Skip to main content

Probabilistic Earthquake Location in 3D and Layered Models

Introduction of a Metropolis-Gibbs method and comparison with linear locations

  • Chapter
Advances in Seismic Event Location

Part of the book series: Modern Approaches in Geophysics ((MAGE,volume 18))

Abstract

Probabilistic earthquake location with non-linear, global search methods allows the use of 3D models and produces comprehensive uncertainty and resolution information represented by a probability density function over the unknown hypocentral parameters. We describe a probabilistic earthquake location methodology and introduce an efficient Metropolis-Gibbs, non-linear, global sampling algorithm to obtain such locations. Using synthetic travel times generated in a 3D model, we examine the locations and uncertainties given by an exhaustive grid-search and the Metropolis-Gibbs sampler using 3D and layered velocity models, and by a iterative, linear method in the layered model. We also investigate the relation of average station residuals to known static delays in the travel times, and the quality of the recovery of known focal mechanisms. With the 3D model and exact data, the location probability density functions obtained with the Metropolis-Gibbs method are nearly identical to those of the slower but exhaustive grid-search. The location PDFs can be large and irregular outside of a station network even for the case of exact data. With location in the 3D model and static shifts added to the data, there are systematic biases in the event locations. Locations using the layered model show that both linear and global methods give systematic biases in the event locations and that the error volumes do not include the “true” location — absolute event locations and errors are not recovered. The iterative, linear location method can fail for locations near sharp contrasts in velocity and outside of a network. Metropolis-Gibbs is a practical method to obtain complete, probabilistic locations for large numbers of events and for location in 3D models. It is only about 10 times slower than linearized methods but is stable for cases where linearized methods fail. The exhaustive grid-search method is about 1000 times slower than linearized methods but is useful for location of smaller number of events and to obtain accurate images of location probability density functions that may be highly-irregular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K., and P.G. Richards (1980) Quantitative seismology, W.H. Freeman, San Francisco.

    Google Scholar 

  • Billings, S.D. (1994) Simulated annealing for earthquake location, Geophys. J. Int., 118, 680692.

    Google Scholar 

  • Calvert, A., F. Gomez, D. Seber, M. Barazangi, N. Jabour, A. Ibenbrahim, A. and Demnati (1997) An integrated geophysical investigation of recent seismicity in the Al-Hoceima region of North Morocco, Bull. Seism. Soc. Am. 87, 637–651.

    Google Scholar 

  • Dreger, D., R. Uhrhammer, M. Pasyanos, J. Frank, and B. Romanowicz (1998) Regional and far-regional earthquake locations and source parameters using sparse broadband networks: A test on the Ridgecrest sequence, Bull. Seism. Soc. Am. 88, 1353–1362.

    Google Scholar 

  • Geiger, L. (1912) Probability method for the determination of earthquake epicenters from the arrival time only (translated from German), Bull. St. Louis Univ. 8 (1), 56–71.

    Google Scholar 

  • Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Goldberg, D.E., and J. Richardson (1987) Genetic algorithms with sharing for multimodal function optimization, in J.J. Grefenstette (Ed.), Genetic Algorithms and their Applications, Proceedings of the Second International Conference on Genetic Algorithms and their applications, Lawrence Erlbaum Associates, Hillsdale, NJ, 41–49.

    Google Scholar 

  • Gresta, S., L. Peruzza, D. Slejko and G. Distefano (1998) Inferences on the main volcano-tectonic structures at Mt. Etna (Sicily) from a probabilistic seismological approach, J. Seis. 2, 105–116.

    Article  Google Scholar 

  • Hammersley, J.M., and D.C. Handscomb (1967) Monte Carlo Methods, Methuen, London.

    Google Scholar 

  • Holland, J.H. (1992) Adaptation in natural and artificial systems, Bradford Books/MIT Press, Cambridge, MA, 211 pp.

    Google Scholar 

  • Jones, R.H., and R.C. Stewart (1997) A method for determining significant structures in a cloud of earthquakes, J. Geophys. Res. 102, 8245–8254.

    Article  Google Scholar 

  • Keilis-Book, V.I., and T.B. Yanovskaya (1967) Inverse problems in seismology (structural review), Geophys. J. R. Astr. Soc. 13, 223–234.

    Article  Google Scholar 

  • Kennett, B.L.N. (1992) Locating oceanic earthquakes — the influence of regional models and location criteria, Geophys. J. Int. 108, 848–854.

    Article  Google Scholar 

  • Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi (1983) Optimization by simulated annealing, Science 220, 671–680.

    Article  Google Scholar 

  • Lahr, J.C. (1989) HYPOELLIPSENersion 2.0: A computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern, U.S. Geol. Surv. Open-File Rep. 89–116, 92 p.

    Google Scholar 

  • Lepage, G.P. (1978) A new algorithm for adaptive multidimensional integration, J. Comp. Phys. 27, 192–203.

    Article  Google Scholar 

  • Le Meur, H. (1994) Tomographie tridimensionelle a partor des temps des premieres arrivées des ondes P et S, application a la région de Patras (Grece), These de Doctorate, Université Paris VII, France.

    Google Scholar 

  • Le Meur, H., J. Virieux, and P. Podvin (1997) Seismic tomogrphy of the Gulf of Corinth: a comparison of methods, Ann. Geofis. 40, 1–24.

    Google Scholar 

  • Lomax, A., and R. Snieder (1995) Identifying sets of acceptable solutions to non-linear, geophysical inverse problems which have complicated misfit functions, Nonlinear Processes in Geophys. 2, 222–227.

    Article  Google Scholar 

  • Mohammadioun G., and P. Dervin (1995) A full scale laboratory for seismic studies in Southeastern France: The Middle Durance Fault, in Proc. 5th International Conference on Seismic Zonation, Ouest Editions, 2, 1635–1642

    Google Scholar 

  • Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller (1953) Equation of state calculations by fast computing machines, J. Chem. Phys. 1, 1087–1092.

    Article  Google Scholar 

  • Mosegaard, K., and A. Tarantola (1995) Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res. 100, 12431–12447.

    Article  Google Scholar 

  • Moser, T.J., T. van Eck, and G. Nolet (1992) Hypocenter determination in strongly heterogeneous earth models using the shortest path method, J. Geophys. Res. 97, 6563–6572.

    Article  Google Scholar 

  • Nelson, G.D., and J.E. Vidale (1990) Earthquake locations by 3-D finite-difference travel times, Bull. Seism. Soc. Am. 80, 395–410.

    Google Scholar 

  • Nolte, B., and L.N. Frazer (1994) Vertical seismic profile inversion with genetic algorithms, Geophys. J Int. 117, 162–178.

    Article  Google Scholar 

  • Pavlis, G.L. (1986) Appraising earthquake hypocenter location errors: a complete practical approach for single event locations, Bull. Seism. Soc. Am. 76, 1699–1717.

    Google Scholar 

  • Podvin, P. and I. Lecomte (1991) Finite difference computations of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools, Geophys. J. Int. 105, 271–284.

    Article  Google Scholar 

  • Press, F. (1968) Earth models obtained by Monte Carlo inversions, J. Geophys. Res. 73, 5223–5234.

    Article  Google Scholar 

  • Press, W.H., S.A. Teukolosky, W.T. Vetterling, and B.P. Flannery (1993) Numerical recipies in C: the art of scientific computing, Cambridge Univ. Press, Cambridge, 994 pp.

    Google Scholar 

  • Reasenberg, P. and D. Oppenheimer (1985) FPFIT, FPPLOT and FPPAGE: FORTRAN computer programs for calculating and plotting earthquake fault-plane solutions, U.S. Geol. Surv. Open-File Rep. 85–739, 109 p.

    Google Scholar 

  • Rothman, D.H. (1985) Nonlinear inversion, statistical mechanics, and residual statics estimation, Geophysics 50, 2784–2796.

    Article  Google Scholar 

  • Sambridge, M. and G. Drijkoningen (1992) Genetic algorithms in seismic waveform inversion, Geophys. J Int. 109, 323–342.

    Article  Google Scholar 

  • Sambridge, M. and K. Gallagher (1993) Earthquake hypocenter location using genetic algorithms, Bull. Seism. Soc. Am. 83 1467–1491.

    Google Scholar 

  • Sambridge, M.S., and B.L.N. Kennett (1986) A novel method of hypocenter location, Geophys. J R. Astron. Soc. 87, 313–331.

    Article  Google Scholar 

  • Scales, J. A., M. L. Smith, and T.L. Fischer (1992) Global optimization methods for multimodal inverse problems, J Comp. Phys. 103, 258–268.

    Article  Google Scholar 

  • Schwartz, S.Y., and G.D. Nelson (1991) Loma Prieta aftershock relocation with S-P traveltimes: effects of 3D structure and true error estimates, Bull. Seism. Soc. Am. 81, 1705–1725.

    Google Scholar 

  • Shearer, P.M. (1997) Improving local earthquake locations using the Ll norm and waveform cross correlation: Application to the Whittier Narrows, California, aftershock sequence., J. Geophys. Res. 102, 8269–8283.

    Article  Google Scholar 

  • Sen, M.K., and P.L. Stoffa (1995) Global optimization methods in geophysical inversion, Elsevier, Amsterdam, 281 p.

    Google Scholar 

  • Stoffa, P.L., and M.K. Sen (1991) Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane-wave seismograms, Geophysics 56, 1794–1810.

    Article  Google Scholar 

  • Tarantola, A. (1987) Inverse problem theory: Methods for data fitting and model parameter estimation, Elsevier, Amsterdam, 613 p.

    Google Scholar 

  • Tarantola, A. and B. Valette (1982) Inverse problems = quest for information, J Geophys., 50, 159–170.

    Google Scholar 

  • Vidale, J.E. (1988) Finite-difference calculation of travel times, Bull. Seism. Soc. Am., 78, 2062–2078.

    Google Scholar 

  • Vilardo, G., G. De Natale, G. Milano, and U. Coppa (1996) The seismicity of Mt. Vesuvius, Tectonophys., 261, 127–138.

    Article  Google Scholar 

  • Volant P., C. Berge, P. Dervin, M. Cushing., G. Mohammadiou and F. Mathieu (2000) The Southeastern Durance fault permanent network: preliminary results, J. Seism.,in press.

    Google Scholar 

  • Wiggins, R. A. (1969) Monte Carlo inversion of body wave observations, J Geophys. Res. 74, 3171–3181.

    Article  Google Scholar 

  • Wittlinger, G., G. Herquel, and T. Nakache (1993) Earthquake location in strongly heterogeneous media, Geophys. J Int. 115, 759–777.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lomax, A., Virieux, J., Volant, P., Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. In: Thurber, C.H., Rabinowitz, N. (eds) Advances in Seismic Event Location. Modern Approaches in Geophysics, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9536-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9536-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5498-2

  • Online ISBN: 978-94-015-9536-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics