Skip to main content

Movements of Radionuclides in Groundwater

  • Chapter
  • First Online:
Nuclear Waste Management

Part of the book series: Lecture Notes in Energy ((LNEN,volume 83))

Abstract

Movements of groundwater and the dissolved radionuclides therein connect geological repository with the human biosphere controlling long-term public health impacts of nuclear waste disposal. This chapter describes how groundwater transport and radionuclide migration in the porous rock medium occur subject to the natural site conditions of hydrology, geology, and geochemistry. Supporting mathematical equations are also derived and described for quantitative analysis along with the discussions of the importance of sorption and solubility of radionuclides in different geochemical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Brookins DC (1984) Geochemical aspects of radioactive waste disposal. Springer, New York

    Book  Google Scholar 

  • Crank J (1956) Mathematics of diffusion. Clarendon Press

    MATH  Google Scholar 

  • Fetter CW (2008) Contaminant hydrogeology, 2nd edn. Waveland Press, Inc., Long Grove

    Google Scholar 

  • Gelhar LW et al (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974

    Article  Google Scholar 

  • McWhorter DB, Sunada DK (1977) Ground-water hydrology and hydraulics. Water Resources Publication

    Google Scholar 

  • National Research Council (1983) A study of the isolation system for geologic disposal of radioactive wastes. The National Academies Press, Washington, DC

    Google Scholar 

  • National Research Council (2001) Disposition of high-level waste and spent nuclear fuel: the continuing societal and technical challenges. National Academy Press

    Google Scholar 

  • Rogers JJW, Adams JAS (1966) Fundamentals of geology. Harpers & Row Publisher, New York

    Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Xu M, Eckstein Y (1995) Use of weighted least squares method in evaluation of relationship between dispersion and field data. Ground Water 33(6):905–908

    Article  Google Scholar 

References

  • Carey GR et al (2018) Estimating transverse dispersivity based on hydraulic conductivity, environmental technology and innovation. 10:36–45

    Google Scholar 

  • Diodato DM (1994) A compendium of fracture flow models. Argonne National Lab, No. ANL/ESD/TM-96

    Book  Google Scholar 

  • EPA (1999a) Understanding variation in partition coefficient, Kd, Values, Volume I: The Kd Model, Methods of measurement, and application of chemical reaction codes. US Environmental Protection Agency, EPA 402-R-99-004A

    Google Scholar 

  • EPA (1999b) Understanding variation in partition coefficient, Kd, Values, Volume II: review of geochemistry and available Kd values for cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium (3H), and uranium. US Environmental Protection Agency, EPA 402-R-99-004B

    Google Scholar 

  • EPA (1999c) Understanding variation in partition coefficient, Kd, Values, Volume III: review of geochemistry and available Kd values for americium, arsenic, curium, iodine, neptunium, radium, and technetium. US Environmental Protection Agency, EPA 402-R-99-004C

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • McKinley IG, Scholtis A (1992) Compilation and comparison of radionuclide sorption databases used in recent performance assessments. In: Proc. Workshop on Radionuclide Sorption from the Safety Evaluation Perspective. Nuclear Energy Agency, Paris, pp 21–55

    Google Scholar 

  • Meyer PD (1993) Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: application of an infiltration evaluation methodology, NUREG/CR-6114, PNL-8842, vol 1. Pacific Northwest Laboratory

    Google Scholar 

  • NASA (2020) Hydrologic cycle. NASA Precipitation Measurement Missions. https://pmm.nasa.gov/education/water-cycle/hydrologic-cycle. Last accessed 29 Jan 2020

  • Runde W (2000) The chemical interactions of actinides in the environment, Los Alamos science, number 26, Los Alamos, New Mexico, pp 392–411

    Google Scholar 

  • Samson E, Marchand J, Snyder KA (2003) Calculation of ionic diffusion coefficients on the basis of migration test results. Materials and Structures 36(257):156–165

    Google Scholar 

  • Schulze-Makuch D (2005) Longtitudinal dispersivity data and implications for scaling behavior. Groundwater 43(3):443–456

    Google Scholar 

  • Takeno N (2005) Atlas of Eh-pH diagram: intercomparison of thermodynamic databases, Geological survey of Japan open file report no.419. National Institute of Advanced Industrial Science and Technology, Japan

    Google Scholar 

  • Thibault DH, Sheppard MI, Smith PA (1990) A critical compilation and review of default soil Soild/liquid partition coefficients, Kd, for use in environmental assessments, AECL- 10125. Atomic Energy of Canada Limited, Pinawa

    Google Scholar 

  • Till JE, Meyer HR (1983) Radiological assessment: a textbook on environmental dose analysis, No. NUREG/CR-3332. Nuclear Regulatory Commission, Oak Ridge National Laboratory

    Book  Google Scholar 

  • UNESCO (1971) Scientific framework of world water balance. Technology papers in hydrology 7, Paris

    Google Scholar 

  • USDA (1938) Soil taxonomy. U.S. Department of Agriculture

    Google Scholar 

  • Wikimedia Commons (1993) Soil texture triangle according to the USDA nomenclature. USDA Soil Survey Division Staff. https://commons.wikimedia.org/wiki/File:SoilTextureTriangle.jpg. Last accessed 23 Feb 2020

  • Winter TC et al (1998) Ground water and surface water: a single resource, U.S. Geological Survey, Circular 1139. USGS Publications

    Google Scholar 

  • Zech A et al (2019) A critical analysis of transverse dispersivity field data. Groundwater 57(4):632–639

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yim, MS. (2022). Movements of Radionuclides in Groundwater. In: Nuclear Waste Management. Lecture Notes in Energy, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2106-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-2106-4_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-2104-0

  • Online ISBN: 978-94-024-2106-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics