huronian deglaciation: insights from Os isotopes and redox-sensitive elements. Earth Planet Sci Lett 376:145–154

    Article  CAS  Google Scholar 

  • Harada M, Tajika E, Sekine Y (2015) Transition to an oxygen-rich atmosphere with an extensive overshoot triggered by the Paleoproterozoic snowball Earth. Earth Planet Sci Lett 419:178–186

    Article  CAS  Google Scholar 

  • Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 291–301

    Google Scholar 

  • Hilburn IA, Kirschvink JL, Tajika E, Tada R, Hamano Y, Yamamoto S (2005) A negative fold test on the Lorrain Formation of the Huronian Supergroup: uncertainty on the paleolatitude of the Paleoproterozoic Gowganda glaciation and implications for the great oxygenation event. Earth Planet Sci Lett 232:315–332

    Article  CAS  Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  CAS  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DPA (1998) Neoproterozoic snowball. Earth Sci 281:1342–1346

    CAS  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton

    Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826

    Article  CAS  Google Scholar 

  • Isley AE, Abbott DH (1999) Plume-related mafic volcanism and the deposition of banded iron formation. J Geophys Res-Solid Earth 104(B7):15461–15477

    Article  CAS  Google Scholar 

  • Johnson JE, Webbb SM, Thomasc K, Onoc S, Kirschvinka JL, Fischera WW (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc Natl Acad Sci 110:11238–11243

    Article  CAS  Google Scholar 

  • Karhu J, Holland H (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24:867–870

    Article  CAS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  CAS  Google Scholar 

  • Kasting JF (2005) Methane and climate during the Precambrian era. Precambrian Res 137:119–129

    Article  CAS  Google Scholar 

  • Kasting JF (2013) What caused the rise of atmospheric O2? Chem Geol 362:13–25

    Article  CAS  Google Scholar 

  • Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J Geol 101:245–257

    Article  CAS  Google Scholar 

  • Kasting JF, Pavlov AA, Siefert JL (2001) A coupled ecosystem-climate model for predicting the methane concentration in the Archean atmosphere. Orig Life Evol Biosph 31:271–285

    Article  CAS  Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball earth. In: Schopf JW, Klein C (eds) The proterozoic biosphere. Cambridge University Press, Cambridge, UK, pp 51–52

    Google Scholar 

  • Kirschvink JL, Kopp RE (2008) Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos Trans R Soc B-Biol Sci 363(1504):2755–2765

    Article  CAS  Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci 97:1400–1405

    Article  CAS  Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2002) Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci 97:1400–1405

    Article  Google Scholar 

  • Klemm D (2000) The formation of Palaeoproterozoic banded iron formations and their associated Fe and Mn deposits, with reference to the Griqualand West deposits, South Africa. J Afr Earth Sci 30:1–24

    Article  CAS  Google Scholar 

  • Konhauser KO, Hamade T, Raiswell R, Ferris FG, Southam G, Canfield DE (2002) Could bacteria have formed the Precambrian banded iron formations? Geology 30(12):1079–1082

    Article  CAS  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102:1131–11136

    Article  Google Scholar 

  • Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448(7157):1033–1036

    Article  CAS  Google Scholar 

  • Kurzweil F, Wille M, Gantert N, Beukesc NJ, Schoenberg R (2016) Manganese oxide shuttling in pre-GOE oceans – evidence from molybdenum and iron isotopes. Earth Planet Sci Lett 452:69–78

    Article  CAS  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315

    Article  CAS  Google Scholar 

  • Martin AP, Condona DJ, Prave AR, Lepland A (2013) A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi–Jatuli event). Earth Sci Rev 127:242–261

    Article  CAS  Google Scholar 

  • North GR, Cahalan RF, Coakley JA (1981) Energy balance climate models. Rev Geophys Space Phys 19:91–121

    Article  Google Scholar 

  • Ozaki K, Tajika E, Hong PK, Nakagawa Y, Reinhard CT (2017) Effects of primitive photosynthesis on Earth’s early climate system. Nat Geosci. https://doi.org/10.1038/s41561-017-0031-2

    Article  Google Scholar 

  • Park JK (1997) Paleomagnetic evidence for low-latitude glaciation during deposition of the Neoproterozoic Rapitan Group, Mackenzie Mountains, N.W.T., Canada. Can J Earth Sci 34(1):34–49

    Article  Google Scholar 

  • Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41

    Article  CAS  Google Scholar 

  • Pavlov AA, Kasting JF, Brown LL (2000) Greenhouse warming by CH 4 in the atmosphere of early Earth. J Geophys Res 105:11981–11990

    Article  CAS  Google Scholar 

  • Pavlov AA, Hurtgen MT, Kasting JF, Arthur MA (2003) Methane-rich Proterozoic atmosphere? Geology 31:87–90

    Article  CAS  Google Scholar 

  • Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa F, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ (2014) Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat Geosci 7:283–286

    Article  CAS  Google Scholar 

  • Rasmussen B, Buick R (1999) Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27:115–118

    Article  CAS  Google Scholar 

  • Rasmussen B, Bekker A, Fletcher IR (2013) Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaar and Huronian Supergroups. Earth Planet Sci Lett 382:173–180

    Article  CAS  Google Scholar 

  • Rye R, Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: acritical review. Am J Sci 298:621–672

    Article  CAS  Google Scholar 

  • Schroder S, Bekker A, Beukes NJ, Strauss H, van Niekerk HS (2008) Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporates in the ~2.2-2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova 20:108–117

    Article  CAS  Google Scholar 

  • Scott CT, Bekker A, Reinhard CT, Schnetger B, Krapez B, Rumble D III, Lyons TW (2011) Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39(2):119–122

    Article  CAS  Google Scholar 

  • Sekine Y, Tajika E, Tada R, Hirai T, Goto KT, Kuwatani T, Goto K, Yamamoto S, Tachibana S, Isozaki Y, Kirschvink JL (2011) Manganese enrichment in the Gowganda Formation of the Huronian Supergroup: a highly oxidizing shallow-marine environment after the last Huronian glaciation. Earth Planet Sci Lett 307:201–210

    Article  CAS  Google Scholar 

  • Shields-Zhou G, Och L (2011) The case for a Neoproterozoic oxygenation event: geochemical evidence and biological consequences. GSA Today 21:4–11

    Article  Google Scholar 

  • Shields-Zhou G, Porter S, Halverson GP (2016) A new rock-based definition for the Cryogenian period (circa 720 – 635 Ma). Episodes 39:3–8

    Article  Google Scholar 

  • Summons JR, Jahnke LL, Hope JM, Logan GA (1999) Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  CAS  Google Scholar 

  • Sumner DY, Kirschvink JL, Runnegar BN (1987) Soft-sediment paleo-magnetic fold tests of late Precambrian glaciogenic sediments. EOS 68:1251

    Google Scholar 

  • Tajika E (2003) Faint young sun and the carbon cycle: implication for the Proterozoic global glaciations, Earth planet. Sci Lett 214:443–453

    CAS  Google Scholar 

  • Zerkle AL, House CH, Cox RP, Canfield DE (2006) Metal limitation of cyanobacterial N-2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4(4):285–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Tajika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tajika, E., Harada, M. (2019). Great Oxidation Event and Snowball Earth. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_17

Download citation

Publish with us

Policies and ethics