Skip to main content

Graphene Oxide: Synthesis and Characterization

  • Chapter
  • First Online:
Recent Trends in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 83))

Abstract

Graphene oxide is single or few atomic layers of graphene attached to oxygen-containing groups. It is a flexible material and is prepared by the energetic oxidation of graphite. Graphene oxide has a lot of potential due to easy synthesis, cost-effectiveness and scope for mass scale production. It is one of the important materials for the futuristic memory devices. The band gap of graphene oxide can be easily tuned by varying the oxidation level. It is ideal as an electrical insulator as well as semiconductor, when it is fully oxidized and partially oxidized respectively. Graphene oxide is produced by the oxidation of graphite followed by exfoliation of oxidized graphite. Various methods for the synthesis of graphene oxide are discussed in this chapter. The reduction of graphene oxide to produce reduced graphene oxide is extremely important. The process used for reduction has a large impact on the quality of the reduced graphene oxide produced and therefore will determine how close reduced graphene oxide will come, in terms of structure and properties, to pristine graphene. For the industrial applications, there is a need to utilize large quantities of graphene, and reduced graphene oxide is the most obvious solution due to the relative ease in creating sufficient quantities of graphene to desired quality levels. Although, there are many reports on the reduction of graphene oxide available in the literature, the complete removal of oxygen-containing groups is still a challenge. This chapter presents a review of the research work reported on the synthesis and characterization of graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Hirsch, M. Brettreich, Fullerenes—Chemistry and Reactions (Wiley, New York, 2004). H. Yang et al., Angew. Chem. Int. Ed. 49, 886 (2010)

    Google Scholar 

  2. A. Hirsch, The era of carbon allotropes. Nat. Mater. 9(11), 868–871 (2010)

    Article  Google Scholar 

  3. N. Tagmatarchis, H. Shinohara, Fullerenes in medicinal chemistry and their biological applications. Mini. Rev. Med. Chem. 1(4), 339–348 (2001)

    Google Scholar 

  4. E.A. Katz, Fullerene thin films as photovoltaic material, in Nanostructured Materials for Solar Energy Conversion, ed. by T. Sōga (Elsevier, Amsterdam, 2006), pp. 361–443

    Google Scholar 

  5. R.E. Smalley, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer Science & Business Media, 2003)

    Google Scholar 

  6. S.H. Jin, Single-walled carbon nanotubes (SWNTs); history and future prospects for electronic applications, in Active-Matrix Flatpanel Displays And Devices (AMFPD), 2016 The 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices, FTFMD (2016), pp. 38–41

    Google Scholar 

  7. M. Husain, Z.H. Khan (eds.), Advances in Nanomaterials, vol. 79 (Springer, Berlin, 2016)

    Google Scholar 

  8. P.M. Ajayan, O.Z. Zhou, Applications of carbon nanotubes, in Carbon Nanotubes (Springer, Berlin, 2001), 391–425

    Google Scholar 

  9. H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl. Chem. 66(9), (1994), 1893–1901

    Google Scholar 

  10. E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Article  Google Scholar 

  11. H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Das adsorptionsverhalten sehr dünner kohlenstoff‐folien. Zeitschrift für anorganische und allgemeine Chemie 316(3–4), 119–127 (1962)

    Google Scholar 

  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  13. This Month in Physics History: October 22, 2004: Discovery of Graphene. APS News. Series II. 18(9), 2 (2009)

    Google Scholar 

  14. D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012)

    Google Scholar 

  15. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137–3140 (2008)

    Google Scholar 

  16. V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. 122(12), 2200–2203 (2010)

    Google Scholar 

  17. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Google Scholar 

  18. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009)

    Google Scholar 

  19. D. Li, R.B. Kaner, Graphene-based materials. Nat. Nanotechnol. 3, 101 (2008)

    Google Scholar 

  20. S. Goenka, V. Sant, S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controll. Release 173, 75–88 (2014)

    Article  Google Scholar 

  21. K. Shehzad, Y. Xu, C. Gao, X. Duan, Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 45(20), 5541–5588 (2016)

    Article  Google Scholar 

  22. Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification. Adv. Func. Mater. 23(29), 3693–3700 (2013)

    Article  Google Scholar 

  23. Martin Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4(3), 668–674 (2011)

    Article  Google Scholar 

  24. Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1), 107–131 (2012)

    Article  Google Scholar 

  25. M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)

    Article  Google Scholar 

  26. H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 287, 53–56 (1998)

    Article  Google Scholar 

  27. X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  Google Scholar 

  28. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)

    Article  Google Scholar 

  29. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)

    Article  Google Scholar 

  30. G. Eda, Y.Y. Lin, S. Miller, C.W. Chen, Su WF, M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92(23), 233305 (2008)

    Article  Google Scholar 

  31. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide—MnO2 nanocomposites for supercapacitors. ACS Nano 4(5), 2822–2830 (2010)

    Article  Google Scholar 

  32. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4), 3333–3338 (2011)

    Article  Google Scholar 

  33. R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335(6067), 442–444 (2012)

    Article  Google Scholar 

  34. L. Wang, K. Lee, Y.Y. Sun, M. Lucking, Z. Chen, J.J. Zhao, S.B. Zhang, Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3(10). 2995–3000 (2009)

    Google Scholar 

  35. C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong, D.H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013)

    Google Scholar 

  36. B.C. Brodie, On the atomic weight of graphite. Phil. Trans. R. Soc. London 149, 249–259 (1859)

    Google Scholar 

  37. L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)

    Article  Google Scholar 

  38. L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 32, 1394–1399 (1899)

    Article  Google Scholar 

  39. U. Hofmann, R. Holst, Über die Säurenatur und die Methylierung von Graphitoxyd. Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(4), 754–771 (1939)

    Article  Google Scholar 

  40. W. Gao, Synthesis, structure and characterizations, in Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications, ed. by W. Gao (Springer International Publishing, 2015), pp. 1–28

    Google Scholar 

  41. W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    Google Scholar 

  42. K.R. Koch, P.F. Krause, Oxidation by dimanganese heptoxide: an impressive demonstration. J. Chem. Ed 59, 973 (1982)

    Google Scholar 

  43. A. Simon, R. Dronskowski, B. Krebs, B. Hettich, The crystal structure of Mn2O7. Angew. Chem. Int. Ed. Engl. 26(2), 139–140 (1987)

    Google Scholar 

  44. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)

    Google Scholar 

  45. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999)

    Google Scholar 

  46. J. Chen, B. Yao, C. Li, G. Shi, An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    Article  Google Scholar 

  47. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  Google Scholar 

  48. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)

    Google Scholar 

  49. S. Park et al., Graphene oxide papers modified by divalentions—Enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)

    Google Scholar 

  50. S. Stankovich, R. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006)

    Google Scholar 

  51. J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)

    Google Scholar 

  52. S. Stankovich et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Google Scholar 

  53. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Google Scholar 

  54. Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008)

    Google Scholar 

  55. S. Park et al., Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008)

    Google Scholar 

  56. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008)

    Google Scholar 

  57. S. Niyogi et al., Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)

    Google Scholar 

  58. J.R. Lomeda, C.D. Doyle, D.V. Kosynkin, W.-F. Hwang, J.M. Tour, Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008)

    Google Scholar 

  59. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25–29 (2008)

    Google Scholar 

  60. R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112, 5263–5266 (2008)

    Google Scholar 

  61. H.C. Schniepp et al., Functionalized single graphene sheets derived form splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)

    Google Scholar 

  62. M.J. McAllister et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)

    Google Scholar 

  63. G. Williams, B. Serger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)

    Google Scholar 

  64. P.V. Kamat, V. Bridewell, Electrocatalytic activity of graphene oxide: mediating electron transfer between two redox couples, in Meeting Abstracts, no. 6, The electrochemical society, (2016), pp. 551–551

    Google Scholar 

  65. Y. Wang, L. Li, C. Luo, X. Wang, H. Duan, Removal of Pb 2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb 2+. Int. J. Biol. Macromol. 86, 505–511 (2016)

    Google Scholar 

  66. Z.S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493–499 (2009)

    Google Scholar 

  67. O. Akhavan, M. Choobtashani, E. Ghaderi, Protein degradation and RNA efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. J. Phys. Chem. C. 116(17), 9653–9659 (2012)

    Google Scholar 

  68. S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)

    Google Scholar 

  69. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2007)

    Google Scholar 

  70. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)

    Google Scholar 

  71. S.C. Youn, J. Geng, B.S. Son, S.B. Yang, D.W. Kim, H.M. Cho, H.T. Jung, Effect of the exposure time of hydrazine vapor on the reduction of graphene oxide films. J. Nanosci. Nanotechnol. 11(7), 5959–5964 (2011)

    Google Scholar 

  72. Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7), 2118–2122   (2010)

    Google Scholar 

  73. H.M.A. Hassan, V. Abdelsayed, A.E.R.S. Khder, K.M. AbouZeid, J. Terner, M.S. El-Shall et al., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19(23), 3832–3837 (2009)

    Google Scholar 

  74. S. Sharin, I.A. Rahman, A.F. Ahmad, H.M.K. Mohd, F. Mohamed, S. Radiman, M.S. Yasir, S. Sarmani, M.T. Ayob, I.S.A. Bastamam, Reduction of graphene oxide to graphene by using gamma irradiation. Malays. J. Anal. Sci. 19(6), 1223–1228 (2015)

    Google Scholar 

  75. L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131(31), 11027–11032 (2009)

    Google Scholar 

  76. Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen et al., Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nanotoday 5(1), 15–20 (2010)

    Google Scholar 

  77. Y. Matsumoto, M. Koinuma, S.Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida, Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl. Mater. Inter. 2(12), 3461–3466 (2010)

    Google Scholar 

  78. P. Kumar, K.S. Subrahmanyam, C.N.R. Rao, Graphene produced by radiation-induced reduction of graphene oxide. Int. J. Nanosci. 10(04n05), 559–566 (2011)

    Google Scholar 

  79. B. Zhang, L. Li, Z. Wang, S. Xie, Y. Zhang, Y. Shen, M. Yu et al., Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. J. Mater. Chem. 22(16), 7775–7781 (2012)

    Google Scholar 

  80. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)

    Google Scholar 

  81. C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(1), 291–312 (2014)

    Google Scholar 

  82. X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang, S. Guo, J. Phys. Chem. C 115, 11957–11961 (2011)

    Google Scholar 

  83. T. Sakura, Y. Nagasaki, Preparation of gold colloid using pyrrole-2-carboxylic acid and characterization of its particle growth. Colloid Polym. Sci. 285(12), 1407–1410 (2007)

    Google Scholar 

  84. S. Liu, J. Tian, L. Wang, X. Sun, A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49(10), 3158–3164 (2011)

    Google Scholar 

  85. Y. Chen, X. Zhang, P. Yu, Y. Ma, Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem. Commun. 30, 4527–4529 (2009)

    Google Scholar 

  86. J. Che, L. Shen, Y. Xiao, A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. J. Mater. Chem. 20(9), 1722–1727 (2010)

    Google Scholar 

  87. Z. Lei, L. Lu, X.S. Zhao, The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci. 5(4), 6391–6399 (2012)

    Google Scholar 

  88. P. Su, H.L. Guo, L. Tian, S.K. Ning, An efficient method of producing stable graphene suspensions with less toxicity using dimethyl ketoxime. Carbon 50(15), 5351–5358 (2012)

    Google Scholar 

  89. X. Shen, L. Jiang, Z. Ji, J. Wu, H. Zhou, G. Zhu, Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. J. Colloid. Interf. Sci. 354(2), 493–497 (2011)

    Google Scholar 

  90. S. Zhang, Y. Shao, H. Liao, M.H. Engelhard, G. Yin, Y. Lin, Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. ACS Nano 5(3), 1785–1791 (2011)

    Google Scholar 

  91. T. Wu, X. Wang, H. Qiu, J. Gao, W. Wang, Y. Liu, Graphene oxide reduced and modified by soft nanoparticles and its catalysis of the Knoevenagel condensation. J. Mater. Chem. 22(11), 4772–4779 (2012)

    Google Scholar 

  92. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee. Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(73), (2010)

    Google Scholar 

  93. P. Cui, J. Lee, E. Hwang, H. Lee, One-pot reduction of graphene oxide at subzero temperatures. Chem. Commun. 47(45), 12370–12372 (2011)

    Google Scholar 

  94. S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Carbon 48, 4466–4474 (2010)

    Google Scholar 

  95. Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, Carbon 49, 573–580 (2011)

    Google Scholar 

  96. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009)

    Google Scholar 

  97. M. Periasamy, M. Thirumalaikumar, Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis. J. Organomet. Chem. 609(1–2), 137–151 (2000)

    Google Scholar 

  98. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1(5), 403–408 (2009)

    Google Scholar 

  99. C.Y. Su, X.U. Yanping, W. Zhang, J. Zhao, A. Liu, X. Tang, C.H. Tsai, Y. Huang, L.J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. ACS Nano 4(9), 5285–5292 (2010)

    Google Scholar 

  100. J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chem. Mater. 22, 2213–2218 (2010)

    Google Scholar 

  101. M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, J. Phys. Chem. C. 114, 6426–6432 (2010)

    Google Scholar 

  102. Y. Wang, L. Sun, B. Fugetsu, Bull. Chem. Soc. Jpn. 85, 1339–1344 (2012)

    Google Scholar 

  103. Q. Ma, J. Song, C. Jin, Z. Li, J. Liu, S. Meng, J. Zhao, Y. Guo, Carbon 54, 36–41 (2013)

    Google Scholar 

  104. Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, Carbon 48, 1686–1689 (2010)

    Google Scholar 

  105. V.H. Pham, H.D. Pham, T.T. Dang, S.H. Hur, E.J. Kim, B.S. Kong, S. Kim, J.S. Chung, J. Mater. Chem. 22, 10530–10536 (2012)

    Google Scholar 

  106. Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-m. Ren, L.-P. Song, F. Wei, ACS Nano 5, 191–198 (2010)

    Google Scholar 

  107. X. Mei, J. Ouyang, Carbon 49, 5389–5397 (2011); P.B. Liu, Y. Huang, L. Wang, Mater. Lett. 91, 125–128 (2013)

    Google Scholar 

  108. N.A. Kumar, S. Gambarelli, F. Duclairoir, G. Bidan, L. Dubois, J. Mater. Chem. A 1, 2789–2794 (2013)

    Google Scholar 

  109. B.K. Barman, P. Mahanandia, K.K. Nanda, RSC Adv. 3, 12621–12624 (2013)

    Google Scholar 

  110. R.S. Dey, S. Hajra, R.K. Sahu, C.R. Raj, M.K. Panigrahi, Chem. Commun. 48, 1787–1789 (2012)

    Google Scholar 

  111. Y. Liu, Y. Li, M. Zhong, Y. Yang, W. Yuefang, M. Wang, J. Mater. Chem. 21, 15449–15455 (2011)

    Google Scholar 

  112. S. Yang, W. Yue, D. Huang, C. Chen, H. Lin, X. Yang, RSC Adv. 2, 8827–8832 (2012)

    Google Scholar 

  113. H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, Nat. Commun. 4, 1539 (2013)

    Google Scholar 

  114. D. Chen, L. Li, L. Guo, Nanotechnology 22, 325601 (2011)

    Google Scholar 

  115. S. Bose, T. Kuila, A.K. Mishra, N.H. Kim, J.H. Lee, J. Mater. Chem. 22, 9696–9703 (2012)

    Google Scholar 

  116. J.K. Ma, X.R. Wang, Y. Liu, T. Wu, Y. Liu, Y.Q. Guo, R.Q. Li, X.Y. Sun, F. Wu, C.B. Li, J.P. Gao, J. Mater. Chem. A 1, 2192–2201 (2013)

    Google Scholar 

  117. T.A. Pham, J. Kim, J.S. Kim, Y.T. Jeong, Colloids Surf. A 384, 543–548 (2011)

    Google Scholar 

  118. D. Suresh, H. Nagabhushana, S.C. Sharma, Clove extract mediated facile green reduction of graphene oxide, its dye elimination and antioxidant properties. Mater. Lett. 142, 4–6 (2015)

    Google Scholar 

  119. S. Hatamie, O. Akhavan, S.K. Sadrnezhaad, M.M. Ahadian, M.M. Shirolkar, H.Q. Wang, Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells, Mater. Sci. Eng. C 55, 482–489 (2015)

    Google Scholar 

  120. R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater. Lett. 160, 355–358 (2015)

    Google Scholar 

  121. E.C. Salas, Z. Sun, A. Lüttge and JM Tour. ACS Nano 4, 4852–4856 (2010)

    Google Scholar 

  122. O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5), 1853–1860 (2012)

    Google Scholar 

  123. P. Khanra, T. Kuila, N.H. Kim, S.H. Bae, D.S. Yu, J.H. Lee, Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem. Eng. J. 183, 526–533 (2012)

    Google Scholar 

  124. O. Akhavan, Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81, 158–166 (2015)

    Google Scholar 

  125. A. Esfandiar, O. Akhavan, A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 21(29), 10907–10914 (2011)

    Google Scholar 

  126. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Evolution of surface functional groups in a series of progressively oxidized graphite oxides.  Chem. Mater. 18(11), 2740–2749 (2006)

    Google Scholar 

  127. W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang et al., Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321(5897), 1815–1817 (2008)

    Google Scholar 

  128. H. He, T. Riedl, A. Lerf, J. Klinowski, Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 100(51), 19954–19958 (1996)

    Google Scholar 

  129. A. Lerf, H. He, T. Riedl, M. Forster, J. Klinowski, 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ionics. 101, 857–862 (1997)

    Google Scholar 

  130. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998)

    Google Scholar 

  131. Q. Zhang, K. Scrafford, M. Li, Z. Cao, Z. Xia, P.M. Ajayan, B. Wei, Anomalous capacitive behaviors of graphene oxide based solid-state supercapacitors. Nano Lett. 14(4), 1938–1943 (2014)

    Google Scholar 

  132. J. Zhao, L. Liu, F. Li, Structural Characterizations in Graphene Oxide: Physics and Applications. (Springer, Berlin Heidelberg, 2015), pp. 15–29

    Google Scholar 

  133. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films.  Adv. Funct. Mater. 19(16), 2577–2583 (2009)

    Google Scholar 

  134. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47(1), 145–152 (2009)

    Google Scholar 

  135. O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48(2), 509–519 (2010)

    Google Scholar 

  136. G. Abhijit, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115(34), 17009–17019 (2011)

    Google Scholar 

  137. R.J.W.E. Lahaye, H.K. Jeong, C.Y. Park, Y.H. Lee. Density functional theory study of graphite oxide for different oxidation levels. Phys. Rev. B 79(12), 125435 (2009)

    Google Scholar 

  138. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2(7), 581–587 (2010)

    Google Scholar 

  139. C. Hontoria-Lucas, A.J. Lopez-Peinado, J.D. de López-González, M.L. Rojas-Cervantes, R.M. Martin-Aranda, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11), 1585–1592 (1995)

    Google Scholar 

  140. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    Google Scholar 

  141. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films.  Nano Lett. 6(12), 2667–2673 (2006)

    Google Scholar 

  142. K. Krishnamoorthy, M. Veerapandian, K. Yun, S-J. Kim. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013)

    Google Scholar 

  143. G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)

    Google Scholar 

  144. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009)

    Google Scholar 

  145. C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Atomic structure of reduced graphene oxide.  Nano Lett. 10(4), 1144–1148 (2010)

    Google Scholar 

  146. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide,  Adv. Mater. 22(40), 4467–4472 (2010)

    Google Scholar 

  147. J. Xie, F. Tu, Q. Su, G. Du, S. Zhang, T. Zhu, G. Cao, X. Zhao, In situ TEM characterization of single PbSe/reduced-graphene-oxide nanosheet and the correlation with its electrochemical lithium storage performance. Nano Eng. 5, 122–131 (2014)

    Google Scholar 

  148. K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Atomic and electronic structure of graphene-oxide. Nano Lett. 9(3), 1058–1063 (2009)

    Google Scholar 

  149. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620–625 (2006)

    Google Scholar 

  150. D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of Instrumental Analysis, 6th edn. (Thomson Brooks/Cole, Belmont, CA, 2007), pp. 169–173

    Google Scholar 

  151. Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, High yield preparation of macroscopic graphene oxide membranes.  J. Am. Chem. Soc. 131(3), 898–899 (2009)

    Google Scholar 

  152. Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2(3), 032146 (2012)

    Google Scholar 

  153. T. Szabó, O. Berkesi, I. Dékány, DRIFT study of deuterium-exchanged graphite oxide. Carbon 43(15), 3186–3189 (2005)

    Google Scholar 

  154. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010)

    Google Scholar 

  155. Y. Wang, L. Tang, Z. Li, Y. Lin, J. Li, In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet–based sensing platform in living cells. Nat. Protoc. 9(8), 1944–1955 (2014)

    Google Scholar 

  156. K.R. Koch, Oxidation by Mn207: an impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. J. Chem. Educ. 59(11), 973 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishan Husain Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Khan, M.B., Parvaz, M., Khan, Z.H. (2017). Graphene Oxide: Synthesis and Characterization. In: Khan, Z. (eds) Recent Trends in Nanomaterials. Advanced Structured Materials, vol 83. Springer, Singapore. https://doi.org/10.1007/978-981-10-3842-6_1

Download citation

Publish with us

Policies and ethics