Skip to main content

Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System

  • Conference paper
  • First Online:
Advanced Computer Architecture (ACA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 626))

Included in the following conference series:

  • 949 Accesses

Abstract

Quantum computing promises to outperform its classical counterpart substantially. In the past decades, there has been tremendous progress. However, few previous researches have involved programmable systems. Quantum computing is mainly implemented in physics laboratories. This paper proposes a programmable structure. Using the entangled states of photon pairs, we have constructed the whole programmable system including a classical host, constructed with computer and circuits, and a quantum “coprocessor”, used for two-particle quantum simulations. A quantum “program” with both classical statements and quantum statements is executed for a certain computation task. The experiment shows high similarity of \(95.2\,\%\) to theoretical result in boson simulation and \(97.1\,\%\) in fermion simulation, which demonstrates the feasibility of our programmable system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly, the measurement is done in the base of \(|\psi _1\rangle \) and \(|\psi _2\rangle \).

  2. 2.

    The phase \(\phi \) in down-converted photons is determined by \(\phi _p\) in the pump beam and accumulated phase of photons in the optic path.

  3. 3.

    CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who derived the inequality.

References

  1. Aspuru-Guzik, A., Walther, P.: Photonic quantum simulators. Nat. Phys. 8(4), 285–291 (2012)

    Article  Google Scholar 

  2. Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of quantum computation. Nat. Phys. 9(11), 727–731 (2013)

    Article  Google Scholar 

  3. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  MathSciNet  Google Scholar 

  4. Broome, M.A., Fedrizzi, A., Rahimi-Keshari, S., Dove, J., Aaronson, S., Ralph, T.C., White, A.G.: Photonic boson sampling in a tunable circuit. Science 339(6121), 794–798 (2013)

    Article  Google Scholar 

  5. Cai, X.D., Weedbrook, C., Su, Z.E., Chen, M.C., Gu, M., Zhu, M.J., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501 (2013)

    Article  Google Scholar 

  6. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031–1042 (2008)

    Article  Google Scholar 

  7. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  Google Scholar 

  8. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. A Math. Phys. Eng. Sci. 400(1818), 97–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dickson, N.G., Amin, M.H.: Algorithmic approach to adiabatic quantum optimization. Phys. Rev. A 85, 032303 (2012)

    Article  Google Scholar 

  10. Douglass, A., King, A.D., Raymond, J.: Constructing SAT filters with a quantum annealer. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 104–120. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_9

    Chapter  Google Scholar 

  11. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  12. Franson, J.D.: Beating classical computing without a quantum computer. Science 339(6121), 767–768 (2013)

    Article  Google Scholar 

  13. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  Google Scholar 

  14. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)

    Article  Google Scholar 

  15. Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I., Eberhard, P.H.: Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999)

    Article  Google Scholar 

  16. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)

    Article  Google Scholar 

  17. Lanting, T., Przybysz, A.J., Smirnov, A.Y., Spedalieri, F.M., Amin, M.H., Berkley, A.J., Harris, R., Altomare, F., Boixo, S., Bunyk, P., Dickson, N., Enderud, C., Hilton, J.P., Hoskinson, E., Johnson, M.W., Ladizinsky, E., Ladizinsky, N., Neufeld, R., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Uchaikin, S., Wilson, A.B., Rose, G.: Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041 (2014)

    Google Scholar 

  18. Lu, C.Y., Browne, D.E., Yang, T., Pan, J.W.: Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99, 250504 (2007)

    Article  Google Scholar 

  19. Lu, K., Zhang, Y., Xu, K., Gao, Y.: Approximate maximum common sub-graph isomorphism based on discrete-time quantum walk. In: International Conference on Pattern Recognition, pp. 1413–1418 (2014)

    Google Scholar 

  20. Martin-Lopez, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X.Q., O’Brien, J.L.: Experimental realization of Shor’s quantum factoring algorithm using qubit recycling. Nat. Photonics 6(11), 773–776 (2012)

    Article  Google Scholar 

  21. Monroe, C.: Quantum information processing with atoms and photons. Nature 416(6877), 238–246 (2002)

    Article  Google Scholar 

  22. O’Brien, J.L.: Optical quantum computing. Science 318(5856), 1567–1570 (2007)

    Article  Google Scholar 

  23. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108(1), 140–144 (2012)

    Article  Google Scholar 

  24. Shor, P.W.: Algorithms for quantum computation: discrete log and factoring (extended abstract). Proc. Annu. Symp. Found. Comput. Sci. IEEE Comput. Soc. 124–134 (1994)

    Google Scholar 

  25. Somaroo, S., Tseng, C.H., Havel, T.F., Laflamme, R., Cory, D.G.: Quantum simulations on a quantum computer. Phys. Rev. Lett. 82, 5381–5384 (1999)

    Article  Google Scholar 

  26. Sørensen, J.J.W.H., Pedersen, M.K., Munch, M., Haikka, P., Jensen, J.H., Planke, T., Andreasen, M.G., Gajdacz, M., Mølmer, K., Lieberoth, A., Sherson, J.F.: Exploring the quantum speed limit with computer games. Nature 532(7598), 210–213 (2016)

    Article  Google Scholar 

  27. Spring, J.B., Metcalf, B.J., Humphreys, P.C., Kolthammer, W.S., Jin, X.M., Barbieri, M., Datta, A., Thomas-Peter, N., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Boson sampling on a photonic chip. Science 339(6121), 798–801 (2013)

    Article  Google Scholar 

  28. Steffen, M., Vandersypen, L., Breyta, G., Yannoni, C., Sherwood, M., Chuang, I.: Experimental realization of Shor’s quantum factoring algorithm. Am. Phys. Soc. 414(6866), 883–887 (2002)

    Google Scholar 

  29. Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Qudit quantum-state tomography. Phys. Rev. A 66, 012303 (2002)

    Article  MathSciNet  Google Scholar 

  30. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434(7030), 169–176 (2005)

    Article  Google Scholar 

  31. Yang, X.J., Dou, Y., Hu, Q.F.: Progress and challenges in high performance computer technology. J. Comput. Sci. Technol. 21(5), 674–681 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the work of Xun Yi for his quantum state tomography program and Yong Liu for his software user-interface design. We also appreciate the helpful discussion with Yingwen Liu, Xuan Zhu, Jiangfang Ding, Hongjuan He and Shichuan Xue. This work was supported by the Open Fund from HPCL No. 201401-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Wang, Y., Wu, J., Tang, Y., Wang, H., Wang, D. (2016). Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System. In: Wu, J., Li, L. (eds) Advanced Computer Architecture. ACA 2016. Communications in Computer and Information Science, vol 626. Springer, Singapore. https://doi.org/10.1007/978-981-10-2209-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2209-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2208-1

  • Online ISBN: 978-981-10-2209-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics