Skip to main content

Pre-gelatinized Modification of Starch

  • Chapter
  • First Online:
Physical Modifications of Starch

Abstract

A pre-gelatinized starch is one kind of physical modification of starches which are accomplished by heating and by mechanical shearing. Pre-gelatinized modification starch is produced by sufficient heat, followed by drying and grinding. The objective is to generate starch ingredients with instantaneous cold water solubility and thickening/gelling capabilities. Pre-gelatinized starch, sometimes called “instant” starches, can be dissolved in water at temperatures below gelatinization of the native starches (BeMiller, Reference module in food science. Elsevier, 2016). Pre-gelatinized starch particles exhibit a complete lack of birefringence and generally retain very little, if any, of the original native granule structure, although there are almost always some ungelatinized granules in any commercial preparation made on a hot roll, i.e., via drum drying (Fritze, Ind Eng Chem Process Des Dev 12:142–148, 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • BeMiller, J. N. (2016). Reference module in food science. London: Elsevier.

    Google Scholar 

  • Chen, P., Wang, K., Kuang, Q., Zhou, S., et al. (2016). Understanding how the aggregation structure of starch affects its gastrointestinal digestion rate and extent. International Journal of Biological Macromolecules, 87, 28–33.

    Article  CAS  Google Scholar 

  • Cruz, P. S. (1997). Aquaculture feed and fertilizer resource atlas of the Philippines. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Elgorashi, A. S., Abdallah, D. B., & Charoo, N. A. (2016). Assessment of pregelatinized sorghum and maize starches as superior multi-functional excipients. Journal of Pharmaceutical Innovation, 11, 143–155.

    Article  Google Scholar 

  • Fritze, H. (1973). Dry gelatinized starch produced on different types of drum dryers. Industrial and Engineering Chemistry Process Design and Development, 12, 142–148.

    Article  CAS  Google Scholar 

  • González Parada, Z. M., & Pérez Sira, E. E. (2003). Physicochemical and functional evaluation of pregelatinized and microwaved cassava (Manihot esculenta Crantz) starches. Acta Científica Venezolana, 54, 127–137.

    PubMed  Google Scholar 

  • Hedayati, S., Shahidi, F., Koocheki, A., Farahnaky, A., & Majzoobi, M. (2016a). Comparing the effects of sucrose and glucose on functional properties of pregelatinized maize starch. International Journal of Biological Macromolecules, 88, 499–504.

    Article  CAS  Google Scholar 

  • Hedayati, S., Shahidi, F., Koocheki, A., Farahnaky, A., & Majzoobi, M. (2016b). Physical properties of pregelatinized and granular cold water swelling maize starches at different pH values. International Journal of Biological Macromolecules, 91, 730–735.

    Article  CAS  Google Scholar 

  • Katcher, R. S. (1994). Process for preparing modified, pregelatinized dent cornstarch and product thereof.

    Google Scholar 

  • Lan, X., Xie, S., Wu, J., Xie, F., et al. (2016). Thermal and enzymatic degradation induced ultrastructure changes in canna starch: Further insights into short-range and long-range structural orders. Food Hydrocolloids, 58, 335–342.

    Article  CAS  Google Scholar 

  • Lawal, M. V., Odeniyi, M. A., & Itiola, O. A. (2015). Material and rheological properties of native, acetylated, and pregelatinized forms of corn, cassava, and sweet potato starches. Starch-Starke, 67, 964–975.

    Article  CAS  Google Scholar 

  • Liao, L. S., Liu, H. S., Liu, X. X., Chen, L., et al. (2014). Development of microstructures and phase transitions of starch. Acta Polymerica Sinica, 2014, 761–773.

    Google Scholar 

  • Liu, H. S., Xie, F. W., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34, 1348–1368.

    Article  CAS  Google Scholar 

  • Loisel, C., Maache-Rezzoug, Z., Esneault, C., & Doublier, J. L. (2006). Effect of hydrothermal treatment on the physical and rheological properties of maize starches. Journal of Food Engineering, 73, 45–54.

    Article  CAS  Google Scholar 

  • Manchun, S., Piriyaprasarth, S., Patomchaiviwat, V., Limmatvapirat, S., & Sriamornsak, P. (2012). Advanced Materials Research, 506, 35–38.

    Article  CAS  Google Scholar 

  • Marti, A., Caramanico, R., Bottega, G., & Pagani, M. A. (2013). Cooking behavior of rice pasta: Effect of thermal treatments and extrusion conditions. LWT – Food Science and Technology, 54, 229–235.

    Article  CAS  Google Scholar 

  • Nakorn, K. N., Tongdang, T., & Sirivongpaisal, P. (2009). Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch-Starke, 61, 101–108.

    Article  CAS  Google Scholar 

  • Okunlola, A., Adebayo, S. A., & Adeyeye, M. C. (2015). Solid state characterization of two tropical starches modified by pregelatinization and acetylation: Potential as excipients in pharmaceutical formulations. British Journal of Pharmaceutical Research, 5, 58–71.

    Article  CAS  Google Scholar 

  • Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch – Stärke, 62, 389–420.

    Article  Google Scholar 

  • Widodo, R. T., & Hassan, A. (2015). Compression and mechanical properties of directly compressible pregelatinized sago starches. Powder Technology, 269, 15–21.

    Article  CAS  Google Scholar 

  • Witt, T., & Gilbert, R. G. (2014). Causal relations between structural features of amylopectin, a semicrystalline hyperbranched polymer. Biomacromolecules, 15, 2501–2511.

    Article  CAS  Google Scholar 

  • Witt, T., Doutch, J., Gilbert, E. P., & Gilbert, R. G. (2012). Relations between molecular, crystalline, and lamellar structures of amylopectin. Biomacromolecules, 13, 4273–4282.

    Article  CAS  Google Scholar 

  • Wu, A. C., Witt, T., & Gilbert, R. G. (2013). Characterization methods for starch-based materials: State of the art and perspectives. Australian Journal of Chemistry, 66, 1550–1563.

    Article  CAS  Google Scholar 

  • Xie, F., Halley, P. J., & Avérous, L. (2012). Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Progress in Polymer Science, 37, 595–623.

    Article  CAS  Google Scholar 

  • Zhang, Y., Huang, Z., Yang, C., Huang, A., et al. (2013). Material properties of partially pregelatinized cassava starch prepared by mechanical activation. Starch/Staerke, 65, 461–468.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, Y., Liu, X. (2018). Pre-gelatinized Modification of Starch. In: Sui, Z., Kong, X. (eds) Physical Modifications of Starch. Springer, Singapore. https://doi.org/10.1007/978-981-13-0725-6_4

Download citation

Publish with us

Policies and ethics