Skip to main content

The Potentials and Trends of Virtual Reality in Education

A Bibliometric Analysis on Top Research Studies in the Last Two Decades

  • Chapter
  • First Online:
Virtual, Augmented, and Mixed Realities in Education

Part of the book series: Smart Computing and Intelligence ((SMCOMINT))

Abstract

Virtual reality has gained worldwide interest among the researchers in the field of educational technology recently. This chapter presents an overview of virtual reality research in education and also a bibliometric analysis was performed to evaluate the publications on virtual reality from 1995 to 2016, based on the Thomson Reuters’s Web of Science (WoS). A total of 975 related documents were analyzed based on their publication patterns (documents types and languages, major journals and their publications, most prolific authors, most productive journals and their publications, and international collaborations). Bibliometric results show that the number of article has been increasing since 1995 exponentially. USA, UK and Chinese Taipei are the top 3 most productive countries/regions which are involved in virtual reality research in education. The findings would help the researchers to understand current developments and barriers in applications of virtual reality in education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aretz, A. J. (1991). The design of electronic map displays. Human Factors: The Journal of the Human Factors and Ergonomics Society, 33(1), 85–101.

    Article  Google Scholar 

  • Baños, R. M., Botella, C., Alcañiz, M., Liaño, V., Guerrero, B., & Rey, B. (2004). Immersion and emotion: Their impact on the sense of presence. Cyber Psychology & Behavior, 7(6), 734–741.

    Article  Google Scholar 

  • Barab, S., Thomas, M., Dodge, T., Carteaux, R., & Tuzun, H. (2005). Making learning fun: Quest Atlantis, a game without guns. Educational Technology Research and Development, 53(1), 86–107. doi:10.1007/bf02504859.

    Article  Google Scholar 

  • Biocca, F., Harms, C., & Burgoon, J. K. (2003). Toward a more robust theory and measure of social presence: Review and suggested criteria. Presence, 12(5), 456–480.

    Article  Google Scholar 

  • Botden, S. M., Buzink, S. N., Schijven, M. P., & Jakimowicz, J. J. (2007). A comparison of the promis augmented reality laparoscopic simulator versus lapsim virtual reality laparoscopic simulator: What is the difference? World Journal of Surgery, 31(4), 764–772.

    Article  Google Scholar 

  • Boud, A. C., Haniff, D. J., Baber, C., & Steiner, S. J. (1999). Virtual reality and augmented reality as a training tool for assembly tasks. In Proceedings of IEEE International Conference on Information Visualization, 1999 (pp. 32–36). IEEE.

    Google Scholar 

  • Bowman, D. A., & McMahan, R. P. (2007). Virtual reality: How much immersion is enough? Computer, 40(7), 36–43.

    Article  Google Scholar 

  • Bujak, K. R., Radu, I., Catrambone, R., Macintyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536–544.

    Article  Google Scholar 

  • Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology (Vol. 1). Wiley.

    Google Scholar 

  • Chen, C. H., Yang, J. C., Shen, S., & Jeng, M. C. (2007). A desktop virtual reality earth motion system in astronomy education. Educational Technology & Society, 10(3), 289–304.

    Google Scholar 

  • Coelho, C., Tichon, J. G., Hine, T. J., Wallis, G. M., & Riva, G. (2006). Media presence and inner presence: The sense of presence in virtual reality technologies (pp. 25–45). From Communication Topresence: Cognition, emotions and culture towards the ultimate communicative experience.

    Google Scholar 

  • Cunningham, D., & Duffy, T. (1996). Constructivism: Implications for the design and delivery of instruction. In Handbook of research for educational communications and technology (pp. 170–198).

    Google Scholar 

  • Dalgarno, B., & Lee, M. J. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1), 10–32.

    Article  Google Scholar 

  • Dawley, L. (2009). Social network knowledge construction: Emerging virtual world pedagogy. On the Horizon, 17(2), 109–121.

    Article  Google Scholar 

  • Dawley, L., & Dede, C. (2014). Situated learning in virtual worlds and immersive simulations. In Handbook of research on educational communications and technology (pp. 723–734). New York: Springer.

    Google Scholar 

  • De Lucia, A., Francese, R., Passero, I., & Tortora, G. (2009). Development and evaluation of a virtual campus on Second Life: The case of Second DMI. Computers & Education, 52(1), 220–233.

    Article  Google Scholar 

  • Duncan, I., Miller, A., & Jiang, S. (2012). A taxonomy of virtual worlds usage in education. British Journal of Educational Technology, 43(6), 949–964.

    Article  Google Scholar 

  • Fowler, C. (2015). Virtual reality and learning: Where is the pedagogy? British Journal of Educational Technology, 46(2), 412–422.

    Article  Google Scholar 

  • Foley, J. D. (1987). Interfaces for advanced computing. Scientific American, 257(4), 126–135.

    Article  Google Scholar 

  • Hew, K. F., & Cheung, W. S. (2010). Use of three-dimensional (3-D) immersive virtual worlds in K-12 and higher education settings: A review of the research. British Journal of Educational Technology, 41(1), 33–55.

    Article  Google Scholar 

  • Holmes, J. (2007). Designing agents to support learning by explaining. Computers & Education, 48(4), 523–547.

    Article  Google Scholar 

  • Kaufmann, H., Schmalstieg, D., & Wagner, M. (2000). Construct3D: A virtual reality application for mathematics and geometry education. Education and Information Technologies, 5(4), 263–276.

    Article  Google Scholar 

  • Lanier, J. (1989). Virtual reality: A status report (pp. 272–279). Cyberarts: Exploring art and technology.

    Google Scholar 

  • Lee, E. A. L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424–1442.

    Article  Google Scholar 

  • Limniou, M., Roberts, D., & Papadopoulos, N. (2008). Full immersive virtual environment CAVE TM in chemistry education. Computers & Education, 51(2), 584–593.

    Article  Google Scholar 

  • Lombard, M. (2000). Resources for the study of presence: Presence explication. Retrieved September, 3, 2000.

    Google Scholar 

  • Matthews, A. H., Abdelrahman, T., Powell, A. G., & Lewis, W. G. (2016). Surgical EDUCATION’S 100 most cited articles: A bibliometric analysis. Journal of Surgical Education, 73(5), 919–929. doi:10.1016/j.jsurg.2016.05.011.

    Article  Google Scholar 

  • Merwin, D. H., & Wickens, C. D. (1991, September). 2-D vs. 3-D display for multidimensional data visualization: The relationship between task integrality and display proximity. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 35, No. 5, pp. 388–392). SAGE Publications.

    Google Scholar 

  • Messinger, P. R., Stroulia, E., & Lyons, K. (2008). A typology of virtual worlds: Historical overview and future directions. Journal For Virtual Worlds Research, 1(1).

    Google Scholar 

  • Mikropoulos, T. A., & Natsis, A. (2011). Educational virtual environments: A ten-year review of empirical research (1999–2009). Computers & Education, 56(3), 769–780.

    Article  Google Scholar 

  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329.

    Google Scholar 

  • Minogue, J., Jones, M. G., Broadwell, B., & Oppewall, T. (2006). The impact of haptic augmentation on middle school students’ conceptions of the animal cell. Virtual Reality, 10(3–4), 293–305.

    Article  Google Scholar 

  • Morehead, M., Jones, Q., Blatt, J., Holcomb, P., Schultz, J., DeFanti, T., … & Spirou, G. A. (2014, March). Poster: BrainTrek-An immersive environment for investigating neuronal tissue. In 2014 IEEE Symposium on 3D User Interfaces (3DUI), (pp. 157–158). IEEE.

    Google Scholar 

  • Nagy, P., & Koles, B. (2014). The digital transformation of human identity towards a conceptual model of virtual identity in virtual worlds. Convergence: The International Journal of Research into New Media Technologies, 1354856514531532.

    Google Scholar 

  • Nicholson, D. T., Chalk, C., Funnell, W. R. J., & Daniel, S. J. (2006). Can virtual reality improve anatomy education? A randomised controlled study of a computer-generated three-dimensional anatomical ear model. Medical Education, 40(11), 1081–1087.

    Article  Google Scholar 

  • Pantelidis, V. S. (1993). Virtual reality in the classroom. Educational Technology, 33(4), 23–27.

    Google Scholar 

  • Papagiannidis, S., Bourlakis, M., & Li, F. (2008). Making real money in virtual worlds: MMORPGs and emerging business opportunities, challenges and ethical implications in metaverses. Technological Forecasting and Social Change, 75(5), 610–622.

    Article  Google Scholar 

  • Porter, C. E. (2004). A typology of virtual communities. Journal of Computer-Mediated Communication, 1(3).

    Google Scholar 

  • Riva, G., Waterworth, J. A., & Waterworth, E. L. (2004). The layers of presence: A bio-cultural approach to understanding presence in natural and mediated environments. CyberPsychology & Behavior, 7(4), 402–416.

    Article  Google Scholar 

  • Sato, M., Liu, X., Murayama, J., Akahane, K., & Isshiki, M. (2008). A haptic virtual environment for molecular chemistry education. In Transactions on edutainment I (pp. 28–39). Berlin: Springer.

    Google Scholar 

  • Seymour, N. E., Gallagher, A. G., Roman, S. A., O’Brien, M. K., Bansal, V. K., Andersen, D. K., et al. (2002). Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Annals of Surgery, 236(4), 458–463. doi:10.1097/01.sla.0000028969.51489.b4.

    Article  Google Scholar 

  • Sierra, L. M. B., GutiĂ©rrez, R. S., & GarzĂłn-Castro, C. L. (2012). Second Life as a support element for learning electronic related subjects: A real case. Computers & Education, 58(1), 291–302.

    Article  Google Scholar 

  • Sourin, A., Sourina, O., & Prasolova-Førland, E. (2006). Cyber-learning in cyberworlds. Journal of Cases on Information Technology (JCIT), 8(4), 55–70.

    Article  Google Scholar 

  • Spence, J. (2008). Demographics of virtual worlds. Journal for Virtual Worlds Research, 1(2).

    Google Scholar 

  • Sutherland, I. E. (1965). The ultimate display. Multimedia: From Wagner to virtual reality.

    Google Scholar 

  • Sweller, J. (2003). Cognitive Load Theory: A special issue of educational psychologist. LEA.

    Google Scholar 

  • Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32(1–2), 9–31.

    Article  Google Scholar 

  • Taylor, T. L. (2002). Living digitally: Embodiment in virtual worlds. In The social life of Avatars (pp. 40–62). London: Springer.

    Google Scholar 

  • Tseng, Y.-H., Chang, C.-Y., Tutwiler, M. S., Lin, M.-C., & Barufaldi, J. P. (2013). A scientometric analysis of the effectiveness of Taiwan’s educational research projects. Scientometrics, 95(3), 1141–1166. doi:10.1007/s11192-013-0966-z.

    Article  Google Scholar 

  • Yair, Y., Mintz, R., & Litvak, S. (2001). 3D-virtual reality in science education: An implication for astronomy teaching. Journal of Computers in Mathematics and Science Teaching, 20(3), 293–306.

    Google Scholar 

  • Zhang, B., Liu, Y., Tian, C., Wang, Z., Cheng, M., Chen, N., et al. (2014). A bibliometric analysis of research on upflow anaerobic sludge blanket (UASB) from 1983 to 2012. Scientometrics, 100(1), 189–202. doi:10.1007/s11192-013-1189-z.

    Article  Google Scholar 

  • Zimmerman, B. J. (1994). Dimensions of academic self-regulation: A conceptual framework for education. Self-Regulation of Learning and Performance: Issues and Educational Applications, 1, 21–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushal Kumar Bhagat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, D., Bhagat, K.K., Gao, Y., Chang, TW., Huang, R. (2017). The Potentials and Trends of Virtual Reality in Education. In: Liu, D., Dede, C., Huang, R., Richards, J. (eds) Virtual, Augmented, and Mixed Realities in Education. Smart Computing and Intelligence. Springer, Singapore. https://doi.org/10.1007/978-981-10-5490-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5490-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5489-1

  • Online ISBN: 978-981-10-5490-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics