Skip to main content

Circular RNAs and Plant Stress Responses

  • Chapter
  • First Online:
Circular RNAs

Abstract

Circular RNAs (circRNAs) are a novel class of noncoding RNAs that have been extensively explored in the past few years. The advent of new high-throughput sequencing technologies coupled with bioinformatics tools revealed the presence of these molecules in the transcriptome of a wide range of organisms. In animals, circRNAs can modulate gene expression and act as sponges of miRNAs to inhibit their activity. It has been demonstrated that they have the potential to be diagnostic biomarkers as their expression is closely associated to human diseases, such as Alzheimer and cancer. However, in plants their function remains elusive. Recently, the role of the circRNAs in plant stress responses has been studied. During the infection of Pseudomonas syringae in kiwifruit plants, 584 circRNAs were differentially expressed in leaf samples, and a group of them could be further associated with the stage of infection. Under phosphate deficiency conditions, 27 rice circRNAs were reported to be differentially expressed. In tomato, 163 circRNAs demonstrated chilling-responsive expression, with 102 containing miRNA-binding sites and are predicted to act as miRNA sponges. Additionally, Arabidopsis seedlings presented 1583 heat-specific circRNAs, and it was also reported that heat stress could increase the quantity, length, and alternative circularization events of circRNAs. Finally, wheat seedlings under dehydration stress had 62 circRNAs differentially expressed, with 6 being predicted as miRNA sponges. Although the role of plant circRNAs during the biotic and abiotic stresses is still poorly characterised, these molecules have the potential to expand the number of targets and tools in the biotechnology field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73:3852–3856

    Article  CAS  Google Scholar 

  2. Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64:607–613

    Article  CAS  Google Scholar 

  3. Cocquerelle C, Daubersies P, Majérus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11:1095–1098

    Article  CAS  Google Scholar 

  4. Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73:1019–1030

    Article  CAS  Google Scholar 

  5. Cocquerelle C, Mascrez B, Hétuin D et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7:155–160

    Article  CAS  Google Scholar 

  6. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461

    Article  CAS  Google Scholar 

  7. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  Google Scholar 

  8. Wang PL, Bao Y, Yee M-C et al (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE 9(3):e90859

    Article  Google Scholar 

  9. Ye CY, Chen L, Liu C et al (2015) Widespread noncoding circular RNAs in plants. New Phytol 208:88–95

    Article  CAS  Google Scholar 

  10. Wang Z, Liu Y, Li D et al (2017) Identification of circular RNAs in Kiwifruit and their species-specific response to bacterial canker pathogen invasion. Front Plant Sci 8:413

    PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Yang M, Wei S et al (2017) Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front Plant Sci 7:2024

    PubMed  PubMed Central  Google Scholar 

  12. Zuo J, Wang Q, Zhu B et al (2016) Deciphering the roles of circRNAs on chilling injury in tomato. Biochem Biophys Res Commun 479:132–138. https://doi.org/10.1016/j.bbrc.2016.07.032

    Article  CAS  PubMed  Google Scholar 

  13. Darbani B, Noeparvar S, Borg S (2016) Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in Barley. Front Plant Sci 7:776

    Article  Google Scholar 

  14. Zhao T, Wang L, Li S et al (2017) Characterization of conserved circular RNA in polyploid Gossypium species and their ancestors. FEBS Lett 591:3660–3669

    Article  CAS  Google Scholar 

  15. Zhao W, Cheng Y, Zhang C et al (2017) Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean. Sci Rep 7:5636

    Article  Google Scholar 

  16. Zhou R, Zhu Y, Zhao J et al (2017) Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies brasiliense infection. Int J Mol Sci 19:E71

    Article  Google Scholar 

  17. Chen L, Zhang P, Fan Y et al (2018) Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol 217:1292–1306

    Article  CAS  Google Scholar 

  18. Zeng R-F, Zhou J-J, Hu C-G et al (2018) Transcriptome-wide identification and functional prediction of novel and flowering-related circular RNAs from trifoliate orange (Poncirus trifoliata L. Raf.). Planta 247:1191–1202

    Article  CAS  Google Scholar 

  19. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

    Article  CAS  Google Scholar 

  20. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733

    Article  CAS  Google Scholar 

  21. Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264

    Article  CAS  Google Scholar 

  22. Zhang Y, Zhang X-O, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806

    Article  CAS  Google Scholar 

  23. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  Google Scholar 

  24. Zhang X-O, Wang H-B, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147

    Article  CAS  Google Scholar 

  25. Sun X, Wang L, Ding J et al (2016) Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Lett 590:3510–3516. https://doi.org/10.1002/1873-3468.12440

    Article  CAS  PubMed  Google Scholar 

  26. Ye C-Y, Zhang X, Chu Q et al (2017) Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol 14:1055–1063

    Article  Google Scholar 

  27. Li Q-F, Zhang Y-C, Chen Y-Q et al (2017) Circular RNAs roll into the regulatory network of plants. Biochem Biophys Res Commun 488:382–386

    Article  CAS  Google Scholar 

  28. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  Google Scholar 

  29. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  Google Scholar 

  30. Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  Google Scholar 

  31. Todesco M, Rubio-Somoza I, Paz-Ares J et al (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6:e1001031

    Article  Google Scholar 

  32. Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37:2602–2611

    Article  CAS  Google Scholar 

  33. Lu T, Cui L, Zhou Y et al (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21:2076–2087

    Article  CAS  Google Scholar 

  34. Conn VM, Hugouvieux V, Nayak A et al (2017) A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3:17053

    Article  CAS  Google Scholar 

  35. Chen G, Cui J, Wang L et al (2017) Genome-Wide Identification of Circular RNAs in Arabidopsis thaliana. Front Plant Sci 8:1678

    Article  Google Scholar 

  36. Tan J, Zhou Z, Niu Y et al (2017) Identification and functional characterization of tomato CircRNAs derived from genes involved in fruit pigment accumulation. Sci Rep 7:8594

    Article  Google Scholar 

  37. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4

    Article  CAS  Google Scholar 

  38. Wang K, Singh D, Zeng Z et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38:e178

    Article  Google Scholar 

  39. Hoffmann S, Otto C, Doose G et al (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15:R34

    Article  Google Scholar 

  40. Gaffo E, Bonizzato A, Kronnie G et al (2017) CirComPara: a multi-method comparative bioinformatics pipeline to detect and study circRNAs from RNA-seq data. Non-Coding RNA 3:8

    Article  Google Scholar 

  41. Hansen TB, Venø MT, Damgaard CK et al (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res 44:e58

    Article  Google Scholar 

  42. Chen L, Yu Y, Zhang X et al (2016) PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics 32:3528–3529

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chu Q, Zhang X, Zhu X et al (2017) PlantcircBase: a database for plant circular RNAs. Mol Plant 10:1126–1128

    Article  CAS  Google Scholar 

  44. Kulcheski FR, Christoff AP, Margis R (2016) Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 238:42–51

    Article  CAS  Google Scholar 

  45. Ghosal S, Das S, Sen R et al (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283

    Article  Google Scholar 

  46. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211

    Article  CAS  Google Scholar 

  47. Pan T, Sun X, Liu Y et al (2017) Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis. Plant Mol Biol 96:217–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso Gaspar Litholdo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Litholdo, C.G., da Fonseca, G.C. (2018). Circular RNAs and Plant Stress Responses. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_27

Download citation

Publish with us

Policies and ethics