Skip to main content

Peritidal Potential Stromatolites — A Synopsis

  • Chapter
Phanerozoic Stromatolites II

Abstract

The term peritidal refers to areas “within and slightly outside the influence of tides”. The diversity and distribution of potential stromatolites growing in these areas is discussed. The chapter deals with Recent examples to better understand the available ecospace of procaryotes that produce biolaminations to considerable thickness. Two main variations are considered: the macro- to mesotidal coast controlled by a severe tidal rhythm, and the microtidal coast, usually more protected against ocean dynamics and controlled by climate factors. In macrotidal to mesotidal areas of temperate climate, microbial mats usually develop first at the intertidal/supratidal boundary. Their distribution seems to be controlled by effects of tidal flushing which runs twice a day, erodes sediment and supplies the intertidal bioturbating fauna with plenty food and oxygen. At microtidal coast which are more frequent in lower latitudes, effects of tides are less intense, climatic factors getting more important for benthic systems. Schizohaline, hypersaline or even freshwater conditions prevail. Distribution of microbial mats towards the intertidal takes place. Likewise, structural diversification of microbial mats increases. Smooth, tufted, pinnacle- and pincushion-like, pustular and blistered surface structures indicate low energy conditions. Microbial bioherms may basically indicate the increase of water depth. Three basic mechanisms producing biolaminated buildups are discussed: (a) the grain-supported type resulting from the movement of motile microbes corresponding to repeated sedimentation of lower rate, (b) buildups according to filaments erected above the mat surface causing baffling of currents and settling of sediment grains, (c) mat-by-mat overgrowth without sedimentation resulting from a competitive growth between populations of mat-forming microbes in response to fluctuations of local ecological conditions. Grain-supported growth bedding may indicate settings controlled by tidal activity, while biolaminations without sedimentation refer to settings in which almost non-deposition prevails (e.g. microtidal lagoons and anchialine pools). Several sedimentological features are discussed which in association with biolaminated deposits contribute to peritidal characteristics (e.g. open space structures, non-skeletal carbonate particles forming within microbial mats, burrows, physical deformation structures, peritidal organic matter and metal accumulation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.E. and Frenzel, H.N. (1950) “Capitan barrier reef, Texas and New Mexico”, J. Geol. 58, 289–312.

    Article  Google Scholar 

  • Awramik, S.M. and Riding, R. (1988) “Role of algal eukaryotes in subtidal columnar stromatolite formation”, Proceedings, Nat. Acad. Sci., USA 85, 1327–1329.

    Article  Google Scholar 

  • Bates, R.L. and Jackson, J.A. (ed.) (1987) “Glossary of geology Am. Geol. Inst., Falls Church Virg, 751 PP.

    Google Scholar 

  • Bauld, J. (1984) “Microbial mat in marginal marine environments; Shark Bay, Western Australia and Spencer Gulf, South Australia”, in Y. Cohen, R.W. Castenholz and H.O. Halvorson (eds.) “Microbial Mats: Stromatolites”, Alan Liss Publ, New York, pp 39–58.

    Google Scholar 

  • Bernier, P., Gaillard, C., Gall, J.C., Barale, G., Bourseau, J.P., Buffetaut, E. and Wenz, S. (1991) “Morphogenetic impact of microbial mats on surface structures of Kimmeridgian micritic limestones (Cerin, France)” Sedimentology 38, 127–136.

    Article  Google Scholar 

  • Brock, T.D. (1976) “Biological techniques for the study of microbial mats and living stromatolites”, in M.R. Walter (ed.), Developments in sedimentology 20, “Stromatolites”, Elsevier, Amsterdam, pp 21–30.

    Google Scholar 

  • Burne, R.V. and Colwell, J.B. (1982) “Temperate carbonate sediments of Northern Spencer Gulf, South Australia: A high salinity “foramol” province”, Sedimentology 29, 223–238.

    Article  Google Scholar 

  • Busson, G. (1988) “Evaporites et Hydrocarbures”, Sciences de la Terre 55, 1–139.

    Google Scholar 

  • Cameron, B., Cameron, D. and Jones, J.R. (1985) “Modern algal mats in intertidal and supratidal quartz sands, Northeastern Massachusetts, USA”, in H.A. Curran (ed.), SEPM Spec Publ No 35, “Biogenic structures: Their use in interpreting depositional environments”, SEPM, Tulsa Oklahoma, pp. 211–223.

    Google Scholar 

  • Carballo, J.D., Land, L.S. and Miser, D.E. (1987) “Holocene dolomitization of supratidal sediments by active tidal pumping, Sugarloaf Key, Florida”, J. Sed. Petrol. 57, 153–165.

    Google Scholar 

  • Cohen, Y. (1984) “The Solar Lake cyanobacterial mats: strategies of photosynthetic life under sulfide”, in Y. Cohen, R.W. Castenholz and H.O. Halvorson (eds.) “Microbial Mats: Stromatolites”, Alan Liss Publ, New York, pp 133–148.

    Google Scholar 

  • Cornee, A, Dickman, M. and Busson G. (1992) “Laminated cyanobacterial mats in sediments of solar salt works: some sedimentological implications”, Sedimentology 39, 599–612.

    Article  Google Scholar 

  • Dade, W.B., Davis, J.D., Nichols, P.D., Nowell, A.R.M., Thistle, D., Trexler, M. & White, D.C. (1990) “Effects of bacterial exopolymer adhesion on the entrainment of sand”, Geomicrobiol. J. 8, 1–16.

    Article  Google Scholar 

  • Dahanayake, K., Gerdes, G., Krumbein, W.E. (1985) “Stromatolites, oncolites and oolites biogenically formed in situ”, Naturwissenschaften 72, 513–518.

    Article  Google Scholar 

  • Davies, J.L. (1980) “Geographic variation of coastal development”, in K.M. Clayton (ed.), Geomorphology text 4, Longman Group Ltd, London.

    Google Scholar 

  • Dean, W.E. and Anderson, R.Y. (1978) “Salinity cycles: evidence for subaqueous deposition of Castile Formation and lower part of Salado Formation, Delaware Basin, Texas and New Mexico”, N. Mex. Bur. Mines Mineral. Resoure Circ. 159, 15–20.

    Google Scholar 

  • Decima, A., McKenzie, J.A., Schreiber, B.C. (1988) “The origin of “evaporative” limestones: An example from the Messinian of Sicily (Italy)”, J. Sed. Pet. 58, 256–272.

    Google Scholar 

  • Dill, R.F., Shinn, E.A., Jones, A.T., Kelly, K. and Steinen, R.P. (1986) “Giant subtidal stromatolites forming in normal salinity waters”, Nature 324, 55–58.

    Article  Google Scholar 

  • Dunlop, J.S.R., Muir, M.D., Milne, V.A. and Groves, D.I. (1978) “A new microfossil assemblage from the Archaean of western Australia”, Nature 274, 676–678.

    Article  Google Scholar 

  • Eggleston, J.R. and Dean, W.E. (1976) “Freshwater stromatolitic bioherms in Green Lake, New York”, in M.R. Walter (ed.) Developments in sedimentology 20, “Stromatolites”, Elsevier, Amsterdam, pp. 479–488.

    Google Scholar 

  • Ehrlich, A. and Dor, I. (1985) “Photosynthetic microorganisms of the Gavish Sabkha”, in G.M. Friedman and W.E. Krumbein (eds.) “Hypersaline Ecosystems The Gavish Sabkha”, Ecological studies 53, Springer, Berlin, pp. 296–321.

    Chapter  Google Scholar 

  • Evans, G. (1965) “Intertidal flat sediments and their environments of deposition in the Wash”, Q. J. Geol. Soc. London 121, 209–245.

    Article  Google Scholar 

  • Evans, G. (1970) “Coastal and nearshore sedimentation: A comparison of clastic and carbonate deposition”, Proc. Geol. Assoc. 81, 493–508.

    Article  Google Scholar 

  • Flügel, E. (1982) “Microfacies analysis of limestones”, Springer, Berlin.

    Book  Google Scholar 

  • Folk R.L. (1973) “Evidence for peritidal deposition of Devonian Caballos Novaculite, Marathon Basin, Texas”, AAPG Bull. 57, 702–725.

    Google Scholar 

  • Folk, R.L. and Siedlecka, A. (1974) “The schizohaline environment: its sedimentary and diagenetic fabrics as exemplified by Late Paleozoic rocks of Bear Island, Svalbard”, Sed. Geol. 11, 1–15.

    Article  Google Scholar 

  • Frey, R.W. and Basan, P.B. (1978) “Coastal salt marshes”, in R.A. Davies (ed.) “Coastal sedimentary environments”, Springer, New York, pp. 101–169.

    Chapter  Google Scholar 

  • Frey, R.W., Howard, J.D. (1986) “Mesotidal estuarine sequences: A perspective from the Georgia Bight”, J. Sed. Petrol. 56, 911–924.

    Google Scholar 

  • Friedman, G.M. (1978) “Solar Lake: A sea-marginal pond of the Red Sea (Gulf of Aqaba or Elat) in which algal mats generate carbonate particles and laminites”, in W.E. Krumbein (ed.), “Environmental Biogeochemistry and Geomicrobiology. The Aquatic Environment” 1, Ann Arbor Sci. Publ. Inc., Michigan, pp. 227–235.

    Google Scholar 

  • Friedman, G.M. and Sanders, J.E. (1978) “Principles of sedimentology”, J. Wiley Sons, New York.

    Google Scholar 

  • Gasiewicz, A., Gerdes, G., Krumbein, W.E. (1987) “The peritidal sabkha type stromatolites of the Platy Dolomite (CaCO3) of the Leba elevation (Northern Poland)”, in T.M. Peryt (ed.) “The Zechstein facies in Europe”, Lecture Notes in Earth Science 10, Springer, Berlin, 253–272.

    Google Scholar 

  • Gavish, E., Krumbein, W.E. and Halevy, J. (1985) “Geomorphology, mineralogy and groundwater geochemistry as factors of the hydrodynamic system of the Gavish Sabkha”, in G.M. Friedman and W.E. Krumbein (eds.) “Hypersaline Ecosystems The Gavish Sabkha”, Ecological studies 53, Springer, Berlin, pp.. 186–217.

    Google Scholar 

  • Gerdes, G. and Krumbein, W.E. (1987) “Biolaminated deposits”, in S. Bhattacharji, G.M. Friedman, H.J. Neugebauer and A. Seilacher (eds.), Lecture Notes in Earth Sciences 9, Springer, Berlin.

    Google Scholar 

  • Gerdes, G., Krumbein, W.E. and Reineck, H.E. (1985a) “The depositional record of sandy, versicolored tidal flats (Mellum Island, southern North Sea)”, J. Sedim. Petrol. 55, 265–278.

    Google Scholar 

  • Gerdes, G., Krumbein, W.E. and Holtkamp E.M. (1985b) “Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha”, in G.M. Friedman and W.E. Krumbein (eds.) “Hypersaline ecosystems The Gavish Sabkha”, Ecological studies 53, Springer, Berlin, pp. 238–266.

    Google Scholar 

  • Gerdes, G., Spira, Y. and Dimentman, C. (1985c) “The fauna of the Gavish Sabkha and the Solar Lake — a comparative study”, in G.M. Friedman and W.E. Krumbein (eds.) “Hypersaline ecosystems The Gavish Sabkha”, Ecological studies 53, Springer, Berlin, pp. 322–345.

    Google Scholar 

  • Gerdes, G., Krumbein, W.E. and Reineck, H.E. (1991) “Biolaminations-ecological versus depositional dynamics” in G. Einsele, W. Ricken, and A. Seilacher (eds.) “Cycles and events in stratigraphy”,Berlin (Springer), 593–607.

    Google Scholar 

  • Gerdes, G., Claes, M., Dunajtschik, K., Riege, H., Krumbein, W.E. and Reineck, H.E. (1993) “Contribution of microbial mats to sedimentary surface structures”, Facies, in press.

    Google Scholar 

  • Giani, D., Seeler, J., Giani, L. and Krumbein, W.E. (1989) “Microbial mats and physicochemistry in a saltern in the Bretagne (France) and in a laboratory scale saltern model”, FEMS Microbiology Ecol. 62, 151–162.

    Article  Google Scholar 

  • Golubic, S. (1973) “The relationship between blue-green algae and carbonate deposits”, in N. Carr and B.A. Whitton (eds.) “The biology of blue-green algae”, Blackwell, Oxford, pp. 434–472.

    Google Scholar 

  • Golubic, S. (1976) “Taxonomy of extant stromatolite-building cyanophytes”, in Y. Cohen, R.W.

    Google Scholar 

  • Castenholz and H.O. Halvorson (eds.) “Microbial mats: Stromatolites”, MBL Lectures in Biol., Alan Liss, New York, pp.. 245–263.

    Google Scholar 

  • Golubic, S. (1980) “Halophily and halotolerance in cyanophytes”, Origin of Life 10, pp. 169–183.

    Article  Google Scholar 

  • Hagan, G.M., Logan, B.W. (1975) “Prograding tidal-flat sequences: Hutchinson Embayment, Shark Bay, Western Australia”, in R.N. Ginsburg (ed.) “Tidal deposits”, Springer, Berlin, pp. 215–222.

    Chapter  Google Scholar 

  • Hayes, M.O. (1979) “Barrier island morphology as a function of tidal and wave regime”, in S.P. Leatherman (ed.) “Barrier Islands”, Academic Press, New York, pp. 1–27.

    Google Scholar 

  • Heinzelmann, C. and Wallisch, S. (1991) “Benthic settlement and bed erosion. A review”, J. Hydraulic Res. 29, 355–373.

    Article  Google Scholar 

  • Hoffman, P. (1976) “Stromatolite morphogenesis in Shark Bay, Western Australia”, in M.R. Walter (ed.) “Stromatolites”, Developments in sedimentology 20, Elsevier, Amsterdam, pp. 262–271.

    Google Scholar 

  • Hoffmann, C. (1942) “Beiträge zur Vegetation des Farbstreifen-Sandwattes”, Kieler Meeresforsch. 4, 85–108.

    Google Scholar 

  • Horodyski, R.J. (1977) “Lyngbya mats at Laguna Mormona, Baja California, Mexico: Comparison with Proterozoic stromatolites”, J. Sed. Petrol. 47, 1305–1320.

    Google Scholar 

  • Horodyski, R.J. and VonderHaar, S.P. (1975) “Recent calcareous stromatolites from Laguna Mormona (Baja California) Mexico”, J. Sed. Petrol. 45, 894–906.

    Google Scholar 

  • Howarth, R.W. and Marino, R. (1984) “Sulfate reduction in salt marshes, with some comparisons to sulfate reduction in microbial mats”, in Y. Cohen, R. W. Castenholz and H.O. Halvorson (eds.) “Microbial mats: Stromatolites”. MBL Lectures in Biol, Liss New York, pp. 245–263.

    Google Scholar 

  • Javor, B. (1989) “Hypersaline environments”, Springer, Berlin.

    Book  Google Scholar 

  • Kalkowsky, E. (1908) “Oolith und Stromatolith im norddeutschen Buntsandstein”, Z. Deutsch. Geol. Gesellsch. 60, 68–125.

    Google Scholar 

  • Kendall, C.G. and Skipwith, P.A. (1969) “Holocene shallow water carbonate and evaporite sediments of Khor als Bazam, Abu Dhabi, Southwest Persian Gulf, Bull. Amer. Ass. Petrol. Geol. 53, 841–869.

    Google Scholar 

  • Kendall, C.G.St. and Warren, J.K. (1987) “A review of the origin and setting of tepees and their associated fabrics”, Sedimentology 34, 1007–1027.

    Article  Google Scholar 

  • Krumbein, W.E. (1978) “Algal mats and their lithification”, in W.E. Krumbein (ed.) “Environmental biogeochemistry and geomicrobiology” 1, Ann Arbor Sci. Publ. Inc., Michigan, pp. 209–225.

    Google Scholar 

  • Krumbein, W.E. (1983) “Stromatolites — The challenge of a term in space and time”, Precambrian Research 20, 493–531.

    Article  Google Scholar 

  • Krumbein, W.E. (1986) “Biotransfer of minerals by microbes and microbial mats”, in B.S.C. Leadbeater and R. Riding (eds.) “Biomineralization in lower plants and animals”. Oxford Univ. Press, Oxford, pp. 55–72.

    Google Scholar 

  • Krumbein, W.E., Cohen Y. and Shilo, M. (1977) “Solar Lake (Sinai) 4. Stromatolitic cyanobacterial mats”, Limnology and Oceanography 22, 635–656.

    Article  Google Scholar 

  • Knimbein, W.E., Buchholz, H., Franke, P., Giani, D., Giele, C. and Wonneberger, K. (1979) “O2 and H2S coexistence in stromatolites. A model for the origin of mineralogical lamination in stromatolites and banded iron formations”, Naturwissenschaften 66, 381–389.

    Article  Google Scholar 

  • Le Gall J. and Larsonneur (1972) “Sequences et environments sedimentaires dans la Baie des Veys (Manche)”, Rev. Geogr. Geol. Dyn. 14, 189–204.

    Google Scholar 

  • Logan, B.W., Rezak, R. and Ginsburg, R.N. (1964) “Classification and environmental significance of algal stromatolites”, J. Geol. 72, 68–83.

    Article  Google Scholar 

  • Monty, Cl. (1965) “Recent algal stromatolites in the windward lagoon, Andros Island, Bahamas”, Ann. Soc. Geol. Belg. 88, 269–276.

    Google Scholar 

  • Monty Cl. (1967) “Distribution and structure of Recent stromatolitic algal mats eastern Andros Island, Bahamas”, Ann. Soc. Geol. Belg. 90, 55–100.

    Google Scholar 

  • Monty, Cl. (1972) “Recent algal stromatolitic deposits, Andros Island, Bahamas, Preliminary report”, Geol. Rundschau 61, 742–783.

    Article  Google Scholar 

  • Monty, Cl. (1976) “The origin and development of cryptalgal fabrics”, in M.R. Walter (ed.) “Stromatolites”, Developments in sedimentology 20, Elsevier, Amsterdam, pp. 193–249.

    Google Scholar 

  • Monty, Cl. (1979) “Scientific reports of the Belgian expedition on the Australian Great Barrier Reefs, 1967, Sedimentology 2, monospecific stromatolites from the Great Barrier Reef tract and their paleontological significance”, Ann. Soc. Geol. Belgique 101, 163–171.

    Google Scholar 

  • Monty, Cl. and Hardie, L.A. (1976) “The geological significance of the freshwater blue-green algal calcareous marsh”, in M.R. Walter (ed.) “Stromatolites”, Developments in sedimentology 20, Elsevier, Amsterdam, pp. 447–477.

    Google Scholar 

  • Monty, Cl. and Mas, J.R. (1981) “Lower Cretaceous (Wealdiaan) blue green algal deposits of the province of Valencia, Eastern Spain”, in Cl. Monty (ed.) “Phanerozoic stromatolites”, Springer, Berlin, pp. 85–120.

    Chapter  Google Scholar 

  • Playford, P.E. and Cockbain, A.E. (1976) “Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia”, in M.R. Walter (ed.) “Stromatolites”, Developments in sedimentology 20, Elsevier, Amsterdam, pp. 389–411.

    Google Scholar 

  • Por, F.D. (1985) “Anchialine pools — comparative hydrobiology”, in G.M. Friedman and W.E. Krumbein (eds.) “Hypersaline ecosystems The Gavish Sabkha”, Ecological studies 53, Springer, Berlin, pp. 136–144.

    Google Scholar 

  • Pratt, B.R. (1979) “Early cementation and lithification in intertidal cryptalgal structures, Boca Jewfish, Bonaire, Netherlands Antilles”, J. Sed. Petrol. 49, 371–386.

    Google Scholar 

  • Pratt, B.R. and James, N.P. (1986) “Carbonate islands in epeiric seas”, Sedimentology, 313-343.

    Google Scholar 

  • Purser, B.H. (1985) “Coastal evaporite systems”, in G.M. Friedman and W.E. Krumbein (eds.) “Hypersaline ecosystems The Gavish Sabkha”, Ecological studies 53, Springer, Berlin, pp. 72–102.

    Google Scholar 

  • Rasmussen, K.A., Macintyre, I.G. and Prufert, L. (1993) “Modern stromatolite reefs fringing a brackish coastline, Chetumal Bay, Belize”, Geology 21, 199–202.

    Article  Google Scholar 

  • Reid, R.P. and Browne, K.M. (1991) “Intertidal stromatolites in a fringing Holocene reef complex, Bahamas”, Geology 19, 15–18.

    Article  Google Scholar 

  • Reineck, H.E. (1979) “Rezente und fossile Algenmatten und Wurzelhorizonte”, Natur u. Museum 109, 290–296.

    Google Scholar 

  • Reineck, H.E., Gerdes, G., Claes, M., Dunajtschik, K., Riege, H. and Krumbein, W.E. (1990) “Microbial modification of sedimentary surface structures”, in D. Heling, P. Rothe, U. Förstner and P. Stoffers (eds.) “Sediments and environmental geochemistry”, Springer, Berlin, 254–276.

    Chapter  Google Scholar 

  • Riding, R., Awramik, S.M., Winsborough, B.M., Griffin, K.M. And Dill, R.F. (1991a) “Bahamian giant stromatolites: microbial composition of surface mats”, Geol. Mag. 128, 227–234.

    Article  Google Scholar 

  • Riding, R., Braga, J.C. and Martin, J.M. (1991b) “Oolite stromatolites and thrombolites, Miocene, Spain: analogues of Recent giant Bahamian examples”, Sedimentary Geol. 71, 121–127.

    Article  Google Scholar 

  • Rouchy, J.M. (1988) “Relations évaporites-hydrocarbures: l’association laminites-récifs-évaporites dans le Messinien de Méditerranée et ses enseignements”, in G. Busson (ed.) “Evaporites et Hydrocarbures”, Sciences de la Terre 55, pp. 43–70.

    Google Scholar 

  • Sarg, J.F. (1981) “Petrology of the carbonate evaporite facies transition of the Seven Rivers Formation (Guadalupian, Permian) southeast New Mexico”, J. Sed. Pet. 51, 73–75.

    Google Scholar 

  • Schwarz, H.U., Einsele, G. and Herrn, D. (1975) “Quartz-sandy, grazing-contoured stromatolites from coastal embayments of Mauritania, West Africa”, Sedimentology 22, 539–561.

    Article  Google Scholar 

  • Shinn, E.A. (1972) “Worm and algal-built columnar stromatolites in the Persian Gulf”, J. Sed. Petrol. 42, 837–840.

    Google Scholar 

  • Shinn, E.A. (1983) “Tidal flat environment”, AAPG Mem 33, 172–210.

    Google Scholar 

  • Shinn, E.A. (1986) “Modern carbonate tidal flats: Their diagnostic features”, in L.A. Hardie and E.A. Shinn (eds.) “Carbonate depositional environments, modern and ancient”, Colorado School of Mines Quarterly 81, 7–35.

    Google Scholar 

  • Shinn, E.A. (1987) “Sand castles from the past: Bahamian stromatolites discovered”, Sea Frontiers 33, 334–343.

    Google Scholar 

  • Stal, L.J., Gemerden, H. and Krumbein, W.E. (1985) “Structure and development of a benthic marine microbial mat”, FEMS Microbiol. Ecol. 31, 111–125.

    Article  Google Scholar 

  • Stolz, J.F. (1984) “Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: II transmission electron microscopy as a diagnostic tool in studying microbial communities in situ”, in Y. Cohen R.W. Castenholz and H.O. Halvorson (eds.) “Microbial mats: Stromatolites”, Alan Liss Publ, New York, pp. 23–38.

    Google Scholar 

  • Stolz, J.F. (1990) “Distribution of phototrophic microbes in the flat-laminated microbial mat at Laguna Figueroa, Baja California, Mexico”, Biosystems 23, 345–357.

    Article  Google Scholar 

  • Tebutt, G.E., Conley, C.D. and Boyd, D.W. (1965) “Lithogenesis of a distinctive carbonate rock fabric”, Wyoming Univ. Contr. Geol. 4, 1–13

    Google Scholar 

  • Tribovillard, N.P., Gorin, G.E., Belin, S., Hopfgartner, G. and Pichon, R. (1992) “Organic-rich biolaminated facies from a Kimmeridgian lagoonal environment in the French Southern Jura mountains — A way of estimating accumulation rate variations”, Palaeogeography, Palaeoclimatology, Palaeoecology 99, 163–177.

    Article  Google Scholar 

  • Trudinger, P.A. and Williams, N. (1982) “Stratified sulfide deposition in modern and ancient environments”, in Holland H.D. and M. Schidlowski (ed.) “Mineral deposits and the evolution of the biosphere”, Dahlem Konferenzen, Springer Berlin, 177–198.

    Chapter  Google Scholar 

  • Vai, G.B. and Ricci Lucchi, F.R. (1977) “Algal crusts, autochthonous and clastic gypsum in a cannibalistic evaporite basin: a case history from the Messinian of Northern Apennines”, Sedimentology 24, 211–244.

    Article  Google Scholar 

  • Warren, J.K. (1986) “Shallow-water evaporitic environments and their source rock potential”, J. Sed. Pet. 56, 442–454.

    Google Scholar 

  • Weiss, M.P. (1969) “Oncolites, paleoecology, and Laramide Tectonics, Central Utah”, AAPG Bull 53, 1105–1120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gerdes, G., Krumbein, W.E. (1994). Peritidal Potential Stromatolites — A Synopsis. In: Bertrand-Sarfati, J., Monty, C. (eds) Phanerozoic Stromatolites II. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1124-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1124-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4491-2

  • Online ISBN: 978-94-011-1124-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics