Skip to main content

The Architecture of Cyanobacteria, Archetypes of Microbial Innovation

  • Chapter
  • First Online:
The Structural Basis of Biological Energy Generation

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

  • 2438 Accesses

Summary

With an impressive and unparalleled evolutionary history spanning over two billion years, cyanobacteria have evolved to thrive in a diverse range of habitats and numerically dominate vast regions, such as the open oceans. Impacts of this microbial lineage on our planet have been far-reaching: ancestors of extant cyanobacteria had a pivotal role not only in the establishment of oxygen as a major component of the atmosphere, but in the rise of embryophytic algae and land plants. The evolution of innovative cellular structure and function in response to abiotic and biotic selection pressures has resulted in a striking diversity in cyanobacteria. Given the fact that the relationship between form and function is complex, and that cellular structures are often multifunctional and dynamic, this review uses a comparative approach in understanding how biological functions or strategies impact cellular architecture. Notably, differences existing in cellular architecture among genera, and even between strains of the same genus, often reflect evolutionary innovations that have permitted a group to flourish in a particular environment. This review also addresses how a conserved cellular feature, namely the compartmentalization of key functions, has promoted metabolic flexibility and survival. This compartmentalization involves structures such as the internal membranes, heterocysts and carboxysomes, and has permitted the functioning and integration of diverse, and at times, incompatible, processes in a single cell. With heightened interest in utilizing photosynthetic organisms to address global challenges in food and energy resources, research on this remarkable lineage will undoubtedly continue to inform, as well as inspire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

– Adenosine triphosphate;

Chl:

– Chlorophyll

CP43:

– Chl-binding protein (apparent molecular mass 43 kDa) associated with PSII;

CP47:

– Chl-binding protein (apparent molecular mass 47 kDa) associated with PSII;

LHCII:

– Mobile light-harvesting Chl a/b-binding antenna complex;

Mbp:

– Million base pairs;

Pcb:

– Prochlorophyte Chl a/b-binding antenna protein;

PQ:

– Plastoquinone;

PS I:

– Photosystem I;

PS II:

– Photosystem II;

TEM:

– Transmission electron microscopy

References

  • Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid memgbranes. Ann Rev Plant Physiol 37:93–136

    CAS  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    CAS  PubMed  Google Scholar 

  • Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    CAS  PubMed  Google Scholar 

  • Balagam B, Richardson DE (2008) The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines. Inorg Chem 47:1173–1178

    CAS  PubMed  Google Scholar 

  • Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer CC, Buikema WJ, Black K, Haselkorn R (1995) A short-filament mutant of Anabaena sp. strain PCC 7120 that fragments in nitrogen-deficient medium. J Bacteriol 177:1520–1526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    CAS  PubMed  Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2-fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Chen Y-B, Kupper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    CAS  PubMed  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    CAS  PubMed  Google Scholar 

  • Bhattacharya D, Medlin L (1995) The phylogeny of plastids: a review based on comparisons of small subunit ribosomal RNA coding regions. J Phycol 31:489–498

    CAS  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: Endosymbiosis connects the dots. Bioessays 26:50–60

    PubMed  Google Scholar 

  • Bhattacharya D, Archibald JM, Weber APM, Reyes-Prieto A (2007) How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29:1239–1246

    CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J, Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745

    CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J, Partensky F, Barber J (2001b) Antenna ring around photosystem I. Nature 413:590

    CAS  PubMed  Google Scholar 

  • Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003a) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054

    CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AWD, Barber J (2003b) Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci U S A 100:9050–9054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bobik TA (2006) Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol 70:517–525

    CAS  PubMed  Google Scholar 

  • Boekema EJ, van Breemen JFL, van Roon H, Dekker JP (2000) Arrangement of Photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301:1123–1133

    CAS  PubMed  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK, Kruip J (2001) A giant chlorophyll-protein complex induced by iron-deficiency in cyanobacteria. Nature 412:745–748

    CAS  PubMed  Google Scholar 

  • Bohm GA, Pfleiderer W, Boger P, Scherer S (1995) Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J Biol Chem 270:8536–8539

    CAS  PubMed  Google Scholar 

  • Bothe H, Tripp HJ, Zehr JP (2010) Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Arch Microbiol 192:783–790

    CAS  PubMed  Google Scholar 

  • Braun-Howland EB, Nierzwicki-Bauer SA (1990) Occurrence of the 32-kDa QB-binding protein of Photosystem II in vegetative cells, heterocysts and akinetes of Azolla caroliniana cyanobionts. Planta 180:361–371

    CAS  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    CAS  PubMed  Google Scholar 

  • Brocks JJ, Buick R, Logan GA, Summons RE (2003) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67:4289–4319

    CAS  Google Scholar 

  • Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Co., Baltimore

    Google Scholar 

  • Bumba L, Prasil O, Vacha F (2005) Antenna ring around trimeric Photosystem I in chlorophyll b containing cyanobacterium Prochlorothrix hollandica. Biochim Biophys Acta 1708:1–5

    CAS  PubMed  Google Scholar 

  • Burger-Wiersma T, Veenhuis M, Korthals HJ, Van de Wiel CCM, Mur LR (1986) A new prokaryote containing chlorophylls a and b. Nature 320:262–264

    CAS  Google Scholar 

  • Cabeen MT, Jacobs-Wagner C (2005) Bacterial cell shape. Nat Rev Microbiol 3:601–610

    CAS  PubMed  Google Scholar 

  • Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedral. Appl Environ Microbiol 67:5351–5361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon GC, Heinhorst S, Bradburne CE, Shively JM (2002) Carboxysome genomics: a status report. Funct Plant Biol 29:175–182

    CAS  Google Scholar 

  • Carballido-Lopez R, Errington J (2003) The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev Cell 4:19–28

    CAS  PubMed  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum A, Barber J (2005a) Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. Biochim Biophys Acta 1708:367–374

    CAS  PubMed  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005b) Structure of a large photosystem II supercomplex from Acarychloris marina. FEBS Lett 579:1306–1310

    CAS  PubMed  Google Scholar 

  • Chen M, Hiller RG, Howe CJ, Larkum AWD (2005c) Unique origin and lateral transfer of prokaryotic Chlorophyll-b and Chlorophyll-d light-harvesting systems. Mol Biol Evol 22:21–28

    PubMed  Google Scholar 

  • Chen M, Floetenmeyer M, Bibby TS (2009) Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. FEBS Lett 583:2535–2539

    CAS  PubMed  Google Scholar 

  • Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 213–237

    Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Google Scholar 

  • Clayton RK (1980) Photosynthesis: physical mechanisms and chemical patterns. Cambridge Unviersity Press, London

    Google Scholar 

  • Compaore J, Stal LJ (2010) Oxygen and the light-dark cycle of nitrogenase activity in two unicellular cyanobacteria. Environ Microbiol 12:54–62

    CAS  PubMed  Google Scholar 

  • De Pedro MA, Yong KD, Holtje JV, Schwarz H (2003) Branching in Escherichia coli cells arises from multiple sites of inert peptidoglycan. J Bacteriol 185:1147–1152

    PubMed Central  PubMed  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    CAS  PubMed  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    PubMed  Google Scholar 

  • Dou Z, Heinhorst S, Williams EB, Murin CD, Shively JM, Cannon GC (2008) CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem 283:10377–10384

    CAS  PubMed  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UB-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ezraty B, Chabalier M, Ducret A, Maisonneuve E, Dukan S (2011) CO2 exacerbates oxygen toxicity. EMBO Rep 12:321–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fay P, Lang NJ (1971) The heterocysts of blue-green algae. I. Ultrastructural integrity after isolation. Proc R Soc Lond B Biol Sci 178:185–192

    Google Scholar 

  • Fewer D, Friedl T, Budel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90

    CAS  PubMed  Google Scholar 

  • Fieldler G, Arnold M, Hannus S, Maldener I (1998) The DevBCA exporter is essential for envelope formation in heterocysts of the cyanboacterium Anabaena sp. strain PCC 7120. Mol Microbiol 27:1193–1202

    Google Scholar 

  • Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332

    CAS  PubMed  Google Scholar 

  • Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9:1448–1455

    CAS  PubMed  Google Scholar 

  • Flores E, Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 487–517

    Google Scholar 

  • Flores E, Herrero A, Wolk CP, Maldener I (2006) Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends Microbiol 14:339–443

    Google Scholar 

  • Fogg GE (1986) Picoplankton. Proc R Soc Lond B Biol Sci 228:1–30

    Google Scholar 

  • Fritsch FE (1935) The structure and reproduction of algae. The University Press, Cambridge

    Google Scholar 

  • Gantt E (1994) Supramolecular membrane organization. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 119–138

    Google Scholar 

  • Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Pichel F, Sherry ND, Castenholz RW (1992) Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem Photobiol 56:17–23

    CAS  PubMed  Google Scholar 

  • Giddings TH, Staehelin LA (1978) Plasma membrane architecture of Anabaena cylindrica: occurrence of microplasmodesmata and changes associated with heterocyst development and the cell cycle. Cytobiologica 16:235–249

    Google Scholar 

  • Giddings TH, Withers NW, Staehelin LA (1980) Supramolecular structure of stacked and unstacked regions of the photosynthetic membranes of Prochloron sp., a prokaryote. Proc Natl Acad Sci U S A 77:352–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giovannoni SF, Turner S, Olsen G, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among Cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gitai Z, Dye NA, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A 101:8643–8648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golecki JR (1988) Analysis of the structure and development of bacterial membranes (outer, cytoplasmic and intracytoplasmic membranes). Methods Microbiol 20:61–77

    Google Scholar 

  • Golubic S, Hernandez-Marine M, Hoffmann L (1996) Developmental aspects of branching in filamentous Cyanophyta/Cyanobacteria. Arch Hydrobiol Suppl 117:303–329

    Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357

    CAS  PubMed  Google Scholar 

  • Gugger MF, Hoffmann L (2004) Polyphyly of true branching cyanobacteria (Stigonematales). Int J Syst Evol Microbiol 54:349–3357

    CAS  PubMed  Google Scholar 

  • Hansel A, Tadros MH (1998) Characterization of two pore-forming proteins isolated from the outer membrane of Synechococcus PCC 6301. Curr Microbiol 36:321–326

    CAS  PubMed  Google Scholar 

  • Hansel A, Pattus F, Jurgens UJ, Tadros MH (1998) Cloning and characterization of the genes coding for two porins in the unicellular cyanobacterium Synechococcus PCC 6301. Biochim Biophys Acta 1399:31–39

    CAS  PubMed  Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50:1040–1073

    Google Scholar 

  • Hoiczyk E (1998) Structural and biochemical analysis of o the sheath of Phormidium uncinatum. J Bacteriol 180:3923–3932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoiczyk E, Baumeister W (1995) Envelope structure of four gliding filamentous cyanobacteria. J Bacteriol 177:2387–2395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoiczyk E, Baumeister W (1997) Oscillin, an extracellular, Ca+2-binding glycoprotein essential for gliding motility of cyanobacteria. Mol Microbiol 26:699–708

    CAS  PubMed  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Caynobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Trans R Soc B 361:903–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howitt CA, Udall PK, Vermaas WFJ (1999) Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC6803 are involved in regulation rather than respiration. J Bacteriol 181:3994–4003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Morschel E, Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta 1412:250–261

    CAS  PubMed  Google Scholar 

  • Hu B, Yang G, Zhao W, Zhang Y, Zhao J (2007) MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 63:1640–1652

    CAS  PubMed  Google Scholar 

  • Iancu CV, Ding HJ, Morris DM, Dias DP, Gonzales AD, Martino A, Jensen GJ (2007) The structure of isolated Synechococcus strain WH8102 carboxysomes revealed by electron cryotomography. J Mol Biol 372:764–773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iancu CV, Morris DM, Dou Z, Heinhorst S, Cannon GC, Jensen GJ (2010) Organization, structure, and assembly of alpha-carboxysomes determined by electron cryotomography of intact cells. J Mol Biol 396:105–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingram LO, van Baalen C (1970) Characteristics of a stable, filamentous mutant of a coccoid blue-green alga. J Bacteriol 102:784–789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740

    CAS  PubMed  Google Scholar 

  • Jones LJ, Carballido-Lopz R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    CAS  PubMed  Google Scholar 

  • Jurgens UJ, Mantele W (1991) Orientation of carotenoids in the outer membrane of Synechocystis PCC 6714 (Cyanobacteria). Biochim Biophys Acta 1067:208–212

    CAS  PubMed  Google Scholar 

  • Jurgens UJ, Weckesser J (1986) Polysaccharide covalently linked to the peptidoglycan of the cyanobacterium Synechocystis sp. strain PCC6714. J Bacteriol 168:568–573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jurgens UJ, Drews G, Weckesser J (1983) Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J Bacteriol 154:471–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jurgens UJ, Golecki JR, Weckesser J (1985) Characterization of the cell wall of the unicellular cyanobacterium Synechocystis PCC 6714. Arch Microbiol 142:168–174

    Google Scholar 

  • Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938

    CAS  PubMed  Google Scholar 

  • Kirk JTO (1975) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. Spherical cells. New Phytol 75:21–36

    Google Scholar 

  • Kirk JTO (1976) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. III. Cylindrical and spheroidal cells. New Phytol 77:341–358

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Knoll AH (2003a) Life on a young planet. The First three billion years of evolution on earth. Princeton University Press, Princeton

    Google Scholar 

  • Knoll AH (2003b) The geological consequences of evolution. Geobiology 1:3–14

    CAS  Google Scholar 

  • Kobayashi H, Viale AM, Takabe T, Akazawa T, Wada K, Shinozaki K, Kobayashi K, Suiura M (1991) Sequence and expression of genes encoding the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase from Chromatium vinosum. Gene 97:55–62

    CAS  PubMed  Google Scholar 

  • Koksharova OA, Klint J, Rasmussen U (2007) Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC 7942. Microbiol 153:2505–2517

    CAS  Google Scholar 

  • Kroos L, Maddock JR (2003) Prokaryotic development: emerging insights. J Bacteriol 185:1128–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:820

    PubMed  Google Scholar 

  • Kunkel DD (1982) Thylakoid centers: structures associated with the cyanobacterial photosynthetic membrane system. Arch Microbiol 133:97–99

    Google Scholar 

  • La Roche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD, Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light harvesting proteins. Proc Natl Acad Sci U S A 93:15244–15248

    PubMed Central  PubMed  Google Scholar 

  • Lang NJ, Fay P (1971) The heterocysts of blue-green algae. II. Details of ultrastructure. Proc R Soc Lond B Biol Sci 178:193–203

    Google Scholar 

  • Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:129–138

    PubMed  Google Scholar 

  • Liberton M, Austin JR, Berg RH, Pakrasi HB (2011) Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography. Plant Physiol 155:1656–1666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtle C, Thomas JC, Spilar A (1995) Immunological and ultrastructural characterization of the photosynthetic complexes of the Prochlorophyte Prochlorococcus (Oxychlorobacteria). J Phycol 31:934–941

    CAS  Google Scholar 

  • Livaitis MK (2002) A molecular test of cyanobacterial phylogeny: inferences from constraint analyses. Hydrobiological 468:135–145

    Google Scholar 

  • Marquardt J, Senger H, Miyashita H, Miyachi S, Morschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410:428–432

    CAS  PubMed  Google Scholar 

  • Marquardt J, Morschel E, Rhiel E, Westermann M (2000) Ultrastructure of Acaryochloris marina, an oxyphotobacterium containing mainly chlorophyll d. Arch Microbiol 174:181–188

    CAS  PubMed  Google Scholar 

  • McFadden GI (2001) Chloroplast origin and integration. Plant Physiol 125:50–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKay RML, Gibbs SP, Espie GS (1993) Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch Microbiol 159:21–29

    CAS  Google Scholar 

  • Medinas DB, Cerchiaro G, Trindale DF, Augusto O (2007) The carbonate radical and related oxidants derived from bicarbonate buffer. IUBMB Life 59:255–262

    CAS  PubMed  Google Scholar 

  • Miller KR, Jacob JS, Burger-Wiersma T, Matthijs HCP (1988) Supramolecular structure of the thylakoid membrane of Prochlorothrix hollandica: a chlorophyll b-containing prokaryote. J Cell Sci 91:577–586

    PubMed  Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci U S A 102:850–855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mimuro M, Tomo T, Tsuchiya T (2008) Two unique cyanobacteria lead to a traceable approach of the first appearance of oxygenic photosynthesis. Photosynth Res 97:167–176

    CAS  PubMed  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acarychloris marina gen. et sp. nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253

    CAS  Google Scholar 

  • Mobley HL, Koch AL, Doyle RJ, Streips UN (1984) Insertion and fate of the cell wall in Bacillus subtilis. J Bacteriol 158:169–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, Montoya JP, Zehr JP (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514

    CAS  PubMed  Google Scholar 

  • Moreira D, Le Guyader H, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    CAS  PubMed  Google Scholar 

  • Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res 28:1375–1393

    Google Scholar 

  • Mullineaux CW (2005) Function and evolution of grana. Trends Plant Sci 10:521–525

    CAS  PubMed  Google Scholar 

  • Nelissen B, van de Peer Y, Wilmotte A, De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12:1166–1173

    CAS  PubMed  Google Scholar 

  • Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Reich Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nevo R, Chuartzman SG, Tsabari O, Reich Z, Charuvi D, Shimoni E (2009) Architecture of thylakoid membrane networks. In: Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions. Springer Science, Dordrecht, pp 295–328

    Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL, Stevens SE (1983) Three-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97:713–722

    CAS  PubMed  Google Scholar 

  • Olson JM (2006) Photosynthesis in the archaen era. Photosynth Res 88:109–117

    CAS  PubMed  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    CAS  PubMed  Google Scholar 

  • Orus MI, Rodriguez-Buey ML, Marco E, Fernandez-Valiente E (2001) Changes in carboxysome structure and grouping and in photosynthetic affinity for inorganic carbon in Anabaena strain PCC 7119 (Cyanophyta) in response to modification of CO2 and Na+supply. Plant Cell Physiol 42:46–53

    CAS  PubMed  Google Scholar 

  • Paerl HW (1984) Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom forming genera. Oecologia 61:143–149

    Google Scholar 

  • Paerl HW (1994) Spatial segregation of CO2 fixation in Trichodesmium spp.: linkage to N2 fixation potential. J Phycol 30:790–799

    Google Scholar 

  • Palenik B, Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355:265–267

    CAS  PubMed  Google Scholar 

  • Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042

    CAS  PubMed  Google Scholar 

  • Penrod JT, Roth JR (2006) Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica. J Bacteriol 188:2865–2874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci U S A 101:18228–18233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    CAS  PubMed  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    CAS  PubMed  Google Scholar 

  • Raven JA (1986) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, Li WKW (eds) Photosynthetic Picoplankton, Can Bull Fish Aquat Sci 214:1–70

    Google Scholar 

  • Raven JA (1998) The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Func Ecol 12:503–513

    Google Scholar 

  • Resch CM, Gibson J (1983) Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J Bacteriol 155:345–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rexroth S, Mullineaux CW, Ellinger D, Sendtko E, Rogner M, Koenig F (2011) The plasma membrane of the cyanboacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell 23:2379–2390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007) Phylogeny of Calvin cycle enzymes supports Plantae monophyly. Mol Phylogenet Evol 45:384–391

    CAS  PubMed  Google Scholar 

  • Richardson DE, Regino CAS, Yao HR, Johnson JV (2003) Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radic Biol Med 35:1538–1550

    CAS  PubMed  Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436

    CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1061

    Google Scholar 

  • Ris H, Singh RN (1961) Electron microscope studies on blue-green algae. J Biophys Biochem Cytol 9:63–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR et al (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceaninc niche differentiation. Nature 424:1042–1047

    CAS  PubMed  Google Scholar 

  • Savage DF, Afonso B, Chen AH, Silver PA (2010) Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327:1258–1261

    CAS  PubMed  Google Scholar 

  • Scherer S, Chen TW, Boger P (1988) A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol 88:1055–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmetterer G (1994) Cyanobacterial respiration. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 409–435

    Google Scholar 

  • Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM (2006) Structure of the Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. J Mol Biol 364:526–535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schopf JW (1993) Microfossils of the early archean apex chert: new evidence of the antiquity of life. Science 260:640–646

    CAS  PubMed  Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordecht

    Google Scholar 

  • Shafirovich V, Dourandin A, Huang W, Geacintov NE (2001) The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J Biol Chem 276:24621–24626

    CAS  PubMed  Google Scholar 

  • Sherman DM, Troyan TA, Sherman LA (1994) Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942. Plant Physiol 106:251–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman LA, Meunier P, Colon-Lopez MS (1998) Diurnal rhythms in metabolism: a day in the life of a unicellular, diazotrophic cyanobacterium. Photosynth Res 58:25–42

    CAS  Google Scholar 

  • Shively JM, Vankeulen G, Meijer WG (1998) Something from nothing – carbon dioxide fixation in chemoautotrophs. Ann Rev Microbiol 52:191–230

    CAS  Google Scholar 

  • Siefert JL, Fox GE (1998) Phylogenetic mapping of bacterial morphology. Microbiology 144:2803–2808

    CAS  PubMed  Google Scholar 

  • Simon RD (1981) Gliding motility in Aphanothece halophytica: analysis of wall proteins in mot mutants. J Bacteriol 148:315–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SP, Montgomery BL (2011) Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol 19:278–285

    CAS  PubMed  Google Scholar 

  • So AK-C, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (εClass) is a component of the carboxysome shell. J Bacteriol 186:623–630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stadtman ER, Berlett BS (1991) Fenton chemistry. Amino acid oxidation. J Biol Chem 266:17201–17211

    CAS  PubMed  Google Scholar 

  • Stanier RY (1988) Fine structure of cyanobacteria. In: Packer L, Glazer AN (eds) Methods in enzymology. Academic, New York, pp 157–172, Vol 167

    Google Scholar 

  • Stanier RY, van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42:17–35

    CAS  PubMed  Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfenig N, Gorlenko VN, Kondratieva EMN, Eimhjellen KE, Whittenbury R, Gherna RL, Truper HG (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. Int J Sys Bacteriol 28:335–336

    Google Scholar 

  • Summons RE, Jahnke LL, Hope LM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    CAS  PubMed  Google Scholar 

  • Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52:155–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60:1–28

    CAS  Google Scholar 

  • Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Canon GC, Yeates TO (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086

    CAS  PubMed  Google Scholar 

  • Thiel T, Hartnett T, Pakrasi HB (1990) Examination of Photosystem II in heterocysts of the cyanobacterium Nostoc sp. ATCC 29150. In: Murata N (ed) Current research in photosynthesis. Kluwer, Dordrecht, pp 291–294, Vol 1

    Google Scholar 

  • Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MMM, Zehr JP (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550

    CAS  PubMed  Google Scholar 

  • Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ting CS, Ramsey ME, Wang YL, Frost AM, Jun E, Durham T (2009) Minimal genomes, maximal productivity: comparative genomics of the photosystem and light-harvesting complexes in the marine cyanobacterium, Prochlorococcus. Photosynth Res 101:1–19

    CAS  PubMed  Google Scholar 

  • Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, Affourtit JP, Zehr JP (2010) Metabolic streamlining in an open ocean nitrogen-fixing cyanobacterium. Nature 464:90–94

    CAS  PubMed  Google Scholar 

  • Trissl H-W, Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18:415–419

    CAS  PubMed  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol 11:14–52

    Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of a prochlorophyte, Prochlorothrix hollandica, to green chloroplasts. Nature 337:380–382

    CAS  PubMed  Google Scholar 

  • Umeda H, Aiba H, Mizuno T (1996) som A, a novel gene that encodes a major outer-membrane protein of Synechococcus sp. PCC 7942. Microbiology 142:2121–2128

    CAS  PubMed  Google Scholar 

  • Urbach E, Robertson DL, Chisholm SW (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–270

    CAS  PubMed  Google Scholar 

  • Vaara T (1982) The outermost surface structures in chroococcacean cyanobacteria. Can J Microbiol 28:929–941

    Google Scholar 

  • Van de Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270

    CAS  PubMed  Google Scholar 

  • Vermaas WFJ, Shen G, Styring S (1994) Electrons generated by photosystem II are utilized by an oxidase in the absence of photosystem I in the cyanobacterium Synechocystis PCC 6803. FEBS Lett 337:103–108

    CAS  PubMed  Google Scholar 

  • Wachi M, Doi M, Tamaki S, Park W (1987) Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J Bacteriol 169:4935–4940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsby AE (1985) The permeability of heterocysts to the gases nitrogen and oxygen. Proc R Soc Lond B 226:345–366

    CAS  Google Scholar 

  • Walsby AE (2007) Cyanobacterial heterocysts: terminal pores proposed as sites of gas exchange. Trends Microbiol 15:340–349

    CAS  PubMed  Google Scholar 

  • Wilcox M, Mitchison GJ, Smith RJ (1973) Pattern formation in the blue-green alga Anabaena. J Cell Sci 13:637–649

    CAS  PubMed  Google Scholar 

  • Wildon DC, Mercer FV (1963) The ultrastructure of the vegetative cell of blue-green algae. Aust J Biol Sci 16:585–596

    Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 1–25

    Google Scholar 

  • Wilmotte A, Golubic S (1991) Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Arch Hydrobiol, Suppl 92, Algological Studies 64:1–24

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 769–823

    Google Scholar 

  • Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC (2008) Protein-based organelles in bacteria: Carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691

    CAS  PubMed  Google Scholar 

  • Yentsch CS, Phinney DA (1989) A bridge between ocean optics and microbial ecology. Limnol Oceanogr 34:1694–1705

    Google Scholar 

  • Young KD (2003) Bacterial shape. Mol Microbiol 49:571–580

    CAS  PubMed  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703

    PubMed Central  PubMed  Google Scholar 

  • Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci U S A 98:13443–13448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173

    CAS  PubMed  Google Scholar 

  • Zehr JP, Mellon MT, Hiorns WD (1997) Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology 143:1443–1450

    CAS  PubMed  Google Scholar 

  • Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic Photosystem II. Science 322:1110–1112

    CAS  PubMed  Google Scholar 

  • Zhang C-C, Laurent S, Sakr S, Peng L, Bedu S (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59:367–375

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Award Numbers MCB-0615680 and MCB-0850900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire S. Ting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ting, C.S. (2014). The Architecture of Cyanobacteria, Archetypes of Microbial Innovation. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_14

Download citation

Publish with us

Policies and ethics