Skip to main content

Transition Metal-Containing Catenanes and Rotaxanes : Control of Electronic and Molecular Motions

  • Chapter
Supramolecular Science: Where It Is and Where It Is Going

Part of the book series: NATO ASI Series ((ASIC,volume 527))

  • 217 Accesses

Abstract

Catenaries and rotaxanes are molecules based on mechanical bonds. Catenanes are made up with interlocking rings, whereas rotaxanes are molecules consisting of a cyclic component threaded onto a dumbbell-shaped linear component. Although first synthesized in the late sixties, they were considered as curiosities until the template methods (taking advantage of hydrophobic interactions, or using a transition metal or donor-acceptor interactions between aromatic stacks) made them relatively easily available. This allowed for the development of functional catenanes and rotaxanes, that is molecules responding to external stimuli, like injection or removal of electrons, light irradiation, and so on. Examples are rotaxanes and catenanes displaying electrochemically-triggered intramolecular motions such as translation of the ring along the dumbbell axle, rotation of one ring within the other, or photochemically-induced electron transfer from Zn(II)-porphyrin stoppers (electron donors in the excited state) to a Au(III) porphyrin electron acceptor appended to the ring component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Schill, Catenanes, Rotaxanes and Knots, Academic Press, New York, 1971

    Google Scholar 

  2. C.O. Dietrich-Buchecker, J.-P. Sauvage, Chem. Rev. 1987, 87, 795–810

    Article  CAS  Google Scholar 

  3. C.O. Dietrich-Buchecker, J.-P. Sauvage, Bioorganic Chemistry Frontiers 1991, 2, 195–248

    Article  CAS  Google Scholar 

  4. H.W. Gibson, M.C. Bheda, P.T. Engen, Progr. Polym. Sci. 1994, 19, 843

    Article  CAS  Google Scholar 

  5. D.B. Amabilino, J.F. Stoddart, Chem. Rev. 1995, 95, 2725–2828

    Article  CAS  Google Scholar 

  6. R. Jäger, F. Vögtle, Angew. Chem. Int. Ed. Engl. 1997, 36, 930–944.

    Article  Google Scholar 

  7. H.L. Frisch, E. Wasserman, J. Am. Chem. Soc. 1961, 83, 3789–3795

    Article  CAS  Google Scholar 

  8. V.I. Sokolov, Russian Chem. Rev. (Engl. Transl.) 1972, 41, 452–463.

    Article  Google Scholar 

  9. A. Lüttringhaus, F. Cramer, H. Prinzbach, F.M. Henglcin, Liebigs Ann. Chem. 1958, 613, 185–198.

    Article  Google Scholar 

  10. H. Ogino, J. Am. Chem. Soc. 1981, 103, 1303–1304

    Article  CAS  Google Scholar 

  11. H. Ogino, K. Ohata, Inorg. Chem. 1984, 23, 3312–3316.

    Article  CAS  Google Scholar 

  12. D. Armspach, P.R. Ashton, C.P. Moore, N. Spencer, J.F. Stoddart, T.J. Wear, D.J. Williams, Angew. Chem. Int. Ed. Engl. 1993, 32, 854–858.

    Article  Google Scholar 

  13. G. Schill, H. Zollenkopf, Liebigs Ann. Chem. 1969, 721, 53–74

    Article  CAS  Google Scholar 

  14. G. Schill, R. Henschel, Liebigs Ann. Chem. 1970, 731, 113–119

    Article  CAS  Google Scholar 

  15. G. Schill, C. Zürcher, W. Vetter, Chem. Ber. 1973, 106, 228–235.

    Article  Google Scholar 

  16. I.T. Harrison, S. Harrison, J. Am. Chem. Soc. 1967, 89, 5723–5724

    Article  CAS  Google Scholar 

  17. I.T. Harrison, J. Chem. Soc, Chem. Commun. 1972, 231–232

    Google Scholar 

  18. I.T. Harrison, J. Chem. Soc. Perkin Trans. I 1974, 301–304.

    Google Scholar 

  19. K. Yamanari, Y. Shimura, Bull. Chem. Soc. Jpn. 1983, 56, 2283–2289

    Article  CAS  Google Scholar 

  20. R. Isnin, A.E. Kaifer, J. Am. Chem. Soc. 1991, 113, 8188–8190

    Article  CAS  Google Scholar 

  21. R.S. Wylie, D.H. Macartney, J. Am. Chem. Soc. 1992, 114, 3136–3138

    Article  CAS  Google Scholar 

  22. D.J. Cárdenas, P. Gavina, J.-P. Sauvagc, Chem. Commun. 1996, 1915–1916

    Google Scholar 

  23. D.J. Cárdenas, P. Gaviña, J.-P. Sauvage, J. Am. Chem. Soc. 1997, 119, 2656–2664.

    Article  Google Scholar 

  24. R.A. Bissell, E. Cordova, A.E. Kaifer, J.F. Stoddart, Nature 1994, 369, 133–137.

    Article  CAS  Google Scholar 

  25. F. Diederich, C. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, J. Chem. Soc, Chem. Commun. 1995, 781–782

    Google Scholar 

  26. N. Armaroli, F. Diedcrich, C.O. Dietrich-Buchecker, L. Flamigni, G. Marconi, J.-F. Nicrengarten, J.-P. Sauvage, Chem. Eur. J. 1998, 4, 406–416.

    Article  CAS  Google Scholar 

  27. P.R. Ashton, M.R. Johnston, J.F. Stoddart, M.S. Tolley, J.W. Wheeler, J. Chem. Soc, Chem. Commun. 1992, 1128–1131

    Google Scholar 

  28. F. Vöglie, F. Ahuis, S. Baumann, J.L. Sessler, Liebigs Ann. 1996, 921–926.

    Google Scholar 

  29. J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc, Chem. Commun. 1992, 1131–1133

    Google Scholar 

  30. J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Am. Chem. Soc. 1993, 115, 12378–12384

    Article  CAS  Google Scholar 

  31. J.-C. Chambron, S. Chardon-Noblat, A. Harriman, V. Heitz, J.-P. Sauvagc, Pure & Appl. Chem., 1993, 65, 2343–2349.

    Article  CAS  Google Scholar 

  32. J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, J. Am. Chem. Soc. 1993, 115, 6109–6114

    Article  CAS  Google Scholar 

  33. J.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, J. Am. Chem. Soc. 1993, 115, 7419–7425.

    Article  CAS  Google Scholar 

  34. D.B. Amabilino, J.-P. Sauvage, Chem. Commun. 1996, 2441–2442

    Google Scholar 

  35. D.B. Amabilino, J.-P. Sauvagc, New. J. Chem. 1998, 22, 395–409.

    Article  CAS  Google Scholar 

  36. M. Linke, J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Am. Chem. Soc. 1997, 119, 11329–11330.

    Article  CAS  Google Scholar 

  37. A. Livoreil, C.O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1994, 116, 9399–9400.

    Article  CAS  Google Scholar 

  38. For previous studies on 5-coordinate Cu(I) and Cu(II) complexes with imine-type ligands, see: a) J.A. Goodwin, D.M. Stanbury, L.J. Wilson, C.W. Eigenbrot, W.R. Scheidt, J. Am. Chem. Soc. 1987, 109, 2979–2991

    Article  CAS  Google Scholar 

  39. J.A. Goodwin, G.A. Bodager, L.J. Wilson, D.M. Stanbury, W.R. Scheidt, Inorg. Chem. 1989, 28, 35–42

    Article  CAS  Google Scholar 

  40. J.A. Goodwin, L.J. Wilson, D.M. Stanbury, R.A. Scott, inorg. Chem. 1989 28, 42–50

    Article  CAS  Google Scholar 

  41. C.M. Harris, T.N. Lockyer, Aust. J. Chem. 1970, 23, 673–682

    Article  CAS  Google Scholar 

  42. G. Arena, R.P. Bonomo, S. Musumeci, R. Purello, E. Rizzarelli, S. Sammartano, J. Chem. Soc. Dalton Trans. 1983, 1279–1283.

    Google Scholar 

  43. F. Baumann, A. Livoreil, W. Kaim, J.-P. Sauvage, Chem. Commun. 1997, 35–36; for the EPR properties of coppcr(II) complexes having similar coordination spheres as in 11 (4) 2+ or 11(5) 2+ see

    Google Scholar 

  44. B.A. Goodman, J.B. Raynor, Adv. Inorg. Chem. Radiochem. 1970, 13, 135–362

    Article  CAS  Google Scholar 

  45. M. Geoffroy, M. Wermeille, C.O. Dietrich-Buchecker, J.-P. Sauvage, G. Bernardinelli, Inorg. Chim. Acta 1990, 167, 157–164

    Article  CAS  Google Scholar 

  46. S.B. Sanni, H.J. Behm, P.T. Beurskens, G.A. Van Albada, J. Reedijk, A.T.H. Lenstra, A.W. Addison, M. Palaniandavar, J. Chem. Soc, Dalton Trans. 1988, 1429–1435

    Google Scholar 

  47. W. Kaim, Coord. Chem. Rev. 1987, 76, 187–235.

    Article  CAS  Google Scholar 

  48. P. Gaviña, J.-P. Sauvage, Tetrahedron Lett. 1997, 38, 3521–3524

    Article  Google Scholar 

  49. J.-P. Collin, P. Gaviña, J.-P. Sauvage, New J. Chem. 1997, 21, 525–528.

    CAS  Google Scholar 

  50. T. Elston, H. Wang, G. Oster, Nature 1998, 391, 510–513.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chambron, JC. et al. (1999). Transition Metal-Containing Catenanes and Rotaxanes : Control of Electronic and Molecular Motions. In: Ungaro, R., Dalcanale, E. (eds) Supramolecular Science: Where It Is and Where It Is Going. NATO ASI Series, vol 527. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4554-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4554-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5933-6

  • Online ISBN: 978-94-011-4554-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics