Skip to main content

Introduction

  • Chapter
  • First Online:
Climate Change and Agriculture

Abstract

Sun is the only known source of energy for our earth. Climate on the earth is determined by the balance between earth’s intercepted solar energy and its reradiation from the earth. The earth’s atmosphere varies in density and composition according to their distance from the biosphere. The lowest layer of the atmosphere is called the troposphere. The troposphere extending from the earth’s surface to a height of about 8–14.5 km contains the majority of the atmosphere’s mass and is the location of most of the earth’s weather. The atmosphere just above the troposphere and extends to 50 km high is called stratosphere, where the ozone layer is formed which absorbs ultraviolet radiations from the sun. The mesosphere starts above the stratosphere and extends to 85 km high. The thermosphere is above mesosphere and extends to 600 km high, where aurora and satellites occur (Zell 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bar-Yosef, O. (2011). Climatic fluctuations and early farming in West and East Asia. Current Anthropology, 52, S175–S193.

    Article  Google Scholar 

  • Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611–619.

    Article  Google Scholar 

  • Burger, M., Graeber, B., & Schindlmayr, G. (2008). Managing energy risk: An integrated view on power and other energy markets. Hoboken, NJ: Wiley.

    Google Scholar 

  • Cochrane, K., De Young, C., Soto, D., & Bahri, T. (2009). Climate change implications for fisheries and aquaculture. FAO Fisheries and aquaculture technical paper, 530, 212.

    Google Scholar 

  • Demenocal, P. B. (2001). Cultural responses to climate change during the late Holocene. Science, 292, 667–673.

    Article  CAS  Google Scholar 

  • EPA. (2018). Global greenhouse gas emissions data [Online]. Available: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data [Accessed 18 Apr 2018].

  • Fleming, J. R. Year. 3.1 the carbon dioxide theory of climate change: Emergence, eclipse, and reemergence, ca. 1850–1950. In: 13th symposium on global change and climate variations, AMS, 2002.

    Google Scholar 

  • Fuller, D. Q., Kingwell-Banham, E., Lucas, L., Murphy, C., & Stevens, C. (2015). Comparing pathways to agriculture. Archaeology International, 18, 61.

    Article  Google Scholar 

  • Goldberg, P., Berna, F., & Chazan, M. (2015). Deposition and diagenesis in the earlier stone age of Wonderwerk cave, excavation 1, South Africa. African Archaeological Review, 32, 613–643.

    Article  Google Scholar 

  • Gupta, A. K. (2004). Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. CURRENT SCIENCE-BANGALORE, 87, 54–59.

    Google Scholar 

  • Hatfield, J., Takle, G., Grotjahn, R., Holden, P., Izaurralde, R. C., Mader, T., Marshall, E., & Liverman, D. (2014). Climate change impacts in the United States: the third national climate assessment. In J. M. Melillo, T. C. Richmond, & G. W. Yohe (Eds.), U.S. Global Change Research Program. Washington, DC: Government Printing Office.

    Google Scholar 

  • Hegerl, G. C., Von Storch, H., Hasselmann, K., Santer, B. D., Cubasch, U., & Jones, P. D. (1996). Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. Journal of Climate, 9, 2281–2306.

    Article  Google Scholar 

  • Howells, M., Hermann, S., Welsch, M., Bazilian, M., Segerström, R., Alfstad, T., Gielen, D., Rogner, H., Fischer, G., & Van Velthuizen, H. (2013). Integrated analysis of climate change, land-use, energy and water strategies. Nature Climate Change, 3, 621.

    Article  Google Scholar 

  • IPCC. (2007). IPCC fourth assessment report: Climate change 2007 [Online]. Available: https://www.ipcc.ch/publications_and_data/ar4/wg1/en/faq-1-3.html [Accessed 16 Apr 2018].

  • Jacob, J. (2005). The science, politics and economics of global climate change: Implications for the carbon sink projects. Current Science, 89, 464–474.

    Google Scholar 

  • Joyce, L. A., Running, S. W., Breshears, D. D., Dale, V. H., Malmsheimer, R. W., Sampson, R. N., Sohngen, B., & Woodall, C. W. (2014). Forests. In J. M. Melillo, T. C. Richmond, & G. E. Yohe (Eds.), Climate Change Impacts in the United States: The Third National Climate Assessment. Washington, DC: U.S. Global Change Research Program./Government Printing Office.

    Google Scholar 

  • Lang, K. (2010). 2.Global warming: Heating by the greenhouse effect [Online]. Available: http://ase.tufts.edu/cosmos/view_chapter.asp?id=21 [Accessed 17 Apr 2018].

  • Le Treut, H., Cubasch, U., & Allen, M. (2007). Historical overview of climate change science. In Climate change 2007: The physical sciences basis.

    Google Scholar 

  • Li, X. (2013). New progress in the Holocene climate and agriculture research in China. Science China Earth Sciences, 56, 2027–2036.

    Article  Google Scholar 

  • NASA. (2018). Climate change: How do we know? [Online]. Available: https://climate.nasa.gov/evidence/ [Accessed 18 Apr 2018].

  • Riebeek, H. (2010). Global warming: Feature articles .[Online]. Available: https://earthobservatory.nasa.gov/Features/GlobalWarming/page2.php [Accessed 17 Apr 2018].

  • Ruddiman, W. F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61, 261–293.

    Article  CAS  Google Scholar 

  • Rupakumar, K., Krishnakumar, K., Ashrit, R. G., Patwardhan, S. K., & Pant, G. B. (2002). In P. R. Shukla, S. K. Sharma, & P. V. Ramana (Eds.), Climate change and India (pp. 24–75). New Delhi: Tata Mc Graw Hill Ltd..

    Google Scholar 

  • Santer, B. D., Taylor, K., Wigley, T., Johns, T., Jones, P., Karoly, D., Mitchell, J., Oort, A., Penner, J., & Ramaswamy, V. (1996). A search for human influences on the thermal structure of the atmosphere. Nature, 382, 39.

    Article  CAS  Google Scholar 

  • Santer, B. D., Wehner, M. F., Wigley, T., Sausen, R., Meehl, G., Taylor, K., Ammann, C., Arblaster, J., Washington, W., & Boyle, J. (2003). Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479–483.

    Article  CAS  Google Scholar 

  • Steffen, W., Grinevald, J., Crutzen, P., & Mcneill, J. (2011). The Anthropocene: Conceptual and historical perspectives. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369, 842–867.

    Article  Google Scholar 

  • Zell, H. (2017). Earth’s atmospheric layers. [Accessed 3 Mar 2018].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uprety, D.C., Reddy, V.R., Mura, J.D. (2019). Introduction. In: Climate Change and Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-2014-9_1

Download citation

Publish with us

Policies and ethics