Skip to main content

Membrane Permeabilization Mechanisms

  • Chapter
  • First Online:
Antimicrobial Peptides

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1117))

Abstract

Many antimicrobial peptides are considered to kill microbes by permeabilizing cell membranes. This chapter summarizes the driving force of peptide binding to membranes; various mechanisms of lipid bilayer permeabilization including the barrel-stave, toroidal pore, and carpet models; and modes of permeabilization of bacterial and mammalian membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson E, Rydengard V, Sonesson A, Morgelin M, Bjorck L, Schmidtchen A (2004) Antimicrobial activities of heparin-binding peptides. Eur J Biochem 271:1219–1226

    Article  CAS  Google Scholar 

  • Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758:1529–1539

    Article  CAS  Google Scholar 

  • Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274:151–155

    Article  CAS  Google Scholar 

  • Furse S, Scott DJ (2016) Three-dimensional distribution of phospholipids in gram negative bacteria. Biochemistry 55:4742–4747

    Article  CAS  Google Scholar 

  • Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    Article  CAS  Google Scholar 

  • Hara T, Kodama H, Kondo M, Wakamatsu K, Takeda A, Tachi T et al (2001) Effect of peptide dimerization on pore formation: antiparallel disulfide-dimerized magainin 2 analog. Biopolymers 58:437–446

    Article  CAS  Google Scholar 

  • Huang HW (2006) Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta 1758:1292–1302

    Article  CAS  Google Scholar 

  • Imura Y, Nishida M, Ogawa Y, Takakura Y, Matsuzaki K (2007) Action mechanism of tachyplesin I and effects of PEGylation. Biochim Biophys Acta 1768:1160–1169

    Article  CAS  Google Scholar 

  • Imura Y, Choda N, Matsuzaki K (2008) Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J 95:5757–5765

    Article  Google Scholar 

  • Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K (2000) Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry 39:8648–8654

    Article  CAS  Google Scholar 

  • Kobayashi S, Chikushi A, Tougu S, Imura Y, Nishida M, Yano Y et al (2004) Membrane translocation mechanism of the antimicrobial peptide buforin 2. Biochemistry 43:15610–15616

    Article  CAS  Google Scholar 

  • Lee C-C, Sun Y, Qian S, Huang HW (2011) Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J 100:1688–1696

    Article  CAS  Google Scholar 

  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728

    Article  CAS  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788:1687–1692

    Article  CAS  Google Scholar 

  • Matsuzaki K, Harada M, Handa T, Funakoshi S, Fujii N, Yajima H et al (1989) Magainin 1-induced leakage of entrapped calcein out of negatively-charged lipid vesicles. Biochim Biophys Acta 981:130–134

    Article  CAS  Google Scholar 

  • Matsuzaki K, Harada M, Funakoshi S, Fujii N, Miyajima K (1991a) Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta 1063:162–170

    Article  CAS  Google Scholar 

  • Matsuzaki K, Fukui M, Fujii N, Miyajima K (1991b) Interactions of an antimicrobial peptide, tachyplesin I, with lipid membranes. Biochim Biophys Acta 1070:259–264

    Article  CAS  Google Scholar 

  • Matsuzaki K, Sugishita K, Fujii N, Miyajima K (1995a) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34:3423–3429

    Article  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Miyajima K (1995b) Kinetics of pore formation induced by an antimicrobial peptide, magainin 2. Biochemistry 34:12553–12559

    Article  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996a) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368

    Article  CAS  Google Scholar 

  • Matsuzaki K, Yoneyama S, Murase O, Miyajima K (1996b) Transbilayer transport of ions and lipids coupled with mastoparan X translocation. Biochemistry 35:8450–8456

    Article  CAS  Google Scholar 

  • Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K (1997a) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of gram-negative bacteria. Biochim Biophys Acta 1327:119–130

    Article  CAS  Google Scholar 

  • Matsuzaki K, Nakamura A, Murase O, Sugishita K, Fujii N, Miyajima K (1997b) Modulation of magainin 2–lipid bilayer interactions by peptide charge. Biochemistry 36:2104–2111

    Article  CAS  Google Scholar 

  • Matsuzaki K, Mitani Y, Akada K, Murase O, Yoneyama S, Zasloff M et al (1998a) Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry 37:15144–15153

    Article  CAS  Google Scholar 

  • Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K et al (1998b) Relationship of membrane curvature to the formation of pores by magainin. Biochemistry 37:11856–11863

    Article  CAS  Google Scholar 

  • Matsuzaki K, Sugishita K, Miyajima K (1999) Interactions of an antimicrobial peptide, magainin 2 with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Lett 449:221–224

    Article  CAS  Google Scholar 

  • Miyazaki Y, Aoki M, Yano Y, Matsuzaki K (2012) Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding. Biochemistry 51:10229–10235

    Article  CAS  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  CAS  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  Google Scholar 

  • Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614

    Article  CAS  Google Scholar 

  • Roversi D, Luca V, Aureli S, Park Y, Mangoni ML, Stella L (2014) How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem Biol 9:2003–2007

    Article  CAS  Google Scholar 

  • Sansom MSP (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55:139–235

    Article  CAS  Google Scholar 

  • Schwarz G, Arbuzova A (1995) Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim Biophys Acta 1239:51–57

    Article  Google Scholar 

  • Schwarz G, Robert CH (1992) Kinetics of pore-mediated release of marker molecules from liposomes or cells. Biophys Chem 42:291–296

    Article  CAS  Google Scholar 

  • Shai Y (1995) Molecular recognition between membrane-spanning polypeptides. Trends Biol Sci 20:460–465

    Article  CAS  Google Scholar 

  • Sochacki KA, Barns KJ, Bucki R, Weisshaar JC (2011) Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci U S A 108:E77–E81

    Article  Google Scholar 

  • Takeshima K, Chikushi A, Lee K-K, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278:1310–1315

    Article  CAS  Google Scholar 

  • Tomasinsig L, Skerlavaj B, Papo N, Giabbai B, Shai Y, Zanetti M (2006) Mechanistic and functional studies of the interaction of a proline-rich antimicrobial peptide with mammalian cells. J Biol Chem 281:383–391

    Article  CAS  Google Scholar 

  • Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51:3062–3066

    CAS  PubMed  Google Scholar 

  • Wade D, Boman A, WÃ¥hlin B, Drain CM, Andreu D, Boman HG et al (1990) All-D amino acid-containing channel forming antibiotic peptides. Proc Natl Acad Sci U S A 87:4761–4765

    Article  CAS  Google Scholar 

  • Wenk MR, Seelig J (1998) Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. Biochemistry 37:3909–3916

    Article  CAS  Google Scholar 

  • Wieprecht T, Beyermann M, Seelig J (1999) Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Biochemistry 38:10377–10387

    Article  CAS  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  CAS  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  Google Scholar 

  • Yoneyama F, Imura Y, Ohno K, Zendo T, Nakayama J, Matsuzaki K et al (2009) Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 53:3211–3217

    Article  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84:5449–5453

    Article  CAS  Google Scholar 

  • Zhang L, Benz R, Hancock REW (1999) Influence of proline residues on the antibacterial and synergistic activities of α-helical peptides. Biochemistry 38:8102–8111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Matsuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuzaki, K. (2019). Membrane Permeabilization Mechanisms. In: Matsuzaki, K. (eds) Antimicrobial Peptides. Advances in Experimental Medicine and Biology, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-13-3588-4_2

Download citation

Publish with us

Policies and ethics