Skip to main content

The zoonotic agent Salmonella

  • Chapter
  • First Online:
Zoonoses - Infections Affecting Humans and Animals

Abstract

Salmonella (S.) Enterica serovars form a group of pathogens that differ widely in their host range within mammals, birds and reptiles. They can differ substantially in clinical manifestations, ranging from an asymptomatic state to severe illness . Serovars can be host-restricted (e.g S. typhi in humans), host-adapted (e.g. S. choleraesuis in pigs and infrequently in humans) and broad range infecting diverse avian and mammalian hosts with a wide range of diseases. Currently, the traditional Salmonella serotyping scheme according to White-Kauffmann-Le Minor is accepted worldwide as the “gold standard” for the classification of Salmonellae below the subspecies level and is widely used in surveillance of the pathogen . The use of serotyping within Salmonella as a typing method is so widely accepted that governmental agencies have formulated guidelines intended to reduce human salmonellosis by identifying the common serovars typhimurium and Enteritidis . The most common vehicles of transmission are meat, meat products, eggs and egg products that contain Salmonella serovars because animals are infected or because fecal contamination occurs during processing . The majority of human cases are caused by only a few non-typhoidal serovars. In 2012, approximately 20,000 cases of non-typhoidal salmonellosis are reported in Germany (http://www3.rki.de//survstat). In 1995 the dominance of only a few serovars is even more pronounced in Germany, where S. enteritidis (61 %) and S. typhimurium (23 %) accounted for more than 80 % of human isolates reported to the NRC at the Robert Koch Institute . In 2012 this percentage for both serovars were reduced to 62 %, each approx. 31 %. Other serovars of different vehicles were found in outbreaks and also serovar analysis showed that the spectrum of single cases in children changed. In this article we focus on the prevalence of Salmonella enterica in animal food and humans and its change of serotypes and subtypes over up to two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtman M, Wain J, Weill FX et al (2012) Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 8:e1002776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Agasan A, Kornblum J, Williams G et al (2002) Profile of Salmonella enterica subsp. enterica (subspecies I) serotype 4,5,12:i:- strains causing food-borne infections in New York City. J Clin Microbiol 40:1924–1929

    PubMed Central  PubMed  Google Scholar 

  • Agbor TA, Mccormick BA (2011) Salmonella effectors: important players modulating host cell function during infection. Cell Microbiol 13:1858–1869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anonymous (2005) Regulation (EC) No. 1003/2005 of the European Parliament and the Council of 30 June 2005 on community target for the reduction of the prevalence of certain Salmonella serotypes in breeding flocks of Gallus gallus and amending Regulation (EC) No 2160/2003. Official J Euro Union, pp 12–17

    Google Scholar 

  • Anonymous (2006) Commission Regulation (EC) No 1168/2006 of 31 July 2006 implementing Regulation (EC) No 2160/2003 as regards a Community target for the reduction of the prevalence of certain Salmonella serotypes in laying hens of Gallus gallus and amending Regulation (EC) No 1003/2005. Official J Euro Union

    Google Scholar 

  • Anonymous (2008) Commisson Regulation (EC) No 584/2008 of 20 June 2008 implementing Regulation (EC) No 2160/2003 of the European Parliament and of the Council as regards a Community target for the reduction of the prevalence of Salmonella enteritidis and Salmonella typhimurium in turkeys. Official J Euro Union, pp 3–8

    Google Scholar 

  • Anonymous (2011a) Commission Regulation (EU) No 517/2011 of May 2011 implementing Regulation (EC) No 2160/2003 of the European Parliament and of the Council as regards a Union target for the reduction of the prevalence of certain Salmonella serotypes in laying hens of Gallus gallus and amending Regulation (EC) No 2160/2003 and Commission Regulation (EU) No 200/2010. Official J Euro Union, pp 45–51

    Google Scholar 

  • Anonymous (2011b) Salmonella outbreak associated with imported tomatoes. In: Steen Ethelberg KM (ed) Statens Serum Institut, Copenhagen, Denmark, http://www.ssi.dk/English/News/News/2011/Salm%20imported%20tomatoes.aspx

  • Anonymous (2012) Commission Regulation (EU) No 1190/2012 of 12 December 2012 concerning a Union target for the reduction of Salmonella Enteritidis and Salmonella Typhimurium in flocks of turkeys, as provided for in Regulation/EC) No 2160/2003 of the European Parliament and of the Council. Official J Euro Union pp 29–34

    Google Scholar 

  • Arena Pc SC, Warwick C (2012) Amphibian and reptile pet markets in the EU: an investigation and assessment.

    Google Scholar 

  • Asakura M, Hinenoya A, Alam MS et al (2007) An inducible lambdoid prophage encoding cytolethal distending toxin (Cdt-I) and a type III effector protein in enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 104:14483–14488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bacciu D, Falchi G, Spazziani A et al (2004) Transposition of the heat-stable toxin astA gene into a Gifsy-2- related prophage of Salmonella enterica serovar abortusovis. J Bacteriol 186:4568–4574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bakker HC, Switt AI, Cummings CA et al (2011) A whole-genome single nucleotide polymorphism-based approach to trace and identify outbreaks linked to a common Salmonella enterica subsp. enterica serovar Montevideo pulsed-field gel electrophoresis type. Appl Environ Microbiol 77:8648–8655

    PubMed  Google Scholar 

  • Barco L, Mancin M, Ruffa M et al (2012) Application of the random forest method to analyse epidemiological and phenotypic characteristics of salmonella 4,[5],12:i:- and Salmonella typhimurium strains. Zoonoses Public Health 59:505–512

    CAS  PubMed  Google Scholar 

  • Baumler AJ, Hargis BM, Tsolis RM (2000) Tracing the origins of Salmonella outbreaks. Science 287:50–52

    CAS  PubMed  Google Scholar 

  • Bayer CB H, Prager R, Rabsch W, Hiller P, Malorny B, Pfefferkorn B, Frank C, De Jong A, Friesema I, Stark K, Rosner BM (2013) An outbreak of Salmonella newport associated with mung bean sprouts in Germany and the Netherlands, October-November 2011. Euro Surveill 19(1):pii 20676 (submitted)

    Google Scholar 

  • Behravesh CB, Blaney D, Medus C et al (2012) Multistate outbreak of salmonella serotype typhimurium infections associated with consumption of restaurant tomatoes, USA, 2006: hypothesis generation through case exposures in multiple restaurant clusters. Epidemiol Infect 140:2053–2061

    PubMed  Google Scholar 

  • Beuchat LR (2002) Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect 4:413–423

    PubMed  Google Scholar 

  • Bolton DJ, Pearce R, Sheridan JJ et al (2003) Decontamination of pork carcasses during scalding and the prevention of salmonella cross-contamination. J Appl Microbiol 94:1036–1042

    CAS  PubMed  Google Scholar 

  • Bone A, Noel H, Le Hello S et al (2010) Nationwide outbreak of salmonella enterica serotype 4,12:i:- infections in France, linked to dried pork sausage. Euro surveill 15(24):pii 19592

    Google Scholar 

  • Bossi L, Figueroa-Bossi N (2005) Prophage arsenal of Salmonella enterica serovar Typhimurium. In: Waldor MK, Friedman DI, Adhya S (eds) Phages: their role in bacterial pathogenesis and biotechnology. ASM, Washington

    Google Scholar 

  • Boxrud D, Pederson-Gulrud K, Wotton J et al (2007) Comparison of multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and phage typing for subtype analysis of Salmonella enterica serotype Enteritidis. J Clin Microbiol 45:536–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandl M, Sundin GW (2013) Focus on food safety: human pathogens on plants. Phytopathology 103:304–305

    PubMed  Google Scholar 

  • Bruno VM, Hannemann S, Lara-Tejero M et al (2009) Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog 5:e1000538

    Google Scholar 

  • Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Google Scholar 

  • Bugarel M, Vignaud ML, Moury F et al (2012) Molecular identification in monophasic and nonmotile variants of Salmonella enterica serovar Typhimurium. Microbiologyopen 1:481–489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Byrne L, Fisher I, Peters T et al (2013) A Multi-country outbreak of salmonella newport gastroenteritis in Europe associated with watermelon from Brazil, confirmed by whole genome sequencing: October 2011–January 2012. Euro Surveill (submitted)

    Google Scholar 

  • Casjens SR, Gilcrease EB, Winn-Stapley DA et al (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol 187:1091–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casjens S (2011) A plethora of putative phages and prophages. In: Stanley Maloy KTH, Josep Casadesus (ed) The lure of bacterial enetics: a tribute to John Roth. ASM Press, Washington

    Google Scholar 

  • Cdc (2005) Outbreaks of salmonella infections associated with eating roma tomatoes-United States and Canada, 2004. MMWR Morb and Mortal Wkly Rept 54:325–328

    Google Scholar 

  • Chiodini RJ, Sundberg JP (1981) Salmonellosis in reptiles: a review. Am J Epidemiol 113:494–499

    CAS  PubMed  Google Scholar 

  • Cleary P, Browning L, Coia J et al (2010) A foodborne outbreak of salmonella bareilly in the United Kingdom. Euro Surveill 15(48)pii19732

    Google Scholar 

  • Cogan TA, Humphrey TJ (2003) The rise and fall of Salmonella enteritidis in the UK. J Appl Microbiol 94(Suppl):114S–119S

    Google Scholar 

  • Crook PD, Aguilera JF, Threlfall EJ et al (2003) A European outbreak of Salmonella enterica serotype typhimurium definitive phage type 204b in 2000. Clin Microbiol Infect 9:839–845

    CAS  PubMed  Google Scholar 

  • Davies PR, Scott Hurd H, Funk JA et al (2004) The role of contaminated feed in the epidemiology and control of Salmonella enterica in pork production. Foodborne Pathog Dis 1:202–215

    PubMed  Google Scholar 

  • Davis MA, Baker KN, Call DR et al (2009) Multilocus variable-number tandem-repeat method for typing Salmonella enterica serovar Newport. J Clin Microbiol 47:1934–1938

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Jong B, Andersson Y, Ekdahl K (2005) Effect of regulation and education on reptile-associated salmonellosis. Emerg Infect Dis 11:398–403

    PubMed Central  PubMed  Google Scholar 

  • Denny J, Threlfall J, Takkinen J et al (2007) Multinational salmonella paratyphi B variant java (Salmonella Java) outbreak. Euro Surveill 12:E071220 071222

    Google Scholar 

  • Dionisi AM, Graziani C, Lucarelli C et al (2009) Molecular characterization of multidrug-resistant strains of Salmonella enterica serotype typhimurium and monophasic variant (S. 4,[5],12:i:-) isolated from human infections in Italy. Foodborne Pathog Dis 6:711–717

    CAS  PubMed  Google Scholar 

  • ECDC (2011) The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. EFSA J 9(3)2090, pp 2378

    Google Scholar 

  • ECDC (2012) The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. EFSA J 2597, pp 2442

    Google Scholar 

  • ECDC (2013) The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J 3129, pp 3250

    Google Scholar 

  • Echeita MA, Aladuena A, Cruchaga S et al (1999) Emergence and spread of an atypical Salmonella enterica subsp. enterica serotype 4,5,12:i:- strain in Spain. J Clin Microbiol 37:3425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Efsa (2007a)Report of the task force on zoonoses data collection on the analysis of the baseline study on the prevalence of Salmonella in holdings of laying hen flocks of gallus gallus. EFSA J, pp 1–84

    Google Scholar 

  • Efsa (2007b) Report of the task force on zoonoses data collection on the analysis of the baseline survey on the prevalence of Salmonella in broiler flocks of gallus gallus, in the EU, 2005–2006. EFSA J, pp 1–85

    Google Scholar 

  • Efsa (2008a) Report of the task force on zoonoses data collection on the analysis of the baseline survey on the prevalence of Salmonella in slaughter pigs, in the EU, 2006–2007. EFSA J pp 1–111

    Google Scholar 

  • Efsa (2008b) Scientific opinion of the panel on biological hazards on a request from the european commission on a quantitative microbiological risk assessment on salmonella in meat: source attribution for human salmonellosis from meat. EFSA J, pp 1–32

    Google Scholar 

  • Efsa (2009) Analysis of the baseline survey on the prevalence of Salmonella in holdings with breeding pigs, in the EU, 2008, Part A: Salmonella prevalence estimates. EFSA J 1377 pp 1393

    Google Scholar 

  • Eller C, Simon S, Miller T et al (2013) Presence of beta-lactamases in extended-spectrum-cephalosporin-resistant Salmonella enterica of 30 different serovars in Germany 2005–2011. J Antimicrob Chemother 68(9):1978–81

    Google Scholar 

  • Emberland KE, Ethelberg S, Kuusi M et al (2007) Outbreak of Salmonella weltevreden infections in Norway, Denmark and Finland associated with alfalfa sprouts. Euro Surveill12:E 071129 071124

    Google Scholar 

  • Fabre L, Zhang J, Guigon G et al (2012) CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PloS ONE 7:e36995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fey PD, Iwen PC, Zentz EB et al (2012) Assessment of whole-genome mapping in a well-defined outbreak of Salmonella enterica serotype Saintpaul. J Clin Microbiol 50:3063–3065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foley SL, Lynne AM, Nayak R (2008) Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Animal Sci 86:E149–E162

    CAS  Google Scholar 

  • Franco A, Hendriksen RS, Lorenzetti S et al (2011) Characterization of Salmonella occurring at high prevalence in a population of the land iguana Conolophus subcristatus in galapagos islands, Ecuador. PloS ONE 6:e23147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fricke WF, Mammel MK, Mcdermott PF et al (2011) Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 193:3556–3568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garaizar J, Porwollik S, Echeita A et al (2002) DNA microarray-based typing of an atypical monophasic Salmonella enterica serovar. J Clin Microbiol 40:2074–2078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia P, Malorny B, Hauser E et al (2013) Genetic types, gene repertoire, and evolution of isolates of the Salmonella enterica serovar 4,5,12:i:- Spanish clone assigned to different phage types. J Clin Microbiol 51:973–978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerner-Smidt P, Scheutz F (2006) Standardized pulsed-field gel electrophoresis of shiga toxin-producing Escherichia coli: the pulsenet europe feasibility study. Foodborne Pathog Dis 3:74–80

    CAS  PubMed  Google Scholar 

  • Geue L, Loschner U (2002) Salmonella enterica in reptiles of German and Austrian origin. Vet Microbiol 84:79–91

    CAS  PubMed  Google Scholar 

  • Gieraltowski L, Julian E, Pringle J et al (2012) Nationwide outbreak of Salmonella montevideo infections associated with contaminated imported black and red pepper: warehouse membership cards provide critical clues to identify the source. Epidemiol Infect pp 1–9

    Google Scholar 

  • Gill CJ, Keene WE, Mohle-Boetani JC et al (2003) Alfalfa seed decontamination in a Salmonella outbreak. Emerg Infect Dis 9:474–479

    PubMed Central  PubMed  Google Scholar 

  • Gobin M, Launders N, Lane C et al (2011) National outbreak of Salmonella java phage type 3b variant 9 infection using parallel case-control and case-case study designs, United Kingdom, July to October 2010. Euro Surveill 16:20023

    Google Scholar 

  • Grad YH, Lipsitch M, Feldgarden M et al (2012) Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proceedings of the National Academy of Sciences of the United States of America 109, 3065–3070

    Google Scholar 

  • Greene SK, Daly ER, Talbot EA et al (2008) Recurrent multistate outbreak of Salmonella newport associated with tomatoes from contaminated fields, 2005. Epidemiol Infect 136:157–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grimont PaD, Weill F-X (2007) Antigenic formulae of the salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella Institut Pasteur, Paris

    Google Scholar 

  • Gupta SK, Nalluswami K, Snider C et al (2007) Outbreak of Salmonella braenderup infections associated with roma tomatoes, northeastern United States, 2004: a useful method for subtyping exposures in field investigations. Epidemiol Infect 135:1165–1173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haagsma JA, Havelaar AH, Janssen BM et al (2008) Disability adjusted life years and minimal disease: application of a preference-based relevance criterion to rank enteric pathogens. Popul Health Metr 6:7

    PubMed Central  PubMed  Google Scholar 

  • Hald T, Vose D, Wegener HC et al (2004) A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal 24:255–269

    PubMed  Google Scholar 

  • Hauser E, Tietze E, Helmuth R et al (2010) Pork contaminated with Salmonella enterica serovar 4,[5],12:i:-, an emerging health risk for humans. Appl Environ Microbiol 76:4601–4610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hautefort I, Thompson A, Eriksson-Ygberg S et al (2008) During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10:958–984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Havelaar AH, Haagsma JA, Mangen MJ et al (2012) Disease burden of foodborne pathogens in The Netherlands, 2009. Int J Food Microbiol 156:231–238

    PubMed  Google Scholar 

  • Heck M (2009) Multilocus variable number of tandem repeats analysis (MLVA)-a reliable tool for rapid investigation of salmonella Typhimurium outbreaks. Euro Surveill 14(15):pii19177

    Google Scholar 

  • Hendriksen RS, Vieira AR, Karlsmose S et al (2011) Global monitoring of Salmonella serovar distribution from the WHO Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 8:887–900

    PubMed  Google Scholar 

  • Henzler DJ, Ebel E, Sanders J et al (1994) Salmonella enteritidis in eggs from commercial chicken layer flocks implicated in human outbreaks. Avian Dis 38:37–43

    CAS  PubMed  Google Scholar 

  • Hernandez E, Rodriguez JL, Herrera-Leon S et al (2012) Salmonella paratyphi B var Java infections associated with exposure to turtles in Bizkaia, Spain, September 2010 to October 2011. Euro Surveill 17(25):pii 20201

    Google Scholar 

  • Hoelzer K, Moreno Switt AI, Wiedmann M (2011) Animal contact as a source of human non-typhoidal salmonellosis. Vet Res 42:34

    PubMed Central  PubMed  Google Scholar 

  • Hoffmann M, Luo Y, Lafon PC et al (2013) Genome sequences of Salmonella enterica serovar heidelberg isolates isolated in the United States from a multistate outbreak of human salmonella infections. Genome Announc 1(1):pii e00004–12

    Google Scholar 

  • Honish L, Nguyen Q (2001) Outbreak of Salmonella enteritidis phage type 913 gastroenteritis associated with mung bean sprouts-Edmonton, 2001. Can Commun Dis Rep 27:151–156

    Google Scholar 

  • Hopkins KL, Kirchner M, Guerra B et al (2010) Multiresistant Salmonella enterica serovar 4,[5],12:i:- in. Europe a new pandemic strain? Euro Surveill 15:19580

    CAS  PubMed  Google Scholar 

  • Hopkins KL, Peters TM, De Pinna E et al (2011) Standardisation of multilocus variable-number tandem-repeat analysis (MLVA) for subtyping of Salmonella enterica serovar enteritidis. Euro Surveill 16(32):pii 19942

    Google Scholar 

  • Hopkins KL, De Pinna E, Wain J (2012) Prevalence of Salmonella enterica serovar 4,[5],12:i:- in England and Wales, 2010. Euro Surveill 17(37):pii 20275

    Google Scholar 

  • Horby PW, O’brien SJ, Adak GK et al (2003) A national outbreak of multi-resistant Salmonella enterica serovar typhimurium definitive phage type (DT) 104 associated with consumption of lettuce. Epidemiol Infect 130:169–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ia O (2012) Salmonella in fish and fishery products. In: InTech MB (ed) Salmonella-A dangerous foodborne pathogen. http://www.intechopen.com/books/salmonella-a-dangerous-foodborne-pathogen/salmonella-in-fish-and-fishery-products

  • Ilic S, Duric P, Grego E (2010) Salmonella senftenberg infections and fennel seed tea, Serbia. Emerg Infect Dis 16:893–895

    PubMed Central  PubMed  Google Scholar 

  • Irvine WN, Gillespie IA, Smyth FB et al (2009) Investigation of an outbreak of Salmonella enterica serovar newport infection. Epidemiol Infect 137:1449–1456

    CAS  PubMed  Google Scholar 

  • Jain S, Bidol SA, Austin JL et al (2009) Multistate outbreak of salmonella typhimurium and saintpaul infections associated with unpasteurized orange juice-United States, 2005. Clin Infect Dis 48:1065–1071

    PubMed  Google Scholar 

  • Jones TF, Ingram LA, Cieslak PR et al (2008) Salmonellosis outcomes differ substantially by serotype. J Infect Dis 198:109–114

    PubMed  Google Scholar 

  • Kaibu H, Iida K, Ueki S et al (2006) Salmonellosis of infants presumably originating from an infected turtle in Nagasaki, Japan. Jpn J Infect Dis 59:281

    PubMed  Google Scholar 

  • Kaiser P, Hardt WD (2011) Salmonella typhimurium diarrhea: switching the mucosal epithelium from homeostasis to defense. Curr Opin Immunol 23:456–463

    CAS  PubMed  Google Scholar 

  • Keller SE, Vandoren JM, Grasso EM et al (2013) Growth and survival of Salmonella in ground black pepper (Piper nigrum). Food Microbiol 34:182–188

    PubMed  Google Scholar 

  • Kikillus KH, Gartrell BD, Motion E (2011) Prevalence of Salmonella spp., and serovars isolated from captive exotic reptiles in New Zealand. N Z Vest J 59:174–178

    Google Scholar 

  • Koch J, Schrauder A, Alpers K et al (2005) Salmonella agona outbreak from contaminated aniseed, Germany. Emerg Infect Dis 11:1124–1127

    PubMed Central  PubMed  Google Scholar 

  • Kolpakov R, Bana G, Kucherov G (2003) mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res 31:3672–3678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laconcha I, Baggesen DL, Rementeria A et al (2000) Genotypic characterisation by PFGE of Salmonella enterica serotype enteritidis phage types 1, 4, 6, and 8 isolated from animal and human sources in three European countries. Vet Microbiol 75:155–165

    CAS  PubMed  Google Scholar 

  • Laszlo VG, Csorian ES, Paszti J (1985) Phage types and epidemiological significance of Salmonella enteritidis strains in Hungary between 1976 and 1983. Acta Microbiol Hung 32:321–340

    CAS  PubMed  Google Scholar 

  • Ledet Muller LH, Payne L et al (2007) Cluster of Salmonella enteritidis in Sweden 2005–2006-suspected source: almonds. Euro Surveill 12:E9–10

    CAS  PubMed  Google Scholar 

  • Li HWH, D’aoust J-Y, Maurer J (2013) Salmonella species. In: Doyle MP BR (ed) Food microbiology. ASM, Washington, DC

    Google Scholar 

  • Liebana E, Garcia-Migura L, Clouting C et al (2002) Investigation of the genetic diversity among isolates of Salmonella enterica serovar Dublin from animals and humans from England, Wales and Ireland. J Appl Microbiol 93:732–744

    CAS  PubMed  Google Scholar 

  • Lienemann T, Niskanen T, Guedes S et al (2011) Iceberg lettuce as suggested source of a nationwide outbreak caused by two Salmonella serotypes, Newport and Reading, in Finland in 2008. J Food Prot 74:1035–1040

    PubMed  Google Scholar 

  • Lindstedt BA, Vardund T, Aas L et al (2004) Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. enterica serovar typhimurium using PCR multiplexing and multicolor capillary electrophoresis. J Microbiol Methods 59:163–172

    CAS  PubMed  Google Scholar 

  • Lindstedt BA, Torpdahl M, Vergnaud G et al (2013) Use of multilocus variable-number tandem repeat analysis (MLVA) in eight European countries, 2012. Euro Surveill 18(4):20385

    CAS  PubMed  Google Scholar 

  • Lucarelli C, Dionisi AM, Torpdahl M et al (2010) Evidence for a second genomic island conferring multidrug resistance in a clonal group of strains of Salmonella enterica serovar typhimurium and its monophasic variant circulating in Italy, Denmark, and the United Kingdom. J Clin Microbiol 48:2103–2109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch MF, Tauxe RV, Hedberg CW (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137:307–315

    CAS  PubMed  Google Scholar 

  • Magnino S, Colin P, Dei-Cas E et al (2009) Biological risks associated with consumption of reptile products. Int J Food Microbiol 134:163–175

    CAS  PubMed  Google Scholar 

  • Maiden MC, Bygraves JA, Feil E et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Majowicz SE, Musto J, Scallan E et al (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889

    PubMed  Google Scholar 

  • Malorny B, Junker E, Helmuth R (2008) Multi-locus variable-number tandem repeat analysis for outbreak studies of Salmonella enterica serotype Enteritidis. BMC Microbiol 8:84

    PubMed Central  PubMed  Google Scholar 

  • Mellmann A, Harmsen D, Cummings CA et al (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PloS ONE 6:e22751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mermin J, Hutwagner L, Vugia D et al (2004) Reptiles, amphibians, and human Salmonella infection: a population-based, case-control study. Clin Infect Dis 38 (Suppl 3):S253–261

    Google Scholar 

  • Mills DM, Bajaj V, Lee CA (1995) A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the escherichia coli K-12 chromosome. Mol Microbiol 15:749–759

    CAS  PubMed  Google Scholar 

  • Mossong J, Marques P, Ragimbeau C et al (2007) Outbreaks of monophasic Salmonella enterica serovar 4,[5],12:i:- in Luxembourg, 2006. Euro Surveill 12(6):E11–12

    CAS  PubMed  Google Scholar 

  • Munnoch SA, Ward K, Sheridan S et al (2009) A multi-state outbreak of Salmonella saintpaul in Australia associated with cantaloupe consumption. Epidemiol Infect 137:367–374

    CAS  PubMed  Google Scholar 

  • Murray C, Lopez A (1996) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. In: Murray C, Lopez A (eds) The global burden of disease and injury. Harvard University, Cambridge

    Google Scholar 

  • Nakadai A, Kuroki T, Kato Y et al (2005) Prevalence of Salmonella spp. in pet reptiles in Japan. J Vet Med Sci 67(1):97–101

    PubMed  Google Scholar 

  • Newell DG, Koopmans M, Verhoef L et al (2010) Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139(Suppl 1):S3–15

    Google Scholar 

  • Nnalue NA, Newton S, Stocker BA (1990) Lysogenization of Salmonella choleraesuis by phage 14 increases average length of O-antigen chains, serum resistance and intraperitoneal mouse virulence. Microb Pathog 8:393–402

    CAS  PubMed  Google Scholar 

  • Noel H, Hofhuis A, De Jonge R et al (2010) Consumption of fresh fruit juice: how a healthy food practice caused a national outbreak of Salmonella Panama gastroenteritis. Foodborne Pathog Dis 7 (4):375–381

    CAS  PubMed  Google Scholar 

  • Nygard K, Lassen J, Vold L et al (2008) Outbreak of Salmonella thompson infections linked to imported rucola lettuce. Foodborne Pathog Dis 5:165–173

    PubMed  Google Scholar 

  • Olaimat AN, Holley RA (2012) Factors influencing the microbial safety of fresh produce: a review. Food Microbiol 32:1–19

    CAS  PubMed  Google Scholar 

  • Park S, Szonyi B, Gautam R et al (2012) Risk factors for microbial contamination in fruits and vegetables at the preharvest level: a systematic review. J Food Prot 75:2055–2081

    CAS  PubMed  Google Scholar 

  • Pasmans F, Martel A, Boyen F et al (2005) Characterization of Salmonella isolates from captive lizards. Vet Microbiol 110:285–291

    CAS  PubMed  Google Scholar 

  • Pasmans F, Blahak S, Martel A et al (2008) Introducing reptiles into a captive collection: the role of the veterinarian. Vet J 175:53–68

    PubMed  Google Scholar 

  • Pedersen K, Lassen-Nielsen AM, Nordentoft S et al (2009) Serovars of Salmonella from captive reptiles. Zoonoses Public Health 56:238–242

    CAS  PubMed  Google Scholar 

  • Pees MRW, Plenz B, Fruth A, Prager R, Simon S, Schmidt V, Muench S, Braun Pg (2013) Evidence for the transmission of Salmonella from reptiles to children in Germany. Euro Surveill 18(46):pii 20634 (submitted)

    Google Scholar 

  • Pelludat C, Prager R, Tschape H et al (2005) Pilot study to evaluate microarray hybridization as a tool for Salmonella enterica serovar typhimurium strain differentiation. J Clin Microbiol 43:4092–4106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pezzoli L, Elson R, Little CL et al (2008) Packed with salmonella-investigation of an international outbreak of Salmonella senftenberg infection linked to contamination of prepacked basil in 2007. Foodborne Pathog Dis 5:661–668

    PubMed  Google Scholar 

  • Pires SM, De Knegt L, Hald T (2011) Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. In: National Food Institute, Technical University of Denmark., http://www.efsa.europa.eu/de/supporting/pub/184e.htm

  • Poza-Carrion C, Suslow T, Lindow S (2013) Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology 103:341–351

    PubMed  Google Scholar 

  • Proctor ME, Hamacher M, Tortorello ML et al (2001) Multistate outbreak of Salmonella serovar muenchen infections associated with alfalfa sprouts grown from seeds pretreated with calcium hypochlorite. J Clin Microbiol 39:3461–3465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabsch W, Tschape H, Baumler AJ (2001) Non-typhoidal Salmonellosis: emerging problems. Microbes Infect 3:237–247

    CAS  PubMed  Google Scholar 

  • Rabsch W, Mirold S, Hardt WD et al (2002) The dual role of wild phages for horizontal gene transfer among Salmonella strains. Berl Munch Tierarztl Wochenschr 115:355–359

    CAS  PubMed  Google Scholar 

  • Rabsch W, Prager R, Koch J et al (2005) Molecular epidemiology of Salmonella enterica serovar agona: characterization of a diffuse outbreak caused by aniseed-fennel-caraway infusion. Epidemiol Infect 133:837–844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabsch W, Prager R, Braun P et al (2007) Salmonella in poultry flocks and humans-S. enterica subspecies enterica serovar enteritidis in the past. Berl Munch Tierarztl Wochenschr 120:328–333

    PubMed  Google Scholar 

  • Rabsch WTS, Windhorst D, Gerlach R (2011) Typing phages and and prophages of salmonella. In: Porwollik S (ed) Salmonella: from genome to function. Caister Academic Press, Hethersett UK

    Google Scholar 

  • Rabsch W, Simon S, Humphrey T (2013) Public health aspects of Salmonella infections. In: Salmonella in domestic animals. Cabi Publishing

    Google Scholar 

  • Ramisse V, Houssu P, Hernandez E et al (2004) Variable number of tandem repeats in Salmonella enterica subsp. enterica for typing purposes. J Clin Microbiol 42:5722–5730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rimhanen-Finne R, Niskanen T, Lienemann T et al (2011) A nationwide outbreak of salmonella bovismorbificans associated with sprouted alfalfa seeds in Finland, 2009. Zoonoses Public Health 58:589–596

    CAS  PubMed  Google Scholar 

  • Robert-Koch-Institut (2013) Salmonella infections in infants and young children by contact to exotic reptilies. EpidemiolBull:71–79

    Google Scholar 

  • Rodrigue DC, Tauxe RV, Rowe B (1990) International increase in Salmonella enteritidis: a new pandemic? Epidemiol Infect 105:21–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rohekar S, Tsui FW, Tsui HW et al (2008) Symptomatic acute reactive arthritis after an outbreak of Salmonella. J Rheumatol 35:1599–1602

    PubMed  Google Scholar 

  • Ross IL, Heuzenroeder MW (2008) A comparison of three molecular typing methods for the discrimination of Salmonella enterica serovar Infantis. FEMS Immunol Med Microbiol 53:375–384

    CAS  PubMed  Google Scholar 

  • Saitoh M, Tanaka K, Nishimori K et al (2005) The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar typhimurium DT104. Microbiology 151:3089–3096

    CAS  PubMed  Google Scholar 

  • Santos RL, Raffatellu M, Bevins CL et al (2009) Life in the inflamed intestine, Salmonella style. Trends Microbiol 17:498–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheelings TF, Lightfoot D, Holz P (2011) Prevalence of Salmonella in Australian reptiles. J Wildl Dis 47:1–11

    PubMed  Google Scholar 

  • Selander R, Li J, Nelson K (1996) Evolutionary genetics of Salmonella enterica. In: Neidhardt FC (ed) Escherichia coli and Salmonella. ASM, Washington

    Google Scholar 

  • Service USDOaFSI (2012) Progress report on salmonella and campylobacter testing of raw meat and poultry products, 1998–2011. In:USDA/FSIS

    Google Scholar 

  • Shea JE, Hensel M, Gleeson C et al (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA 93:2593–2597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon S (2013) Structural and functional characterization of a novel genomic island in an endemic monophasic variant of Salmonella typhimurium. In: Robert Koch Institute. TU Braunschweig, p 169

    Google Scholar 

  • Sintchenko V, Wang Q, Howard P et al (2012) Improving resolution of public health surveillance for human Salmonella enterica serovar Typhimurium infection: 3 years of prospective multiple-locus variable-number tandem-repeat analysis (MLVA). BMC Infect Dis 12:78

    PubMed Central  PubMed  Google Scholar 

  • Sivapalasingam S, Barrett E, Kimura A et al (2003) A multistate outbreak of Salmonella enterica Serotype Newport infection linked to mango consumption: impact of water-dip disinfestation technology. Clin Infect Dis 37:1585–1590

    PubMed  Google Scholar 

  • Skov MN, Madsen JJ, Rahbek C et al (2008) Transmission of Salmonella between wildlife and meat-production animals in Denmark. J Appl Microbiol 105:1558–1568

    CAS  PubMed  Google Scholar 

  • Sojka WJ, Wray C, Shreeve J et al (1977) Incidence of Salmonella infection in animals in England and Wales 1968–1974. J Hyg (Lond) 78:43–56

    CAS  Google Scholar 

  • Soyer Y, Moreno Switt A, Davis MA et al (2009) Salmonella enterica serotype 4,5,12:i:-, an emerging Salmonella serotype that represents multiple distinct clones. J Clin Microbiol 47:3546–3556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stam F, Romkens TE, Hekker TA et al (2003) Turtle-associated human Salmonellosis. Clin Infect Dis 37:e167–e169

    PubMed  Google Scholar 

  • Sting R, Ackermann D, Blazey B et al (2013) Salmonella infections in reptiles-incidence, serovar spectrum and impact on animal health. J BMTW:10–16

    Google Scholar 

  • St Louis ME, Morse DL, Potter ME et al (1988) The emergence of grade A eggs as a major source of Salmonella enteritidis infections. new implications for the control of Salmonellosis. JAMA 259:2103–2107

    CAS  PubMed  Google Scholar 

  • Stocker P, Rosner B, Werber D et al (2011) Outbreak of Salmonella montevideo associated with a dietary food supplement flagged in the rapid alert system for food and feed (RASFF) in Germany, 2010. Euro Surveill16:20040

    CAS  PubMed  Google Scholar 

  • Swaminathan B, Gerner-Smidt P, Ng LK et al (2006) Building pulsenet international: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog Dis 3:36–50

    PubMed  Google Scholar 

  • Switt AI, Soyer Y, Warnick LD et al (2009) Emergence, distribution, and molecular and phenotypic characteristics of Salmonella enterica serotype 4,5,12:i. Foodborne Pathog Dis 6:407–415

    PubMed Central  PubMed  Google Scholar 

  • Tabarani CM, Bennett NJ, Kiska DL et al (2010) Empyema of preexisting subdural hemorrhage caused by a rare Salmonella species after exposure to bearded dragons in a foster home. J Pediatr 156:322–323

    PubMed  Google Scholar 

  • Tauxe RV, Doyle MP, Kuchenmuller T et al (2010) Evolving public health approaches to the global challenge of foodborne infections. Int J Food Microbiol 139(Suppl 1):S16–28

    Google Scholar 

  • Thomas AD, Forbes-Faulkner JC, Speare R et al (2001) Salmonelliasis in wildlife from Queensland. J Wildl Dis 37:229–238

    CAS  PubMed  Google Scholar 

  • Toth I, Nougayrede JP, Dobrindt U et al (2009) Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli. Infect Immun 77:492–500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trupschuch S, Laverde Gomez JA, Ediberidze I et al (2010) Characterisation of multidrug-resistant salmonella typhimurium 4,[5],12:i:- DT193 strains carrying a novel genomic island adjacent to the thrW tRNA locus. Int J Med Microbiol 300:279–288

    PubMed  Google Scholar 

  • Van Duynhoven YT, Widdowson MA, De Jager CM et al (2002) Salmonella enterica serotype enteritidis phage type 4b outbreak associated with bean sprouts. Emerg Infect Dis 8:440–443

    Google Scholar 

  • Van Meervenne EB, Lokietek S et al (2009) Turtle-associated Salmonella septicaemia and meningitis in a 2-month-old baby. J Med Microbiol 58:1379–1381

    PubMed  Google Scholar 

  • Vandeplas S, Dubois Dauphin R, Beckers Y et al (2010) Salmonella in chicken: current and developing strategies to reduce contamination at farm level. J Food Prot 73:774–785

    CAS  PubMed  Google Scholar 

  • Velge P, Wiedemann A, Rosselin M et al (2012) Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 1:243–258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villafane R, Zayas M, Gilcrease EB et al (2008) Genomic analysis of bacteriophage epsilon 34 of Salmonella enterica serovar Anatum (15+). BMC Microbiol 8:227

    PubMed Central  PubMed  Google Scholar 

  • Wain J, Keddy KH, Hendriksen RS et al (2013) Using next generation sequencing to tackle non-typhoidal Salmonella infections. J Infect Dev Ctries 7:1–5

    PubMed  Google Scholar 

  • Wall PG, Ward LR (1999) Epidemiology of Salmonella enterica serovar enteritidis phage type 4 in England and Wales. In: Saeed AM (ed) Salmonella enterica serovar enteritidis in humans and animals. Iowa State University Press, Ames, pp 19–25

    Google Scholar 

  • Wallis T, Barrow P (2005) Salmonella epidemiology and pathogenesis in food-producing animals. In: Böck A, Curtiss III R, Kaper JB, Neidhardt FC, Nyström T, Rudd KE, Squires CL (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM, Washington

    Google Scholar 

  • Wan Norhana MN, P, Deeth HC et al (2010) Prevalence, persistence and control of Salmonella and listeria in shrimp and shrimp products: a review. Food Control 21:343–361

    Google Scholar 

  • Ward LR, De Sa JD, Rowe B (1987) A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect 99:291–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward LR, Threlfall J, Smith HR et al (2000) Salmonella enteritidis epidemic. Science 287:1753–1754; 1755–1756

    Google Scholar 

  • Warwick C, Lambiris AJ, Westwood D et al (2001) Reptile-related Salmonellosis. J R Soc Med 94:124–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wasyl D, Hoszowski A (2012) Occurrence and characterization of monophasic Salmonella enterica serovar Typhimurium (1,4,[5],12:i:-) of non-human origin in Poland. Foodborne Pathog Dis 9:1037–1043

    CAS  PubMed  Google Scholar 

  • Wattiau P, Boland C, Bertrand S (2011) Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Appl Environ Microbiol 77:7877–7885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss B, Rabsch W, Prager R et al (2011) Babies and bearded dragons: sudden increase in reptile-associated Salmonella enterica serovar tennessee infections, Germany 2008. Vector Borne Zoonotic dis (Larchmont, N.Y.) 11:1299–1301

    Google Scholar 

  • Werber D, Hille K, Frank C et al (2013) Years of potential life lost for six major enteric pathogens, Germany, 2004–2008. Epidemiol Infect 141:961–968

    CAS  PubMed  Google Scholar 

  • Werner S, Boman K, Einemo I et al (2007) Outbreak of Salmonella stanley in Sweden associated with alfalfa sprouts, July-August 2007. Euro Surveill 12:E 071018 071012

    Google Scholar 

  • Willis C, Wilson T, Greenwood M et al (2002) Pet reptiles associated with a case of Salmonellosis in an infant were carrying multiple strains of Salmonella. J Clin Microbiol 40:4802–4803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winkle S, Rohde R (1979) [Twenty-five years’ experience in epidemiology and prophylaxis of epidemics at the Centre for Salmonella of Hamburg (author’s transl)]. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie 243:392–411

    Google Scholar 

  • Winthrop KL, Palumbo MS, Farrar JA et al (2003) Alfalfa sprouts and Salmonella kottbus infection: a multistate outbreak following inadequate seed disinfection with heat and chlorine. J Food Prot 66:13–17

    CAS  PubMed  Google Scholar 

  • Woodward DL, Khakhria R, Johnson WM (1997) Human salmonellosis associated with exotic pets. J Clin Microbiol 35:2786–2790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young CC, Ross IL, Heuzenroeder MW (2012) A new methodology for differentiation and typing of closely related Salmonella enterica serovar heidelberg isolates. Curr Microbiol 65:481–487

    CAS  PubMed  Google Scholar 

  • Ziehm D, Dreesman J, Rabsch W et al (2013) Subtype specific risk factor analyses for sporadic human Salmonellosis: a case-case comparison in Lower Saxony, Germany. Int J Hyg Environ Health 216:428–434

    CAS  PubMed  Google Scholar 

  • Zweifel C, Stephan R (2012) Spices and herbs as source of Salmonella-related foodborne diseases. Food Res Int 45:765–769

    Google Scholar 

Download references

Acknowledgment

We thank our co-workers from the Robert Koch Institute, Wernigerode branch, Division for Enteropathogenic Bacteria and Legionella (Director A. Flieger), especially Rita Prager and Gerlinde Bartel for PFGE and ribotyping and Marita Wahnfried for continuous serotyping , as well as Dagmar Busse and Susanne Kulbe for technical assistance in phage typing. We are greatful to Linda R. Ward and Elizabeth de Pinna (Health Protection Agency Microbiology Services Colindale, London, United Kingdom) for supporting us with typing phages over decades. Furthermore, many thanks to Michael Pees (Clinic for Birds and Reptiles, and Peggy G. Braun, Institute of Food Hygiene, University of Leipzig, Germany) for the fruitful cooperation on the field of reptile associated salmonellosis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Rabsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rabsch, W., Fruth, A., Simon, S., Szabo, I., Malorny, B. (2015). The zoonotic agent Salmonella . In: Sing, A. (eds) Zoonoses - Infections Affecting Humans and Animals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9457-2_7

Download citation

Publish with us

Policies and ethics