Skip to main content

Novel Application of OCT in Clinical Practice

  • Chapter
  • First Online:
Coronary Imaging and Physiology
  • 1874 Accesses

Abstract

Optical coherence tomography (OCT), as intravascular ultrasound did in earlier days, has been changing the way we see coronary artery disease. This chapter will address emerging OCT-based technologies that will fascilitate a better understanding of the coronary anatomy and pathophysiology: three-dimensional OCT and multimodal biological imaging integrated with OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging. 2008;1(6):752–61. Epub 2009/04/10

    Article  PubMed  PubMed Central  Google Scholar 

  2. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic-heart-disease. Circulation. 1995;92(8):2333–42.

    Article  CAS  PubMed  Google Scholar 

  3. Okamura T, Serruys PW, Regar E. Three-dimensional visualization of intracoronary thrombus during stent implantation using the second generation, Fourier domain optical coherence tomography. Eur Heart J. 2010;31(5):625. Epub 2009/12/08

    Article  PubMed  Google Scholar 

  4. Kim JB, Nam HS, Yoo H, Kim JW. A bi-directional assessment of spontaneous coronary artery dissection by three-dimensional flythrough rendering of optical coherence tomography images. Eur Heart J. 2015;36(17):1022. Epub 2015/01/04

    Article  PubMed  Google Scholar 

  5. Lee S, Kim CS, Oh DJ, Yoo H, Kim JW. Three-dimensional intravascular optical coherence tomography rendering assessment of spontaneous coronary artery dissection concomitant with left main ostial critical stenosis. JACC Cardiovasc Interv. 2014;7(6):E57–E9.

    Article  PubMed  Google Scholar 

  6. Khoueiry GM, Magnus P, Friedman BJ, Kaplan AV. Honeycomb-like appearance of hazy coronary lesions: OCT image report of a recanalized thrombus. Eur Heart J Cardiovasc Imaging. 2014;15(12):1427. Epub 2014/08/02

    Article  PubMed  Google Scholar 

  7. Radu MD, Raber L, Kalesan B, Muramatsu T, Kelbaek H, Heo J, et al. Coronary evaginations are associated with positive vessel remodelling and are nearly absent following implantation of newer-generation drug-eluting stents: an optical coherence tomography and intravascular ultrasound study. Eur Heart J. 2014;35(12):795–807. Epub 2013/10/18

    Article  CAS  PubMed  Google Scholar 

  8. Lassen JF, Holm NR, Stankovic G, Lefevre T, Chieffo A, Hildick-Smith D, et al. Percutaneous coronary intervention for coronary bifurcation disease: consensus from the first 10 years of the European Bifurcation Club meetings. EuroIntervention. 2014;10(5):545–60. Epub 2014/09/27

    Article  PubMed  Google Scholar 

  9. Farooq V, Serruys PW, Heo JH, Gogas BD, Okamura T, Gomez-Lara J, et al. New insights into the coronary artery bifurcation hypothesis-generating concepts utilizing 3-dimensional optical frequency domain imaging. JACC Cardiovasc Interv. 2011;4(8):921–31.

    Article  PubMed  Google Scholar 

  10. Koo BK, Kang HJ, Youn TJ, Chae IH, Choi DJ, Kim HS, et al. Physiologic assessment of jailed side branch lesions using fractional flow reserve. J Am Coll Cardiol. 2005;46(4):633–7.

    Article  PubMed  Google Scholar 

  11. Karanasos A, Tu S, van Ditzhuijzen NS, Ligthart JM, Witberg K, Van Mieghem N, et al. A novel method to assess coronary artery bifurcations by OCT: cut-plane analysis for side-branch ostial assessment from a main-vessel pullback. Eur Heart J Cardiovasc Imaging. 2015;16(2):177–89. Epub 2014/09/18

    Article  PubMed  Google Scholar 

  12. Alegria-Barrero E, Foin N, Chan PH, Syrseloudis D, Lindsay AC, Dimopolous K, et al. Optical coherence tomography for guidance of distal cell recrossing in bifurcation stenting: choosing the right cell matters. EuroIntervention. 2012;8(2):205–13.

    Article  PubMed  Google Scholar 

  13. Hildick-Smith D, de Belder AJ, Cooter N, Curzen NP, Clayton TC, Oldroyd KG, et al. Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: the British bifurcation coronary study: old, new, and evolving strategies. Circulation. 2010;121(10):1235–43. Epub 2010/03/03

    Article  CAS  PubMed  Google Scholar 

  14. Niemela M, Kervinen K, Erglis A, Holm NR, Maeng M, Christiansen EH, et al. Randomized comparison of final kissing balloon dilatation versus no final kissing balloon dilatation in patients with coronary bifurcation lesions treated with main vessel stenting: the Nordic-Baltic bifurcation study III. Circulation. 2011;123(1):79–86. Epub 2010/12/22

    Article  PubMed  Google Scholar 

  15. Diletti R, Farooq V, Muramatsu T, Gogas BD, Garcia-Garcia HM, van Geuns RJ, et al. Serial 2- and 3-dimensional visualization of side branch jailing after metallic stent implantation: to kiss or not to kiss...? JACC Cardiovasc Interv. 2012;5(10):1089–90. Epub 2012/10/20

    Article  PubMed  Google Scholar 

  16. Foin N, Viceconte N, Chan PH, Lindsay AC, Krams R, Di Mario C. Jailed side branches: fate of unapposed struts studied with 3D frequency-domain optical coherence tomography. J Cardiovasc Med. (Hagerstown). 2011;12(8):581–2. Epub 2011/06/29

    Article  Google Scholar 

  17. Iqbal J, Onuma Y, Ormiston J, Abizaid A, Waksman R, Serruys P. Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J. 2014;35(12):765–76. Epub 2013/12/25

    Article  PubMed  Google Scholar 

  18. Okamura T, Onuma Y, Garcia-Garcia HM, Regar E, Wykrzykowska JJ, Koolen J, et al. 3-dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification. JACC Cardiovasc Interv. 2010;3(8):836–44. Epub 2010/08/21

    Article  PubMed  Google Scholar 

  19. Kuramitsu S, Iwabuchi M, Haraguchi T, Domei T, Nagae A, Hyodo M, et al. Incidence and clinical impact of stent fracture after everolimus-eluting stent implantation. Circ Cardiovasc Interv. 2012;5(5):663–71. Epub 2012/09/27

    Article  CAS  PubMed  Google Scholar 

  20. Francaviglia B, Capranzano P, Gargiulo G, Longo G, Tamburino CI, Ohno Y, et al. Usefulness of 3D OCT to diagnose a noncircumferential open-cell stent fracture. JACC Cardiovasc Imaging. 2016;9(2):210–1. Epub 2015/03/24

    Article  PubMed  Google Scholar 

  21. Kim S, Kim CS, Na JO, Choi CU, Lim HE, Kim EJ, et al. Coronary stent fracture complicated multiple aneurysms confirmed by 3-dimensional reconstruction of intravascular-optical coherence tomography in a patient treated with open-cell designed drug-eluting stent. Circulation. 2014;129(3):e24–7. Epub 2014/01/22

    Article  PubMed  Google Scholar 

  22. Farooq V, Gogas BD, Okamura T, Heo JH, Magro M, Gomez-Lara J, et al. Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application. Eur Heart J. 2013;34(12):875–85. Epub 2011/11/24

    Article  PubMed  Google Scholar 

  23. Wang T, Pfeiffer T, Regar E, Wieser W, van Beusekom H, Lancee CT, et al. Heartbeat OCT and motion-free 3D in vivo coronary artery microscopy. JACC Cardiovasc Imaging. 2016;9(5):622–3. Epub 2016/05/07

    Article  PubMed  Google Scholar 

  24. Jang SJ, Park HS, Song JW, Kim TS, Cho HS, Kim S, et al. ECG-triggered, single cardiac cycle, high-speed, 3D, intracoronary OCT. JACC Cardiovasc Imaging. 2016;9(5):623–5. Epub 2016/05/07

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66. Epub 2014/06/07

    Article  CAS  PubMed  Google Scholar 

  26. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55. Epub 2011/05/03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35. Epub 2011/01/21

    Article  CAS  PubMed  Google Scholar 

  28. Lee S, Lee MW, Cho HS, Song JW, Nam HS, Oh DJ, et al. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv. 2014;7(4):560–9. Epub 2014/07/31

    Article  CAS  PubMed  Google Scholar 

  29. Press MC, Jaffer FA. Molecular intravascular imaging approaches for atherosclerosis. Curr Cardiovasc Imaging Rep. 2014;7(10):9293. Epub 2014/09/16

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yoo H, Kim JW, Shishkov M, Namati E, Morse T, Shubochkin R, et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med. 2011;17(12):1680–4. Epub 2011/11/08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, et al. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation. 2008;118(18):1802–9. Epub 2008/10/15

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim S, Lee MW, Kim TS, Song JW, Nam HS, Cho HS, et al. Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery. Eur Heart J. 2016;37(37):2833–44. Epub 2016/01/21

    Article  PubMed  Google Scholar 

  33. Imanaka T, Hao H, Fujii K, Shibuya M, Fukunaga M, Miki K, et al. Analysis of atherosclerosis plaques by measuring attenuation coefficients in optical coherence tomography: thin-cap fibroatheroma or foam cells accumulation without necrotic core? Eur Heart J. 2013;34:1007–8.

    Article  Google Scholar 

  34. van Soest G, Regar E, Goderie TPM, Gonzalo N, Koljenovic S, van Leenders GJLH, et al. Pitfalls in plaque characterization by OCT image artifacts in native coronary arteries. JACC Cardiovasc Imaging. 2011;4(7):810–3.

    Article  PubMed  Google Scholar 

  35. Nam HS, Song JW, Jang SJ, Lee JJ, Oh WY, Kim JW, et al. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography. J Biomed Opt. 2016;21(7):75004.

    Article  PubMed  Google Scholar 

  36. Fleming CP, Eckert J, Halpern EF, Gardecki JA, Tearney GJ. Depth resolved detection of lipid using spectroscopic optical coherence tomography. Biomed Opt Express. 2013;4(8):1269–84.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11(7):379–89.

    Article  PubMed  Google Scholar 

  38. Wang H, Gardecki JA, Ughi GJ, Jacques PV, Hamidi E, Tearney GJ. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm. Biomed Opt Express. 2015;6(4):1363–75.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ughi GJ, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging. JACC Cardiovasc Imaging. 2016;9(11):1304–14. Epub 2016/03/14

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oh WY, Yun SH, Vakoc BJ, Shishkov M, Desjardins AE, Park BH, et al. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt Express. 2008;16(2):1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van der Sijde JN, Karanasos A, Villiger M, Bouma BE, Regar E. First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo. Eur Heart J. 2016;37(24):1932.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Won Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kim, S., Kim, J.W. (2018). Novel Application of OCT in Clinical Practice. In: Hong, MK. (eds) Coronary Imaging and Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2787-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2787-1_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2786-4

  • Online ISBN: 978-981-10-2787-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics