Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 14))

  • 512 Accesses

Abstract

This paper outlines an information processing scheme for using real (possibly “fuzzy”) observations to predict the results of other experiments within the context of a “theory.” The approach is based on the dichotomy between observer and system. It includes the explicit (geometrical) construction of “theories” from a group defining observational “degrees of freedom.” Empirical evidence is also analyzed fundamentally. Both observations and predictions involve the use of a “communication channel” linking system with observer. The quantum or classical nature of the theory is apparent in terms of channel distortion. The MEP provides the inference for the appropriate channel probability. The scheme allows the inference of stochastic processes and accommodates particle physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. G. Gallager (1968) Information Theory and Reliable Communication ( New York: Wiley).

    MATH  Google Scholar 

  2. T. Berger (1971) Rate Distortion Theory ( Englewood Cliffs, N.J.: Prentice-Hall).

    Google Scholar 

  3. R. Hermann (1966) Lie Groups for Physicists ( Reading, Mass.: Benjamin/Cummings).

    MATH  Google Scholar 

  4. V. S. Varadarajan (1970) Geometry of Quantum Theory ( I I ) ( New York: Van Nostrand Reinhold ).

    MATH  Google Scholar 

  5. G. W. Mackey (1976) The Theory of Unitary Group Representations ( Chicago: University of Chicago Press).

    MATH  Google Scholar 

  6. J. F. Cyranski (1982) J. Math. Phys. 23 (6), 1074–1077.

    Article  MathSciNet  Google Scholar 

  7. The classical family of all “random fields” certainly in- cludes those parametrized by V. Whether or not the classical notion is vaster is immaterial, as our procedure defines the natural fields that can be geometrically described. See C. DeWitt-Morette and K. D. Elworthy (1981) Phys. Rep. 77 (3), 125–167.

    Google Scholar 

  8. See, for example, G. E. Chamerlain, S. R. Mielczarek, and C. E. Kuyatt (1970) Phys. Rev. A 2 (5), 1905–1922.

    Article  Google Scholar 

  9. L. A. Zadeh (1965) Inf. Control 8, 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. Skorohod (1974) Integration in Hilbert Space ( New York: Springer-Verlag).

    Book  Google Scholar 

  11. W. Ochs (1976) Rep. Math. Phys. 9 (3), 331–354.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. F. Cyranski (1981) Inf. Sci. 24, 217–227.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. K. Bose (1981) Phys. Rev. D 24 (8), 2153–2159.

    Article  Google Scholar 

  14. R. Newton (1966) Scattering Theory of Waves and Particles ( New York: McGraw-Hill).

    Google Scholar 

  15. L. Fonda (1976) A critical discussion on the decay of quantum unstable systems, Trieste Preprint IC/76/20.

    Google Scholar 

  16. J. Rayski (1973) Found. Phys. 3, 89; (1977) 7, 151; (1979) 9, 217.

    MathSciNet  Google Scholar 

  17. R. G. Wooley (1980) Israel J. Chem. 19, 30–46.

    Google Scholar 

  18. H. Laue (1977) Found. Phys. 8 (1/2), 1–30.

    MathSciNet  Google Scholar 

  19. Angle and time operators have no satisfactory self-adjoint realization in quantum theory. For angle variables in quantum mechanics, see P. Carruthers and M. M. Nieto (1968) Rev. Mod. Phys. 40 (2), 411–440. For time operators, see M. Jammer (1974) The Philosophy of Quantum Mechanics ( New York: Wiley).

    Google Scholar 

  20. J. F. Cyranski (1981) J. Math. Phys. 22 (7), 1467–1478.

    Article  MathSciNet  Google Scholar 

  21. J. F. Cyranski (1980) pp. 3–10 in D. G. Lainiotis and N. S. Tzannes, eds., Advances in Communications ( Dordrecht: Reidel).

    Google Scholar 

  22. C. Shannon (1948) Bell Syst. Tech. J. 27, 379–423, 623–656.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cyranski, J.F. (1985). Toward a General Theory of Inductive Inference. In: Smith, C.R., Grandy, W.T. (eds) Maximum-Entropy and Bayesian Methods in Inverse Problems. Fundamental Theories of Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2221-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2221-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8418-7

  • Online ISBN: 978-94-017-2221-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics