Skip to main content

Comparison of Stress Echocardiography and Scintigraphic Techniques for the Diagnosis of Coronary Artery Disease

  • Chapter
Stress Echocardiography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 149))

  • 41 Accesses

Abstract

Nuclear cardiology techniques may be used to diagnose coronary artery disease by the examination of myocardial function and perfusion at rest and during exercise. Because these methodologies are well established, the efficacy of stress echocardiography as an adjunct (or even, an alternative) warrants particularly careful consideration. However, despite the favorable record of the nuclear techniques, they have disadvantages with respect to cost (of imaging equipment, isotopes and disposables), patient convenience (particularly with thallium imaging) and availability. Nevertheless, the dominant issue in the selection of one or the other technique must be accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borer JS, Kent KM, Bacharach SL et al. Sensitivity, specificity and predictive accuracy of radionuclide cineangiography during exercise in patients with coronary artery disease. Circulation 1979;60: 572–580.

    Article  PubMed  CAS  Google Scholar 

  2. Gibbons RJ, Lee KL, Cobb FR et al. Ejection fraction response to exercise in patients with chest pain, coronary artery disease and normal resting ventricular function. Circulation 1982;66: 643–648.

    Article  PubMed  CAS  Google Scholar 

  3. Gibbons RJ. Equilibrium radionuclide angiography. In: Marcus ML, Schelbert HR, Skorton DJ, Wolf GL, editors. Cardiac imaging A companion to Braunwald’s Heart Disease. Saunders: 1991, 1027–1046.

    Google Scholar 

  4. Thrall JH, Froelich JW. Radionuclide ventriculography: Methods. In: Gerson MC. Cardiac Nuclear Medicine. New York: McGraw-Hill, 1987.

    Google Scholar 

  5. Manyari DE, Kostuk WJ. Left and right ventricular function at rest and during bicycle exercise in the supine and sitting positions in normal subjects and patients with coronary artery disease. Am J Cardiol 1983;51: 36–42.

    Article  PubMed  CAS  Google Scholar 

  6. Currie PJ, Kelly MJ, Pitt A. Comparison of supine and erect bicycle exercise electrocardiography in coronary heart disease: accentuation of exercise-induced ischemic ST depression by supine position. Am J Cardiol 1983;52: 1167–1173.

    Article  PubMed  CAS  Google Scholar 

  7. Jones RH. Radionuclide angiocardiography. In: Marcus ML, Schelbert HR, Skorton DJ, Wolf GL, editors. Cardiac imaging A companion to Braunwald’s Heart Disease. Saunders: 1991, 1006–1026.

    Google Scholar 

  8. Austin EH, Cogg FR, Coleman RE, Jones RH. Prospective evaluation of radionuclide angiocardiography for the diagnosis of coronary artery disease. Am J Cardiol 1982;50: 1212–1216.

    Article  PubMed  CAS  Google Scholar 

  9. Gibbons RJ, Lee KL, Cobb F, Jones RH. Ejection fraction response to exercise in patients with chest pain and normal coronary arteriograms. Circulation 1981;64: 952–957.

    Article  PubMed  CAS  Google Scholar 

  10. Gibbons RJ, Lee KL, Cobb FR et al. Ejection fraction response to exercise in patients with chest pain, coronary artery disease, and normal resting ventricular function. Circulation 1982;66: 643–648.

    Article  PubMed  CAS  Google Scholar 

  11. Gibbons RJ, Lee KL, Pryer D et al. The use of radionuclide angiography in the diagnosis of coronary artery disease, a logistic regression analysis. Circulation 1983;68: 740–746.

    Article  PubMed  CAS  Google Scholar 

  12. Jones RH, McEwan P, Newman GE et al. Accuracy of diagnosis of coronary artery disease by radionuclide measurement of left ventricular functionduring rest and exercise. Circulation 1981;64: 586–601.

    Article  PubMed  CAS  Google Scholar 

  13. Rozanski A, Diamond GA, Forrester JS et al. Should the content of testing influence its interpretation? J Am Coll Cardiol 1986;7: 17–24.

    Article  PubMed  CAS  Google Scholar 

  14. Rozanski A, Diamond GA, Forrester JS et al. The declining specificity of exercise radionuclide ventriculopathy. N Engl J Med 1983;309: 518–522.

    Article  PubMed  CAS  Google Scholar 

  15. Port S, Cobb FR, Coleman RE, Jones RH. The effects of age on the response of the left ventricular ejection fraction to exercise. N Engl J Med 1980;303: 1133–1139.

    Article  PubMed  CAS  Google Scholar 

  16. Higgenbotham MB, Morris KG, Coleman RE, Cobb FR. Sex related differences in normal cardiac response to upright exercise. Circulation 1984;70: 357–364.

    Article  Google Scholar 

  17. Gerson MC. Myocardial perfusion imaging: Kinetics and planar methods. In: Gerson MC. Cardiac Nuclear Medicine. New York: McGraw-Hill, 1987.

    Google Scholar 

  18. Kiat H, Berman DS, Maddahi J et al. Late reversibility of tomographic myocardial Tl-201 defects: An accurate marker of myocardial viability. J Am Coll Cardiol 1988;12: 1456–1463.

    Article  PubMed  CAS  Google Scholar 

  19. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323: 141–146.

    Article  PubMed  CAS  Google Scholar 

  20. Gould KL, Westcott RJ, Albro PC, Hamilton GW. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. II. Clinical methodology and feasibility. Am J Cardiol 1978;41: 279–287.

    Article  PubMed  CAS  Google Scholar 

  21. Iskandrian AS, Heo J, Kong B, Lyons E. Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: Analysis of 461 patients. J Am Coll Cardiol 1989;14: 1477–1486.

    Article  PubMed  CAS  Google Scholar 

  22. Kotler TS, Diamond GA. Exercise thallium-201 scintigraphy in the diagnosis and prognosis of coronary artery disease. Ann Intern Med 1990;113: 684–702.

    PubMed  CAS  Google Scholar 

  23. Fintel DJ, Links JM, Brinker JA, Frank TL, Parker M, Becker LC. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: A receiver operating characteristic analysis. J Am Coll Cardiol 1989;13: 600–612.

    Article  PubMed  CAS  Google Scholar 

  24. Van Train KF, Maddahi J, Berman DS, Kiat H, Areeda J, Prigent F, Friedman J, and Participants of the Multicenter Trial. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: A multicenter trial. J Nucl Med 1990;31: 1168–1179.

    PubMed  Google Scholar 

  25. Lebowitz E, Greene MV, Fairchild R et al. Thallium-201 for medical use. J Nucl Med 1976;16: 151–156.

    Google Scholar 

  26. Kahn JK, McGhie I, Akers MS et al. Quantitative rotational tomography with 201-T1 and 99 m-Tc 2-methoxy-isobutyl-isonitrile. A direct comparison in normal individuals and patients with coronary artery disease. Circulation 1989;79: 1282–1290.

    Article  PubMed  CAS  Google Scholar 

  27. Marwick T, Go RT, Maclntyre W et al. Comparison of myocardial perfusion imaging using positron emission tomography and single photon emission computed tomography: Frequency and causes of discrepant results. Eur Heart J 1991;12: 1064–1069.

    PubMed  CAS  Google Scholar 

  28. Go R, Marwick T, Maclntyre W et al. A prospective comparison of rubidium-82. PET and thallium 201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;331: 1899–1905.

    Google Scholar 

  29. Stewart R, Schwager M, Molina E et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67: 1303–1310.

    Article  PubMed  CAS  Google Scholar 

  30. Van Reet R, Quinones MA, Poliner LA et al. Comparison of two-dimensional echocardiography with gated radionuclide ventriculography in the evaluation of global and regional left ventricular function in acute myocardial infarction. J Am Coll Cardiol 1984;3: 243–252.

    Article  PubMed  CAS  Google Scholar 

  31. Ginzton LE, Conant R, Brizendine M, Lee F, Mena I, Laks MM. Exercise subcostal two-dimensional echocardiography: A new method of segmental wall motion analysis. Am J Cardiol 1984;53: 805–811.

    Article  PubMed  CAS  Google Scholar 

  32. Limacher MC, Quinones MA, Poliner LR, Nelson JG, Winters WL, Waggoner AD. Detection of coronary artery disease with exercise two-dimensional echocardiography: Description of a clinically applicable method and comparison with radionuclide ventriculography. Circulation 1983;67: 1211–1218.

    Article  PubMed  CAS  Google Scholar 

  33. Visser CA, van de Wieken RL, Kan G et al. Comparison of two-dimensional echocardiography with radionuclide angiography during dynamic exercise for the detection of coronary artery disease. Am Heart J 1983;106: 528–534.

    Article  PubMed  CAS  Google Scholar 

  34. Crawford MH, Petru MA, Amon KW, Sorensen SG, Vance WS. Comparitive value of 2-dimensional echocardiography and radionuclide angiography for quantitating changes in left ventricular performance during exercise limited by angina pectoris. Am J Cardiol 1984;53: 42–46.

    Article  PubMed  CAS  Google Scholar 

  35. Dehmer GJ, Firth BG, Hillis LD et al. Alterations in left ventricle volume and ejection fraction at rest and during exercise in patients with aortic regurgitation. Am J Cardiol 1981;48: 17–27.

    Article  PubMed  CAS  Google Scholar 

  36. Marwick T, Torelli J, Underwood D, Maclntyre WJ. Metabolic evidence of ischemia following high-and low-dose dipyridamole stress [abstract]. J Nucl Med 1992;33: 866.

    Google Scholar 

  37. Lattanzi F, Picano E, Bolognese L et al. Inhibition of dipyridamole-induced ischemia by antianginal therapy in humans. Circulation 1991;83: 1256–1262.

    Article  PubMed  CAS  Google Scholar 

  38. Leppo J, Boucher CA, Okada RD, Newell JB, Strauss HW, Pohost GM. Serial thallium-201 myocardial imaging after dipyridamole infusion: Diagnostic utility in detection of coronary stenoses and relation to regional wall motion. Circulation 1982;66: 649–657.

    Article  PubMed  CAS  Google Scholar 

  39. Maurer G, Nanda NC. Two dimensional echocardiographic evaluation of exercise-induced left and right ventricular asynergy: Correlation with thallium scanning. Am J Cardiol 1981;48: 720–727.

    Article  PubMed  CAS  Google Scholar 

  40. Galanti G, Sciagra R, Comeglio M et al. Diagnostic accuracy of peak exercise echocardiography in coronary artery disease: Comparison with thallium-201 myocardial scintigraphy. Am Heart J 1991;122: 1609–1616.

    Article  PubMed  CAS  Google Scholar 

  41. Pozzoli MM, Fioretti PM, Salustri A, Reijs AE, Roelandt JR. Exercise echocardiography and technetium-99 m MIBI single photon emission computed tomography in the detection of coronary artery disease. Am J Cardiol 1991;67: 350–355.

    Article  PubMed  CAS  Google Scholar 

  42. Salustri A, Pozzoli MM, Hermans W et al. Relationship between exercise echocardiography and perfusion single photon emission computed tomography in patients with single vessel coronary artery disease. Am Heart J 1992;124: 75–83.

    Article  PubMed  CAS  Google Scholar 

  43. Quinones MA, Verani MS, Haichin RM, Mahmarian JJ, Suarez J, Zoghbi WA. Exercise echocardiography versus Tl-201 single photon emission computed tomography in evaluation of coronary artery disease. Analysis of 292 patients. Circulation 1992;85: 1026–1031.

    Article  PubMed  CAS  Google Scholar 

  44. Marwick T, D’Hondt AM, Baudhuin T et al. Optimal use of Dobutamine Stress for the Detection and Evaluation of Coronary Artery Disease: Combination with Echocardiography, Scintigraphy or Both? J Am Coll Cardiol 1993;22: 159–167.

    Article  PubMed  CAS  Google Scholar 

  45. Labowitz AJ, Pearson AC, Chaitman BR. Doppler and two-dimensional echocardiographic assessment of left ventricular function before and after intravenous dipyridamole stress testing for detection of coronary artery disease. Am J Cardiol 1988;62: 1180–1185.

    Article  Google Scholar 

  46. Grayburn PA, Popma JJ, Pryor SL, Walker BS, Simon TR, Smitherman TC. Comparison of dipyridamole Doppler echocardiography to thallium-201 imaging and quantitative coronary arteriography in the assessment of coronary artery disease. Am J Cardiol 1989;63: 1315–1320.

    Article  PubMed  CAS  Google Scholar 

  47. Perin EC, Moore W, Blume M, Hernandez G, Dhekne R, DeCastro M. Comparison of dipyridamole echocardiography with dipyridamole thallium scintigraphy for the diagnosis of myocardial ischemia. Clin Nucl Med 1991;16: 417–420.

    Article  PubMed  CAS  Google Scholar 

  48. Simonetti I, Rezai K, Rossen JD et al. Physiological assessment of sensitivity of noninvasive testing for coronary artery disease. Circulation 1991;83(Suppl III): 43–49.

    Google Scholar 

  49. Parodi O, Bisi G, Cassucci R et al. Clinical efficacy of Tc-99 m MIBI scintigraphy associated to echocardiography and dipyridamole test for the detection of coronary artery disease: A multicenter study [abstract]. Circulation 1989;80: II–620.

    Google Scholar 

  50. Marwick T, Willemart B, D’Hondt AM et al. Selection of the optimal non-exercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion: Comparison of dobutamine and adenosine using echocardiography and Tc-99 m MIBI single photon emission computed tomography. Circulation 1993;87: 345–354.

    Article  PubMed  CAS  Google Scholar 

  51. Marwick T, Salcedo E, Covalesky R, Stewart WJ. Comparison of stress echocardiography and thallium tomography — Analysis of discrepant results [abstract]. J Am Soc Echo 1990;3: 226.

    Google Scholar 

  52. Marwick T, Stewart WJ, Salcedo EE. Diagnosis of coronary artery disease using exercise echocardiography and positron emission tomography: Comparison and analysis of discrepant results. J Am Soc Echo 1992;5: 231–238.

    CAS  Google Scholar 

  53. Liu P, Keiss MC, Okada RD et al. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: does it represent scar or ischemia? Am Heart J 1985;110: 996–1001.

    Article  PubMed  CAS  Google Scholar 

  54. Kerber RE, Marcus ML, Ehrhardt J, Wilson R, Abbout FM. Correlation between echocardiographically demonstrated dyskinesis and regional myocardial perfusion. Circulation 1975;52: 1097–1104.

    Article  PubMed  CAS  Google Scholar 

  55. De Puey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989;30: 441–449.

    Google Scholar 

  56. DePuey EG, Guertler-Krawczynska E, Robbins WL. Thallium-201 SPECT in coronary disease patients with left bundle branch block. J Nucl Med 1988;29: 1479–1485.

    PubMed  CAS  Google Scholar 

  57. Burns RJ, Galligan L, Wright LM, Lawand S, Burke RK, Gladstone PJ. Improved specificity of myocardial thallium-201 single-photon emission computed tomography in patients with left bundle branch block by dipyridamole. Am J Cardiol 1991;68: 504–508.

    Article  PubMed  CAS  Google Scholar 

  58. Matzer L, Kiat H, Friedman JR, van Train K, Maddahi J, Berman DS. A new approach to the assessment of tomographic thallium-201 scintigraphy in patients with left bundle branch block. J Am Coll Cardiol 1991;17: 1309–1317.

    Article  PubMed  CAS  Google Scholar 

  59. Bramlet DA, Morris KG, Coleman RE, Albert D, Cobb FR. Effects of rate-dependent left bundle branch block on global and regional left ventricular function. Circulation 1983;67: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  60. Rowe DW, DePuey EG, Sonnemaker RE, Hall RJ, Burdine JA. Left ventricular performance during exercise in patients with left bundle branch block: Evaluation by gated radionuclide ventriculography. Am Heart J 1983;105: 66–71.

    Article  PubMed  CAS  Google Scholar 

  61. DePuey EG, Guertler-Krawczynska E, Perkins JV, Robbins WL, Whelchel JD, Clements SD. Alterations in myocardial thallium-201 distribution in patients with chronic systemic hypertension undergoing single-photon emission computed tomography. Am J Cardiol 1988;62: 234–238.

    Article  PubMed  CAS  Google Scholar 

  62. Houghton TL, Frank MJ, Carr AA, VonDohlen TW, Prisant LM. Relations among impaired coronary flow reserve, left ventricular hypertrophy, and thallium perfusion defects in hypertensive patients without obstructive coronary artery disease. J Am Coll Cardiol 1990;15: 43–51.

    Article  PubMed  CAS  Google Scholar 

  63. Mueller T, Marcus M, Kerber R, Young Y, Barnes R, Abboud F. Effect of renal hypertension and left ventricular hypertrophy on the coronary circulation in dogs. Circ Res 1978;42: 543–549.

    Article  PubMed  CAS  Google Scholar 

  64. O’Keefe DD, Hoffman JIE, Cheitlin R, O’Neill MJ, Allard JR, Shapkin E. Coronary blood flow in experimental canine left ventricular hypertrophy. Circ Res 1978;43: 43–51.

    Article  PubMed  Google Scholar 

  65. Malik AB, Abe T, O’Kane H, Geha AS. Cardiac function, coronary flow, and oxygen consumption in stable left ventricular hypertrophy. Am J Physiol 1973;225:186–191.

    PubMed  CAS  Google Scholar 

  66. Bache RJ, Vrobel TR, Arentzen CE, Ring WS. Effect of maximum coronary vasodilation on transmural myocardial perfusion during tachycardia in dogs with left ventricular hypertrophy. Circ Res 1981;49:742–750.

    Article  PubMed  CAS  Google Scholar 

  67. Rembert J, Kleinman L, Fedor J, Wechsler A, Greenfield J. Myocardial blood flow distribution in concentric left ventricular hypertrophy. J Clin Invest 1978;62:379–386.

    Article  PubMed  CAS  Google Scholar 

  68. O’Keefe DD, Hoffman JIE, Cheitlin R, O’Neill MJ, Allard JR, Shapkin E. Coronary blood flow in experimental canine left ventricular hypertrophy. Circ Res 1978;43:43–51.

    Article  PubMed  Google Scholar 

  69. Goldstein RA, Haynie M. Limited myocardial perfusion reserve in patients with left ventricular hypertrophy. J Nucl Med 1990;31:225–228.

    Google Scholar 

  70. Marwick T, Cook SA, Lafont A, Underwood DA, Salcedo EE. Influence of left ventricular mass on the diagnostic accuracy of myocardial perfusion imaging using positron emission tomography with dipyridamole stress. J Nucl Med 1991;32:2221–2226.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marwick, T., Melin, J.A. (1994). Comparison of Stress Echocardiography and Scintigraphic Techniques for the Diagnosis of Coronary Artery Disease. In: Stress Echocardiography. Developments in Cardiovascular Medicine, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0782-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0782-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4335-9

  • Online ISBN: 978-94-011-0782-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics