Skip to main content

Left ventricular and coronary cineangiography; overview of techniques, applications and limitations

  • Chapter
Quantitative Coronary and Left Ventricular Cineangiography

Abstract

Left ventricular and coronary cineangiography are regarded as the definite procedures for the confirmation of cardiac disease. These invasive procedures produce high resolution, dynamic images of the left ventricle and the coronary arteries, respectively. The left ventricular angiograms may provide the clinician with detailed information about left ventricular anatomy, wall motion abnormalities and allow the computation of left ventricular volume and of global and regional ejection fraction. Likewise, the coronary cineangiograms allow the assessment of the presence and severity of coronary artery disease. In routine clinical practice, the angiographic data are still interpreted visually, which results in significant inter- and intraobserver variations. Moreover, the abnormalities as judged by the clinician can only be expressed in relative terms. It was recognized at an early stage, that quantitation of such images would be extremely desirable for a number of reasons: (1) availability of objective measurements; (2) communication between and comparison of results from different centers would be greatly facilitated; and (3) the state of disease of a given patient would be much better characterized. To obtain such objective measurements from the angiograms, many groups have been active over the last fifteen years in the development of methods for the quantitative analysis of the cineangiograms. These efforts have first been directed towards manual, semi- and fully-automated procedures for the outlining of the left ventricular boundaries and the subsequent analysis of these boundaries in terms of left ventricular volume, global and regional ejection fraction, as well as of regional wall motion. At a later point in time, methods for semi- or fully-automated boundary definition of the coronary arteries were being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forssman W: Die Sondierung des rechten Herzens. Klin Wochenschr 8: 2085–2087, 1929.

    Google Scholar 

  2. Cournand A, Ranges HA: Catheterization of the right auricle in man. Proc Soc Exper Biol and Med 46: 462–466, 1941.

    Google Scholar 

  3. Bing RJ, Van Dam LP, Gray FD Jr: Physiological studies in congenital heart disease. I. Procedures. Bull Johns Hopkins Hosp 80: 107–120, 1947.

    CAS  Google Scholar 

  4. Gorlin R, Gorlin SG: Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves and central circulatory shunts. Am Heart J 41: 1–29, 1951.

    PubMed  CAS  Google Scholar 

  5. Castellanos A, Pereiras R, Garcia A: La angiocardiografia, un metodo nueva para diagnostico de las cardiopatias congenitas. Archiv Soc Estud Clin Habana, 1937.

    Google Scholar 

  6. Robb G, Steinberg MF: Visualization of the chambers of the heart, the pulmonary circulation and great blood vessels in man. A practical method. Am J Roentgenol 41: 1–17, 1939.

    Google Scholar 

  7. Chavez I, Dorbecker N, Celis A: Direct intracardiac angiocardiography. Its diagnostic value. Am Heart J 33: 560–593, 1947.

    PubMed  CAS  Google Scholar 

  8. Rushmer RF, Bark RS, Hendron JA: Clinical cinefluorography. Radiology 55: 588–592, 1950.

    PubMed  CAS  Google Scholar 

  9. Rushmer RF, Crystal DK: Changes in configuration of the ventricular chambers during the cardiac cycle. Circulation 4: 211–218, 1951.

    PubMed  CAS  Google Scholar 

  10. Rushmer RF, Thal N: The mechanics of ventricular contraction. A cinefluorographic study. Circulation 4: 219–228, 1951.

    PubMed  CAS  Google Scholar 

  11. Sones FM, Shirey EK, Proudfit ML, Westcott RN: Cine-Coronary Arteriography. Circulation 20: 773–774, 1959.

    Google Scholar 

  12. Ricketts HJ, Abrams HL: Percutaneous selective coronary cine arteriography. JAMA 181: 620– 624, 1962.

    PubMed  Google Scholar 

  13. Judkins MP: Selective coronary arteriography. I. A percutaneous transfemoral technic. Radiology 89: 815–824, 1967.

    PubMed  CAS  Google Scholar 

  14. Favaloro RG: Saphenous vein autograft replacement of severe segmental coronary occlusion — operative technique. Ann Thorac Surg 5: 334–339, 1968.

    PubMed  CAS  Google Scholar 

  15. Bruschke AVG, Proudfit WL, Sones FM: Progress study of 590 consecutive nonsurgical cases of coronary disease followed 5–9 years. II. Ventriculographic and other correlations. Circulation 47: 1154–1163, 1973.

    PubMed  CAS  Google Scholar 

  16. Hammermeister KE, DeRouen TA, Dodge HT: Variables predictive of survival in patients with coronary disease. Circulation 59: 421–430, 1979.

    PubMed  CAS  Google Scholar 

  17. Tyras DH, Barner HB, Kaiser GC, Codd JE, Laks H, Pennington DG, Willman VL: Long-term results of myocardial revascularization. Am J Cardiol 44: 1290–1296, 1979.

    PubMed  CAS  Google Scholar 

  18. Chaitman BR, DeMots H, Bristow JD, Rösch J, Rahimtoola SH: Objective and subjective analysis of left ventricular angiograms. Circulation 52: 420–425, 1975.

    PubMed  CAS  Google Scholar 

  19. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW: Interobserver variability in coronary angiography. Circulation 53: 627–632, 1976.

    PubMed  CAS  Google Scholar 

  20. Rogers WJ, Smith LR, Hood WP, Mantle JA, Rackley CE, Russell RO: Effect of filming projection and interobserver variability on angiographic biplane left ventricular volume determination. Circulation 59: 96–104, 1979.

    PubMed  CAS  Google Scholar 

  21. Rackley CE, Dear HD, Baxley WA, Jones WB, Dodge HT: Left ventricular chamber volume, mass and function in severe coronary artery disease. Circulation 41: 605–613, 1970.

    PubMed  CAS  Google Scholar 

  22. Hamilton GW, Murray JA, Kennedy JW: Quantitative angiocardiography in ischemic heart disease. The spectrum of abnormal left ventricular function and the role of abnormally contracting segments. Circulation 45: 1065–1080, 1972.

    PubMed  CAS  Google Scholar 

  23. Moraski RE, Russell RO Jr, Smith M, Rackley CE: Left ventricular function in patients with and without myocardial infarction and one, two or three vessel coronary artery disease. Am J Cardiol 35: 1–10, 1975.

    PubMed  CAS  Google Scholar 

  24. Jones JW, Rackley CE, Bruce RA, Dodge HT, Cobb LA, Sandler H: Left ventricular volumes in valvular heart disease. Circulation 29: 887–891, 1964.

    PubMed  CAS  Google Scholar 

  25. Miller GAH, Kirklin JW, Swan HJC: Myocardial function and left ventricular volumes in acquired valvular insufficiency. Circulation 31: 374–384, 1965.

    PubMed  CAS  Google Scholar 

  26. Dodge HT, Baxley WA: Hemodynamic aspects of heart failure. Am J Cardiol 22: 24–34, 1968.

    PubMed  CAS  Google Scholar 

  27. Kennedy JW, Twiss RD, Blackmon JR, Dodge HT: Quantitative angiocardiography. III: Relationship of left ventricular pressure, volume and mass in aortic valve disease. Circulation 38: 838–845, 1968.

    PubMed  CAS  Google Scholar 

  28. Gribbe P: Comparison of the angiographic and direct Fick methods in determining cardiac output. Cardiologia 36: 20–29, 1960.

    PubMed  CAS  Google Scholar 

  29. Wagner HR, Gamble WJ, Albers WH, Hugenholtz PG: Fiberopticdye dilution method for measurement of cardiac output. Comparison with the direct Fick and the angiographic methods. Circulation 37: 694–708, 1968.

    PubMed  CAS  Google Scholar 

  30. Yang SS, Bentivoglio LG, Maranhao V, Goldberg H: From Cardiac Catheterization data to hemodynamic parameters. F.A. David Company, Philadelphia, 1972.

    Google Scholar 

  31. Sandler H: Dimensional analysis of the heart — a review. Am J Med Sci 260: 56–70, 1970.

    PubMed  CAS  Google Scholar 

  32. Sandler H, Meier GD, Alderman EL: Ballistic motion of the heart. In: Ventricular Wall Motion. U. Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 1–13, 1984.

    Google Scholar 

  33. Sandler H, Dodge HT: The use of single plane angiocardiograms for the calculation of left ventricular volume in man. Am Heart J 75: 325–334, 1968.

    PubMed  CAS  Google Scholar 

  34. Lange P, Onnasch D, Farr FL, Straume B, Heintzen PH: Factors affecting the accuracy of angiocardiographic volume determination: left ventricle. In Roentgen-Video-Techniques for Dynamic Studies of Structure and Function of the Heart and Circulation: P.H. Heintzen, J.H. Bursch (Eds.). Georg Thieme Publishers Stuttgart: 184–190, 1978.

    Google Scholar 

  35. Dodge HT, Sandler H, Ballew DW, Lord JD Jr: The use of biplane angiocardiography for measurement of left ventricular volume in man. Am Heart J 60: 762–776, 1960.

    PubMed  CAS  Google Scholar 

  36. Dodge HT, Sandler H, Baxley WA, Hawley RR: Usefulness and limitations of radiographic methods for determining left ventricular volume. Am J Cardiol 18: 10–24, 1966.

    PubMed  CAS  Google Scholar 

  37. Arvidsson H: Angiocardiographic determination of left ventricular volume. Acta Radiol 56: 321–339, 1961.

    PubMed  CAS  Google Scholar 

  38. Chapman CB, Baker O, Reynolds I, Bonte FJ: Use of biplane cinefluorography for measurement of ventricular volume. Circulation 18: 1105–1117, 1958.

    PubMed  CAS  Google Scholar 

  39. Reiber JHC: Special-purpose computer for real-time calculation of left ventricular volumes. Thesis, Electronics Laboratory, Delft University of Technology, 1971.

    Google Scholar 

  40. Sandler H, Hawley RR, Dodge HT, Baxley WA: Calculation of left ventricular volume from single-plane (A-P) angiocardiograms. J Clin Invest 44: 1094–1095 (Abstract), 1965.

    Google Scholar 

  41. Greene DG, Carlisle R, Grant C, Bunnell IL: Estimation of left ventricular volume by one plane cineangiography. Circulation 35: 61–69, 1967.

    PubMed  CAS  Google Scholar 

  42. Snow JA, Baker LD, Leshin SJ, Messer JV: Validation of the single plane cineangiographic determination of canine left ventricular volume. II. Left ventricular dilatation. Fed Proc 28: 517 (Abstract), 1969.

    Google Scholar 

  43. Kennedy JW, Trenholme SE, Kasser IS: Left ventricular volume and mass from single-plane cineangiocardiograms. A comparison of anteroposterior and right anterior oblique methods. Am Heart J 80: 343–352, 1970.

    PubMed  CAS  Google Scholar 

  44. Rackley CE, Behar VS, Whalen RE, McIntosh HD: Biplane cineangiographic determination of left ventricular function: Pressure - volume relationships. Am Heart J 74: 766–779, 1967.

    PubMed  CAS  Google Scholar 

  45. Rackley CE, Hood WP Jr, Cleveland L, Stacy RW: Derivation of cardiac mechanical parameters from serial biplane angiocardiograms. J Appl Physiol 24: 254–258, 1968.

    PubMed  CAS  Google Scholar 

  46. Graham TP Jr, Jarmakani JM, Canent RV Jr, Morrow MN: Left heart volume estimations in infancy and childhood: reevaluation of methodology and normal values. Circ 43: 895–904, 1971.

    Google Scholar 

  47. Bentivoglio LG, Griffith LD, Cuesta AJ, Geczy M: Radiographic evaluation of formulas for left ventricular volume using canine casts. J Appl Physiol 33: 365–374, 1972.

    PubMed  CAS  Google Scholar 

  48. Santamore WP, DiMeo F, Lynch PR: A comparative study of various single-plane cineangiocar- diographic methods to measure left-ventricular volume. IEEE Trans Biom Eng BME-20: 417– 421, 1973.

    Google Scholar 

  49. Chatelain P, Fleisch M, Doriot P-A, Rasoamanambelo L, Rutishauer W: In vivo determination of enddiastolic and endsystolic correction factors for left and right ventricular volumes - A new statistical method. Comp in Cardiol: 165–168, 1983.

    Google Scholar 

  50. Rackley CE, Hood WP Jr: Measurements of ventricular volume, mass and ejection fraction. In: Cardiac Catheterization and Angiography, W. Grossman (Ed.). Lea and Febiger, Philadelphia: 176–187, 1976.

    Google Scholar 

  51. Herman MV, Heinle RA, Klein MD, Gorlin R: Localized disorders in myocardial contraction. Asynsergy and its role in congestive heart failure. New Engl J Med 277: 222–232, 1976.

    Google Scholar 

  52. Herman MV, Gorlin R: Implications of left ventricular asynergy. Am J Cardiol 23: 538–547, 1969.

    PubMed  CAS  Google Scholar 

  53. Herman MV, Eliott WC, Gorlin R. An electrocardiographic, anatomic, and metabolic study of zonal myocardial ischemia in coronary heart disease. Circulation 35: 834–846, 1967.

    PubMed  CAS  Google Scholar 

  54. Sesto M, Schwarz F: Regional myocardial function at rest and after rapid ventricular pacing in patients after myocardial revascularization by coronary bypass graft or by collateral vessels. Am J Cardiol 43: 920–928, 1979.

    PubMed  CAS  Google Scholar 

  55. Pasternac A, Gorlin R, Sonnenblick EH, Haft JI, Kemp HG: Abnormalities of ventricular motion induced by atrial pacing in coronary artery disease. Circulation 45: 1195–1205, 1972.

    PubMed  CAS  Google Scholar 

  56. Dwyer EM, Jr: Left ventricular pressure — volume alterations and regional disorders of contraction during myocardial ischemia induced by atrial pacing. Circulation 42: 1111 - 1122, 1970.

    PubMed  Google Scholar 

  57. Bonzel T, Löllgen H, Wollschläger H, Just H, Sigel H, Lippert R: Left ventricular wall motion analysis by conventional and hemiaxial biplane left ventricular angiography: choice of views. In: Ventricular Wall Motion. U Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/ New York: 43–49, 1984.

    Google Scholar 

  58. 58.Widmann TF, Tubau JF, Ashburn WL, Bhargava V, Higgins CB, Peterson KL: Evaluation of regional wall motion by phase and amplitude analysis of intravenous contrast ventricular fluorangiography: technical aspects and computation. In: Ventricular Wall Motion. U Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 24 - 33, 1984.

    Google Scholar 

  59. Adam WE, Bitter F: Advances in heart images. In: Medical Radionuclide Imaging. IAEA- SM-247/211: 195–218, 1981.

    Google Scholar 

  60. Rushmer RE, Crystal DK, Wagner C: The functional anatomy of ventricular contraction. Circ Res 1: 162–170, 1953.

    PubMed  CAS  Google Scholar 

  61. Carlsson E, Milne ENC: Permanent implantations of endocardial tantalum screws: a new technique for functional studies of the heart in the experimental animal. J Ass Canad Radiol 19: 304–309, 1967.

    Google Scholar 

  62. Carlsson E: Experimental studies of ventricular mechanics in dogs using the tantalum-labeled heart. Fed Proc 28: 1324–1329, 1969.

    PubMed  CAS  Google Scholar 

  63. Heikkila J, Tabakin BS, Hugenholtz PG: Quantification of function in normal and infarcted regions of the left ventricle. Cardiovasc Res 6: 516–531, 1972.

    PubMed  CAS  Google Scholar 

  64. Slager CJ, Hooghoudt TEH, Reiber JHC, Schuurbiers JCH, Verdouw PD, Hugenholtz PG: Left ventricular wall motion as derived from endocardially implanted radiopaque markers and from contrastangiograms. In: Ventricular Wall Motion. U. Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 150–159, 1984.

    Google Scholar 

  65. Harrison DC, Goldblatt A, Braunwald E, Mason D: Studies on cardiac dimensions in intact unanesthetized man. Circ Res 13: 448–467, 1963.

    PubMed  CAS  Google Scholar 

  66. McDonald IG: The shape and movements of the human left ventricle during systole. Am J Cardiol 26: 221–229, 1970.

    PubMed  CAS  Google Scholar 

  67. Brower RW, Katen HJ ten, Meester GT: Direct method for determining regional myocardial shortening after bypass surgery from radiopaque markers in man. Am J Cardiol 41: 1222–1229, 1978.

    PubMed  CAS  Google Scholar 

  68. Ingels NB Jr, Daughters GT, Stinson EB, Alderman EL: Measurement of midwall myocardial dynamics in intact man by radiography of surgically implanted markers. Circulation 52: 859–867, 1975.

    PubMed  Google Scholar 

  69. Ingels NB Jr, Daughters GT, Stinson EB, Alderman EL: Evaluation of methods for quantitating left ventricular segmental wall motion in man using myocardial markers as a standard. Circulation 61: 966–972, 1980.

    PubMed  Google Scholar 

  70. Amende I, Simon R, Hood WP, Hetzer R, Lichtlen PR: Intracoronary nifedipine in human being: magnitude and time course of changes in left ventricular contraction/relaxation and coronary sinus blood flow. JACC 2: 1141–1145, 1983.

    PubMed  CAS  Google Scholar 

  71. Leighton RF, Wilt SM, Lewis RP: Detection of hypokinesis by quantitative analysis of left ventricular cineangiograms. Circulation 50: 121–127, 1974.

    PubMed  CAS  Google Scholar 

  72. Harris LD, Clayton PD, Marshall HW, Warner HR: A technique for the detection of asynergistic motion of the left ventricle. Comput Biomed Res 7: 380–394, 1974.

    PubMed  CAS  Google Scholar 

  73. Chaitman BR, Bristow JD, Rahimtoola SH: Left ventricular wall motion assessed by using fixed external reference systems. Circulation 48: 1043–1054, 1973.

    PubMed  CAS  Google Scholar 

  74. Rickards A, Seabra-Gomes R, Thurston P: The assessment of regional abnormalities of the left ventricle by angiography. Eur J Cardiol 5: 167–182, 1977.

    PubMed  CAS  Google Scholar 

  75. Sapoznikov D, Halon DA, Lewis BS, Weiss AT, Gotsman MS: Frame by frame analysis of left ventricular function. Cardiology 70: 61–72, 1983.

    PubMed  CAS  Google Scholar 

  76. Shepertycki TH, Morton BC: A computer graphic-based angiographic model for normal left ventricular contraction in man and its application to the detection of abnormalities in regional wall motion. Circulation 68: 1222–1230, 1983.

    PubMed  CAS  Google Scholar 

  77. Gottwik M, Stämmler G, Müller K-D, Siebes M, Kindler M, Winkler B, Schlepper M: Introduction and clinical evaluation of a computer-assisted method for the determination of regional wall motion of the left ventricle. In: Ventricular Wall Motion. U. Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 113–121, 1984.

    Google Scholar 

  78. Ingels NB, Mead CW, Daughters GT, Stinson EB, Alderman EL: A new method for assessment of left ventricular wall motion. Comp in Cardiol: 57–61, 1978.

    Google Scholar 

  79. Slager CJ, Hooghoudt TEH, Reiber JHC, Schuurbiers JCH, Booman F, Meester GT: Left ventricular contour segmentation from anatomical landmark trajectories and its application to wall motion analysis. Comp in Cardiol: 347–350, 1979.

    Google Scholar 

  80. Bolson EL, Kliman S, Sheehan F, Dodge HT: Left ventricular segmental wall motion — a new method using local direction information. Comp in Cardiol: 245–248, 1980.

    Google Scholar 

  81. Sasayama S, Fujita M, Nonogi H, Kawai C, Eiho S, Kuwahara M: Quantitative assessment of regional disorders of left ventricular wall motion in patients with coronary artery disease by cine ventriculography. In: Ventricular Wall Motion. U. Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 62–73, 1984.

    Google Scholar 

  82. Lorente P, Adda JL, Creplet J, Masquet C, Babalis D, Piekarski A, N’guyen A, Azancot I: A new computerized segmental area based method to evaluate regional wall motion from cineangiograms and two dimensional echograms. In: Ventricular Wall Motion. U. Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 130–139, 1984.

    Google Scholar 

  83. Ingels NB, Daughters GT, Stinson EB, Alderman EL: Evaluation of methods for quantitating left ventricular segmental wall motion in man using myocardial markers as a standard. Circulation 61: 966–972, 1980.

    PubMed  Google Scholar 

  84. Alderman EL, Schwarzkopf A, Ingels NB, Daughters GT, Stinson EB, Sanders WJ: Application of an externally referenced, polar coordinate system for left ventricular wall motion analysis. Comp in Cardiol: 207–210, 1979.

    Google Scholar 

  85. Hooghoudt TEH, Slager CJ, Reiber JHC, Serruys PW: A new method to quantify regional left ventricular wall motion, as well as pump- and contractile function. In: Ventricular Wall Motion, U. Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 229–244, 1984.

    Google Scholar 

  86. Sheehan FH, Bolson EL, Dodge HT, Mitten S: Centerline method — Comparison with other methods for measuring regional left ventricular motion. In: Ventricular Wall Motion. U. Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 139–149, 1984.

    Google Scholar 

  87. Brower RW, Meester GT: Spatial resolution and correlation between segments in regional wall motion studies of the left ventricle. Comp in Cardiol: 69–75, 1978.

    Google Scholar 

  88. Brower RW, Meester GT: Computer based methods for quantifying regional left ventricular wall motion from cine ventriculograms. Comp in Cardiol: 55–62, 1976.

    Google Scholar 

  89. Hernandez-Lattuf PR, Quinones MA, Gaasch WH: Usefulness and limitations of circumferential fibre shortening velocity in evaluating segmental disorders of left ventricular contraction. Br Heart J 36: 1167–1174, 1974.

    PubMed  CAS  Google Scholar 

  90. Daughters GT, Schwarzkopf A, Mead CW, Stinson EB, Alderman EL, Ingels Jr. NB: A clinical evaluation of five techniques for left ventricular wall motion assessment. Comp in Cardiol: 249– 252, 1981.

    Google Scholar 

  91. Daughters GT, Alderman EL, Ingels Jr. NB: A rational approach to the clinical detection of wall motion abnormalities. In: Ventricular Wall Motion. U. Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 74–82, 1984.

    Google Scholar 

  92. Marier DL, Gibson DG: Limitations of two frame method for displaying regional left ventricular wall motion in man. Br Heart J 44: 555–559, 1980.

    PubMed  CAS  Google Scholar 

  93. Sheehan FH, Stewart DK, Dodge HT, Mitten S, Bolson EL, Brown BG: Variability in the measurement of regional left ventricular wall motion from contrast angiograms. Circulation 68: 550–559, 1983.

    PubMed  CAS  Google Scholar 

  94. Clayton PD, Klausner SC, Blair TJ, Jeppson GM, Liddle HV: Sources and magnitude of variability in measurements of regional left ventricular function. In: Ventricular Wall Motion. U. Sigwart, P.H. Heintzen (Eds.). Georg Thieme Verlag, Stuttgart/New York: 90–99, 1984.

    Google Scholar 

  95. Cohn PF, Levine JA, Bergeron GA, Gorlin R: Reproducibility of the angiographic left ventricular ejection fraction in patients with coronary artery disease. Am Heart J 88: 713–720, 1974.

    PubMed  CAS  Google Scholar 

  96. Sones FM, Shirey EK, Proudfit ML, Westcott RN: Cine-Coronary Arteriography. Circulation 20: 773–774, 1959.

    Google Scholar 

  97. Sones FM, Shirey EK: Cine-coronary arteriography. Modern Concepts of Cardiovasc Dis 31: 735–738, 1962.

    Google Scholar 

  98. Amplatz K, Formanek G, Stanger P, Wilson W: Mechanics of selective coronary artery catheterization via femoral approach. Radiology 89: 1040–1047, 1967.

    PubMed  CAS  Google Scholar 

  99. Bourassa MG, Lespérance J, Campeau L: Selective coronary arteriography by the percutaneous femoral artery approach. Am J Roentgenol 107: 377–383, 1969.

    CAS  Google Scholar 

  100. Wells DE, Befeler B, Winkler JB, Myerburg RJ, Castellanos A, Castillo CA: A simplified method for left heart catheterization including coronary arteriography. Chest 63: 959–962, 1973.

    PubMed  CAS  Google Scholar 

  101. Wilson WJ, Lee GB, Amplatz K: Biplane selective coronary arteriography via percutaneous transfemoral approach. Am J Roentgenol 100: 332–340, 1967.

    CAS  Google Scholar 

  102. Spellberg RD, Ungar I: The percutaneous femoral artery approach to selective coronary arteriography. Circulation 36: 730–733, 1967.

    PubMed  CAS  Google Scholar 

  103. Gensini GG: Coronary arteriography. Futura Publishing Com, Mount Kisco, N.Y., 1975.

    Google Scholar 

  104. Bourassa MG, Noble J: Complication rate of coronary arteriography. A review of 5250 cases studied by a percutaneous femoral technique. Circulation 53: 106–114, 1976.

    PubMed  CAS  Google Scholar 

  105. Adams DF, Fraser DB, Abrams HL: The complications of coronary arteriography. Circulation 48: 609–618, 1973.

    PubMed  CAS  Google Scholar 

  106. Gensini GG: Coronary Arteriography. In: Heart Disease. E. Braunwald (Ed.). W.B. Saunders Company, Philadelphia/London/Toronto: 308–362, 1980.

    Google Scholar 

  107. Detre KM, Wright E, Murphy ML, Takaro T: Observer agreement in evaluating coronary angiograms. Circulation 52: 979–986, 1975.

    PubMed  CAS  Google Scholar 

  108. DeRouen TA, Murray JA, Owen W: Variability in the analysis of coronary arteriograms. Circulation 55: 324–328, 1977.

    PubMed  CAS  Google Scholar 

  109. Sanmarco ME, Brooks SH, Blankenhorn DH: Reproducibility of a consensus panel in the interpretation of coronary angiograms. Am Heart J 96: 430–437, 1978.

    PubMed  CAS  Google Scholar 

  110. Shub C, Vlietstra RE, Smith HC, Fulton RE, Elveback LR: The unpredictable progression of symptomatic coronary artery disease. A serial clinical-angiographic analysis. Mayo Clin Proc 56: 155–160, 1981.

    PubMed  CAS  Google Scholar 

  111. Fisher LD, Judkins MP, Lespérance J, Cameron A, Swaye P, Ryan T, Maynard C, Bourassa M, Kennedy JW, Gosselin A, KempH, Faxon D, WexlerL, Davis KB: Reproducibility of coronary arteriographic reading in the Coronary Artery Surgery Study (CASS). Cath Cardiovasc Diagn 8: 565–575, 1982.

    CAS  Google Scholar 

  112. Meier B, Gruentzig AR, Goebel N, Pyle R, von Gosslar W, Schlumpf M: Assessment of stenoses in coronary angioplasty. Inter- and intraobserver variability. Int J Cardiol 3: 159–169, 1983.

    PubMed  CAS  Google Scholar 

  113. Cameron A, Kemp HG, Fisher LD, Gosselin A, Judkins MP, Kennedy JW, Lespérance J, Mudd JG, Ryan TJ, Silverman JF, Tristani F, Vlietstra RE, Wexler LF: Left main coronary artery stenosis: angiographic determination. Circulation 68: 484–489, 1983.

    PubMed  CAS  Google Scholar 

  114. Zir LM: Observer variability in coronary angiography. Editorial Note. Int J Cardiol 3: 171–173, 1983.

    PubMed  CAS  Google Scholar 

  115. Levin DC, Baltaxe HA, Lee JG, Sos TA: Potential sources of error in coronary arteriography. I. In performance of the study. Am J Roentgenol, Rad Therapy and Nuclear Med 124: 378–385, 1975.

    CAS  Google Scholar 

  116. Vlodaver Z, Edwards JE: Pathology of coronary atherosclerosis. Prog Cardiovasc Dis 14: 256– 274, 1971.

    PubMed  Google Scholar 

  117. Vlodaver Z, Neufeld HN, Edwards JE: Pathology of coronary disease. Sem in Roentgenol 7: 376–394, 1972.

    CAS  Google Scholar 

  118. Hort W: Anatomy and pathology of the human coronary circulation. In: The Pathophysiology of Myocardial Perfusion. W Schaper (Ed.). Elsevier/North-Holland Biomedical Press, Amsterdam/New York/Oxford: 247–282, 1979.

    Google Scholar 

  119. Freudenberg H, Lichtlen PR: The normal wall segment in coronary stenoses. A postmortal study. Z Kardiol 70: 863–869, 1981.

    PubMed  CAS  Google Scholar 

  120. Schlesinger MJ, Zoll PM: Incidence and localization of coronary artery occlusions. Arch Path 32: 178–188, 1941.

    Google Scholar 

  121. Arnett EN, Isner JM, Redwood DR, Kent KM, Baker WP, Ackerstein H, Roberts WC: Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Internal Med 91: 350–356, 1979.

    CAS  Google Scholar 

  122. Brown BG, Bolson E, Frimer M, Dodge HT: Computer-assisted measurements of coronary artery stenosis. Circulation 60: 1196 (Letter), 1979.

    Google Scholar 

  123. Block PC, Myler RK, Stertzer S, Fallon JT: Morphology after transluminal angioplasty in human being. N Engl J Med 305: 382–385, 1981.

    PubMed  CAS  Google Scholar 

  124. Holmes DR, Vlietstra RE, Mock MB, Reeder GS, Smith HC, Bove AA, Bresnakan JF, Pichler JM, Schaff HV, Orszulak TA: Angiographic changes produced by percutaneous transluminal coronary angioplasty. Am J Cardiol 51: 676–683, 1983.

    PubMed  Google Scholar 

  125. Essed CE, Brand M van den, Becker AE: Transluminal coronary angioplasty and early restenosis. Fibrocellular occlusion after wall laceration. Br Heart J 49: 393–396, 1983.

    PubMed  CAS  Google Scholar 

  126. Levin DC, Baltaxe HA, Sos TA: Potential sources of error in coronary arteriography. II. In interpretation of the study. Am J Roentgenol, Rad Therapy and Nuclear Med 124: 386–393, 1975.

    CAS  Google Scholar 

  127. Roberts WC, Buja LM: The frequency and significance of coronary arterial thrombi and other observations in fatal acute myocardial infarction. A study of 107 necropsy patients. Am J Med 52: 425–443, 1972.

    PubMed  CAS  Google Scholar 

  128. Isner JM, Wu M, Virmani R, Jones AA, Roberts WC: Comparison of degrees of coronary arterial luminal narrowing determined by visual inspection of histologic sections under magnification among three independent observers and comparison to that obtained by video planimetry. An analysis of 559 five-millimeter segments of 61 coronary arteries from eleven patients. Lab Invest 5: 566–570, 1980.

    Google Scholar 

  129. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML: Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310: 819–824, 1984.

    PubMed  CAS  Google Scholar 

  130. Shipley RE, Gregg DE: The effect of external constriction of a blood vessel on blood flow. Am J Physiol 141: 289–296, 1944.

    Google Scholar 

  131. Young DF, Tsai FY: Flow characteristics in models of arterial stenoses. I. Steady flow. J Biomechanics 6: 395–410, 1973.

    CAS  Google Scholar 

  132. Young DF, Tsai FY: Flow characteristics in models of arterial stenoses. II. Unsteady flow. J Biomechanics 6: 547–559, 1973.

    CAS  Google Scholar 

  133. Young DF, Cholvin NR, Roth AC: Pressure drop across artificially induced stenoses in the femoral arteries of dogs. Circ Res 36: 735–743, 1975.

    PubMed  CAS  Google Scholar 

  134. Logan SE: On the fluid mechanics of human coronary artery stenosis. IEEE Trans on Biom Eng BME-22: 327–334, 1975.

    Google Scholar 

  135. Brown BG, Bolson E, Frimer M, Dodge HT: Quantitative coronary arteriography. Circulation 55: 329–337, 1977.

    PubMed  CAS  Google Scholar 

  136. Mates RE, Gupta RL, Bell AC, Klocke FJ: Fluid dynamics of coronary artery stenosis. Circ Res 42: 152–162, 1978.

    PubMed  CAS  Google Scholar 

  137. Lipscomb K, Hooten S: Effect of stenotic dimensions and blood flow on the hemodynamic significance of model coronary arterial stenoses. Am J Cardiol 42: 781–792, 1978.

    PubMed  CAS  Google Scholar 

  138. Gould KL: Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 43: 245–253, 1978.

    Google Scholar 

  139. Yongchareon W, Young DF: Initiation of turbulence in models of arterial stenoses. J Biomechanics 12: 185–196, 1979.

    CAS  Google Scholar 

  140. Klocke FJ: Measurements of coronary blood flow and degree of stenosis; current clinical implications and continuing uncertainties. J Am Coll Cardiol 1: 31–41, 1983.

    PubMed  CAS  Google Scholar 

  141. Marcus ML: The coronary circulation in health and disease. McGraw-Hill Book Company New York, 1983.

    Google Scholar 

  142. Gottwik MG, Siebes M, Kirkeeide R, Schaper W: Hämodynamik von Koronarstenosen. Z Kardiol 73: 47–54, 1984.

    PubMed  Google Scholar 

  143. Gould KL: Dynamic coronary stenosis. Am J Cardiol 45: 286–292, 1980.

    PubMed  CAS  Google Scholar 

  144. Gould KL, Kelley KO, Bolson EL: Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation 66: 930–937, 1982.

    PubMed  CAS  Google Scholar 

  145. Gould KL, Kelley KO: Physiological significance of coronary flow velocity and changing stenosis geometry during coronary vasodilation in awake dogs. Circ Res 50: 695–704, 1982.

    PubMed  CAS  Google Scholar 

  146. Wright C, White C, Furda J, Doty D, Eastham C, Laughlin D, Marcus M: Can the coronary arteriogram predict the functional significance of a coronary stenosis? Circulation 62 (Supp. III): III–214 (Abstract), 1980.

    Google Scholar 

  147. Fiddian RV, Byar D, Edwards EA: Factors affecting flow through a stenosed vessel. Arch Surg 88: 83–90, 1964.

    PubMed  CAS  Google Scholar 

  148. Feldman RL, Nichols WW, Pepine CJ, Conti CR: Hemodynamic significance of the length of a coronary arterial narrowing. Am J Cardiol 41: 865–871, 1978.

    PubMed  CAS  Google Scholar 

  149. Sabbah HN, Stein PD: Hemodynamics of multiple versus single 50 percent coronary arterial stenoses. Am J Cardiol 50: 276–280, 1982.

    PubMed  CAS  Google Scholar 

  150. Feldman RL, Pepine CJ: Evaluation of coronary artery stenoses. Int J of Cardiol 4: 185–187, 1983.

    CAS  Google Scholar 

  151. Feldman RL, Nichols WW, Pepine CJ, Conti CR: Hemodynamic effect of long and multiple coronary arterial narrowings. Chest 74: 280–285, 1978.

    PubMed  CAS  Google Scholar 

  152. Clark C: The propagation of turbulence produced by a stenosis. J Biomechanics 13: 591–604, 1980.

    CAS  Google Scholar 

  153. Feldman RL, Pepine CJ: Determination of residual regional flow during acute coronary occlusion in conscious man. J Am Coll Cardiol 1: 684 (Abstract), 1983.

    Google Scholar 

  154. Schwartz JS, Carlyle PF, Cohn JN: Effect of coronary arterial pressure on coronary stenosis resistance. Circulation 61: 70–76, 1980.

    PubMed  CAS  Google Scholar 

  155. Schwartz JS: Fixed vs nonfixed coronary stenosis: the response to a fall in coronary pressure in a canine model. Cath Cardiovasc Diagn 8: 383–392, 1982.

    CAS  Google Scholar 

  156. Schwartz JS: Compliant coronary stenoses. (Editorial Note). Int J Cardiol 4: 315–317, 1983.

    Google Scholar 

  157. Bove AA, Santamore WP, Carey RA: Reduced myocardial blood flow resulting from dynamic changes in coronary artery stenosis. Int J Cardiol 4: 301–313, 1983.

    PubMed  CAS  Google Scholar 

  158. Maseri A, Chierchia S, Davies GJ, Fox KM: Variable susceptibility to dynamic coronary obstruction: an elusive link between coronary atherosclerosis and angina pectoris. Am J Cardiol 52: 46A–51A, 1983.

    PubMed  CAS  Google Scholar 

  159. Epstein SE, Cannon III RO, Watson RM, Leon MB, Bonow RO, Rosing DR: Dynamic coronary obstruction as a cause of angina pectoris: implications regarding therapy. Am J Cardiol 55: 61B–68B, 1985.

    PubMed  CAS  Google Scholar 

  160. Feldman RL, Nichols WW, Pepine CJ, Conetta DA, Conti CR: The coronary hemodynamics of left main and branch coronary stenoses. The effects of reduction in stenosis diameter, stenosis length, and number of stenoses. J Thorac Cardiovasc Surg 77: 377–388, 1979.

    PubMed  CAS  Google Scholar 

  161. Brice JG, Dowsett DJ, Lowe RD: Haemodynamic effect of carotid artery stenosis. Br Med J 2: 1363–1366, 1964.

    PubMed  CAS  Google Scholar 

  162. Young DF: Fluid mechanics of arterial stenosis. J Biomech Eng 101: 157–175, 1979.

    Google Scholar 

  163. 163.Warltier DC, Buck JD, Brooks HL, Gross GJ: Coronary hemodynamics and subendocardial perfusion distal to stenoses. Int J Cardiol 4: 173–183, 1983.

    Google Scholar 

  164. Gould KL, Lipscomb K: Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34: 48–55, 1974.

    PubMed  CAS  Google Scholar 

  165. Gould KL, Lipscomb K, Hamilton GW: Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33: 87–94, 1974.

    PubMed  CAS  Google Scholar 

  166. Kirkeeide RL, Gould KL: Cardiovascular imaging: coronary artery stenosis. Hospital Practice: 160–175, 1984.

    Google Scholar 

  167. Gould KL, Lipscomb K, Calvert C: Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation 51: 1085–1094, 1975.

    PubMed  CAS  Google Scholar 

  168. Lehan PH, Harman MA, Oldewurtel HA: Myocardial water shifts induced by coronary arteriography. J Clin Invest 42: 950 (Abstract), 1963.

    Google Scholar 

  169. Dietze W, Mittmann U, Schmier J, Wirth RH: Effects of coronary stenosis and mean aortic pressure on coronary blood flow, poststenotic coronary pressure, and reactive hyperemia. Basic Res Cardiol 71: 309–318, 1976.

    PubMed  CAS  Google Scholar 

  170. McMahon MM, Brown BG, Cukingnan R, Rolett EL, Bolson E, Frimer M, Dodge HT: Quantitative coronary angiography: Measurement of the ‘critical’ stenosis in patients with unstable angina and single-vessel disease without collaterals. Circulation 60: 106–113, 1979.

    PubMed  CAS  Google Scholar 

  171. Rafflenbeul W, Urthaler F, Lichtlen P, James TN: Quantitative difference in ‘critical’ stenosis between right and left coronary artery in man. Circulation 62: 1188–1196, 1980.

    PubMed  CAS  Google Scholar 

  172. Marcus M, Wright C, Doty D, Eastham C, Laughlin D, Krumm P, Fastenow C, Brody M: Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ Res 49: 877–891, 1981.

    PubMed  CAS  Google Scholar 

  173. Wright CB, Doty DB, Eastham CL, Marcus ML: Measurements of coronary reactive hyperemia with a Doppler probe. Intraoperative guide to hemodynamically significant lesions. J Thorax Cardiovasc Surg 80: 888–897, 1980.

    CAS  Google Scholar 

  174. 174.Harrison DG, White CW, Hiratzka LF, Wright CB, Doty CB, Miller MR, Eastham CL, Marcus ML: Can the significance of a coronary stenosis be predicted by quantitative coronary angiography? Circulation 64 (Supp I V ): 160. (Abstract), 1981.

    Google Scholar 

  175. Harrison DG, White CW, Hiratzka LF, Doty DB, Barnes DH, Eastham CL, Marcus ML: The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 69: 1111–1119, 1984.

    PubMed  CAS  Google Scholar 

  176. Collins SM, Skorton DJ, Harrison DG, White CW, Eastham CL, Hiratzka LF, Doty DB, Marcus ML: Quantitative computer-based videodensitometry and the physiological significance of a coronary stenosis. Comp in Cardiol: 219–222, 1982.

    Google Scholar 

  177. Bussman WD, Rutishauser W, Noseda G, Preter B, Meier W: Influence of a new contrast medium (Metrizoate) on coronary blood flow. In: Roentgen-, Cine- and Videodensitometry. Fundamentals and Applications for Blood Flow and Heart Volume Determination. PH Heintzen (Ed.). Georg Thieme Verlag, Stuttgart: 133–139, 1971.

    Google Scholar 

  178. Hackbarth W, Bircks W, Pölitz B, Körfer R, Schmiel FK, Spiller P: Vergleich videodensitometrischer und elektromagnetischer Flussmessungen in aortokoronaren Bypassgefässen. Fortschr Röntgenstr 132: 554–560, 1980.

    CAS  Google Scholar 

  179. Spiller P, Schmiel FK, Pölitz B, Block M, Fermer U, Hackbarth W, Jehle J, Körfer R, Pannek H: Measurement of systolic or diastolic flow rates in the coronary artery system by X-ray densitometry. Circulation 68: 337–347, 1983.

    PubMed  CAS  Google Scholar 

  180. Bürsch J, Johs R, Kirbach H, Schnürer C, Heintzen P: Accuracy of videodensitometric flow measurement. In: Roentgen-, Cine- and Videodensitometry. Fundamentals and Applications for Blood Flow and Heart Volume Determination. PH Heintzen (Ed.). Georg Thieme Verlag, Stuttgart: 119–132, 1971.

    Google Scholar 

  181. Rutishauer W, Noseda G, Bussman W-D, Preter B: Blood flow measurement through single coronary arteries by roentgen densitometry. Part II. Right coronary artery flow in conscious man. Am J Roentgenol, Rad Therapy and Nuclear Med 109: 21–24, 1970.

    Google Scholar 

  182. Smith HC, Frye RL, Donald DE, Davis GD, Pluth JR, Sturm RE, Wood EH: Roentgen videodensitometric measure of coronary blood flow. Determination from simultaneous indica- tor-dilution curves at selected sites in the coronary circulation and in coronary artery-saphenous vein grafts. Mayo Clin Proc 46: 800–806, 1971.

    PubMed  CAS  Google Scholar 

  183. Simon R, Amende I, Lichtlen PR: Roentgen Videodensitometry in the analysis of coronary angiograms. In: Coronary artery disease today. Diagnosis, surgery and prognosis. AVG Bruschke, G van Herpen, FEE Vermeulen (Eds.). Excerpta Medica, Amsterdam/Oxford/ Princeton: 176 - 182, 1982.

    Google Scholar 

  184. Simon R, Amende I, Oelert H, Hetzer R, Borst HG, Lichtlen PR: Blood velocity, flow and dimensions of aortacoronary venous bypass grafts in the postoperative state. Circulation 66 (Supp. I): 1–34–1–39,1982.

    Google Scholar 

  185. Fermor U, Huber H, Neuhaus KL, Schmiel KF, Spiller P: Measurement of flow velocity in the model circulation by videodensitometry. Methodological investigations. Basic Res Cardiol 73: 361–377, 1979.

    Google Scholar 

  186. Pannek H, Neuhaus KL, Schmiel FK, Spiller P: Röntgenvideodensitometrische Flussmessungen in aortokoronaren Bypass-Gefässen. Z Kardiol 67: 787–796, 1978.

    PubMed  CAS  Google Scholar 

  187. Sauer G, Krause H, Burmeister A, Tebbe U, Kreuzer H, Neuhaus KL: Determination of coronary flow velocities in man by a computer-aided cine-videodensitometric system. Z Kardiol 72: 207–214, 1983.

    PubMed  CAS  Google Scholar 

  188. Lipton MJ, Boyd DP: Contrast media in dynamic computed tomography of the heart and great vessels. In: Contrast Media in Computed Tomography. Exerpta Medica, Amsterdam: 204–213, 1981.

    Google Scholar 

  189. Lipton MJ, Higgins CB, Farmer DW, Gould RG, Napel S, Boyd DP: Real time cardiac CT scanning using a millisecond focused electron beam (cine/CT) scanner: initial results in patients and animals. JACC 3: 539 (Abstract), 1984.

    Google Scholar 

  190. Lipton MJ, Higgins CB, Farmer D, Boyd DP: Cardiac imaging with a high-speed cine-CT scanner: preliminary results. Radiology 152: 579–582, 1984.

    PubMed  CAS  Google Scholar 

  191. Cole JS, Hartley CJ: The pulsed Doppler coronary artery catheter. Preliminary report of a new technique for measuring rapid changes in coronary artery flow velocity in man. Circulation 56: 18–25, 1977.

    PubMed  CAS  Google Scholar 

  192. Wilson RF, Hartley CJ, Laughlin DE, Marcus ML, White CW: Transluminal subselective measurement of coronary blood flow velocity and coronary vasodilator reserve in man. J Am Coll Cardiol 3: 529 (abstract), 1984.

    Google Scholar 

  193. Strauss HW, Pitt B: Noninvasive detection of subcritical coronary arterial narrowings with a coronary vasodilator and myocardial perfusion imaging. Am J Cardiol 39: 403–406, 1977.

    PubMed  CAS  Google Scholar 

  194. Gould KL: Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. I. Physiologic basis and experimental validation. Am J Cardiol 41: 267–278, 1978.

    PubMed  CAS  Google Scholar 

  195. Gould KL, Westcott RJ, Albro PC, Hamilton GW: Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. II. Clinical methodology and feasibility. Am J Cardiol 41: 279–287, 1978.

    PubMed  CAS  Google Scholar 

  196. Albro PC, Gould KL, Westcott RJ, Hamilton GW, Ritchie JL, Williams DL: Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. III. Clinical Trial. Am J Cardiol 42: 751–760, 1978.

    PubMed  CAS  Google Scholar 

  197. Beller GA, Holtzgrefe HH, Watson DD: Effects of dipyridamole-induced vasodilation on myocardial uptake and clearance kinetics of thallium-201. Circulation 68: 1328–1338, 1983.

    PubMed  CAS  Google Scholar 

  198. Josephson MA, Brown BG, Hecht HS, Hopkins J, Pierce CD, Petersen RB: Noninvasive detection and localization of coronary stenoses in patients: comparison of resting dipyridamole and exercise thallium-201 myocardial perfusion imaging. Am Heart J, 103: 1008–1018, 1982.

    PubMed  CAS  Google Scholar 

  199. Smalling RW: The spectrum of thallium-201 imaging in coronary artery disease. Teaching Editorial. J Nucl Med 24: 854–858, 1983.

    PubMed  CAS  Google Scholar 

  200. Rigo P, Bailey IK, Griffith LSC, Pitt B, Burow RD, Wagner Jr, HN, Becker LC: Value and limitations of segmental analysis of stress thallium myocardial imaging for localization of coronary artery disease. Circulation 61: 973–981, 1980.

    PubMed  CAS  Google Scholar 

  201. Lenaers A, Block P, van Thiel E, Lebedelle M, Becquevort P, Erbsmann F, Ermans AM: Segmental analysis of Tl-201 stress myocardial scintigraphy. J Nucl Med 18: 509–516, 1977.

    PubMed  CAS  Google Scholar 

  202. McKillop JH, Murray RG, Turner JG, Bessent RG, Lorimer AR, Greig WR: Can the extent of coronary artery disease be predicted from thallium-201 myocardial images. J Nucl Med 20: 715–719, 1979.

    Google Scholar 

  203. Massie BM, Botvinick EH, Brundage BH: Correlation of thallium-201 scintigrams with coronary anatomy: factors affecting region by region sensitivity. Am J Cardiol 44: 616–622, 1979.

    PubMed  CAS  Google Scholar 

  204. Dash H, Massie BM, Botvinick EH, Brundage BH: The noninvasive identification of left main and three-vessel coronary artery disease by myocardial stress perfusion scintigraphy and treadmill exercise electrocardiography. Circulation 60: 276–284, 1979.

    PubMed  CAS  Google Scholar 

  205. Hör G, Kanemoto N: Tl-201 myocardial scintigraphy: current status in coronary artery disease, results of sensitivity/specificity in 3092 patients and clinical recommendations. Nucl Med 20: 136–147, 1981.

    Google Scholar 

  206. Rigo P, Bailey IK, Griffith LSC, Pitt B, Wagner HN Jr, Becker LS: Stress thallium-201 myocardial scintigraphy for the detection of individual coronary arterial lesions in patients with and without previous myocardial infarction. Am J Cardiol 48: 209–216, 1981.

    PubMed  CAS  Google Scholar 

  207. Rigo P, Becker LC, Griffith LSC, Alderson PO, Bailey IK, Pitt B, Burow RD, Wagner Jr HN: Influence of coronary collateral vessels on the results of thallium-201 myocardial stress imaging. Am J Cardiol 44: 452–458, 1979.

    PubMed  CAS  Google Scholar 

  208. Wijns W, Serruys PW, Reiber JHC, Feijter PJ de, Brand M van den, Simoons ML, Hugenholtz PG: Early detection of restenosis after successful percutaneous transluminal coronary angioplasty by exercise-redistribution thallium scintigraphy. Am J Cardiol 55: 357–361, 1985.

    PubMed  CAS  Google Scholar 

  209. Burow RD, Pond M, Schafer AW, Becker L: ‘Circumferential profiles’: A new method for computer analysis of thallium-201 myocardial perfusion images. J Nucl Med 20: 771–777, 1979.

    PubMed  CAS  Google Scholar 

  210. Meade RC, Bamrah VS, Horgan JD, Ruetz PP, Kronenwetter C, Yeh E: Quantitative methods in the evaluation of thallium-201 myocardial perfusion images. J Nucl Med 19: 1175–1178, 1978.

    PubMed  CAS  Google Scholar 

  211. Garcia E, Maddahi J, Berman D, Waxman A: Space/time quantitation of thallium-201 myocardial scintigraphy. J Nucl Med 22: 309–317, 1981.

    PubMed  CAS  Google Scholar 

  212. Reiber JHC, Lie SP, Simoons ML, Wijns W, Gerbrands JJ: Computer quantitation location, extent and type of thallium-201 myocardial perfusion abnormalities. Proc. 1st. Intern. Symp. Medical Imaging and Image Interpretation ISMIII, IEEE Cat No CH1804-4/82: 123–128, 1982.

    Google Scholar 

  213. Berger BC, Watson DD, Taylor GJ, Craddock GB, Martin RP, Teates CD, Beller GA: Quantitative thallium-201 exercise scintigraphy for detection of coronary artery disease. J Nucl Med 22: 585–593, 1981.

    PubMed  CAS  Google Scholar 

  214. Maddahi J, Garcia EV, Berman DS, Waxman A, Swan HJC, Forrester J: Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of thallium-201. Circulation 64: 924–935, 1981.

    PubMed  CAS  Google Scholar 

  215. Faris JV, Burt RW, Graham MC, Knoebel SB: Thallium-201 myocardial scintigraphy: improved sensitivity, specificity and predictive accuracy by application of a statistical image analysis algorithm. Am J Cardiol 49: 733–742, 1982.

    PubMed  CAS  Google Scholar 

  216. Gibson RS, Taylor GJ, Watson DD, Stebbins PT, Martin RP, Crampton RS, Beller GA: Predicting the extent and location of coronary artery disease during the early postinfarction period by quantitative thallium-201 scintigraphy. Am J Cardiol 47: 1010–1019, 1981.

    PubMed  CAS  Google Scholar 

  217. Maddahi J, Garcia EV, Berman DS: Quantitative analysis of the distribution and washout of thallium-201 in the myocardium: description of the method and its clinical applications. In: Nuclear Imaging in Clinical Cardiology. ML Simoons, JHC Reiber (Eds.) Martinus Nijhoff Publishers, Boston: 103–124, 1984.

    Google Scholar 

  218. Ritchie JL, Brown BG, Caldwell JH, Harp GD, Williams DL: Tl-201 quantitative tomographic imaging: comparison to quantitative coronary angiography. Circulation 68 (Supp III): III–386 (Abstract), 1983.

    Google Scholar 

  219. Tamaki N, Yonekura Y, Mukai T, Minato K, Nohara R, Kadota K, Kambara H, Kawai C, Ishii Y, Torizuka K: Values and limitations of segmental analysis of stress and redistribution T1ECT for location of coronary artery disease. J Nucl Med 24: P18 (Abstract), 1983.

    Google Scholar 

  220. Garcia EV, Van Train K, Maddahi J, Prigent F, Friedman J, Areeda J, Waxman A, Berman DS: Quantification of rotational thallium-201 myocardial tomography. J Nucl Med 26: 17–26, 1985.

    PubMed  CAS  Google Scholar 

  221. Reijs AEM, Reiber JHC, Blokland K, Gerbrands JJ, Simoons ML, Kooij PPM: Developments towards quantitative analysis of thallium-201 tomograms. Abstractbook 1984 European Gamma-11 Users’ Meeting, Amsterdam, May 17–19: 11: 7 (Abstract), 1984.

    Google Scholar 

  222. Sullivan PJ, Werre J, Okada RD, Kopiwoda S, Castronovo F, McKusick KA, Strauss HW: Comparison of Tc-99m DMPE to 201-Thallium biodistribution. Am J Cardiol 49: 980 (Abtstract), 1982.

    Google Scholar 

  223. Bushong WC, Weintraub WS, Bodenheimer MM, Akazuki S, Banka VS, Agarwal JB, Helfant RH: Assessment of myocardial perfusion using a newly developed technetium complex: comparison to 201-thallium and radioactive microspheres. Am J Cardiol 49: 979 (Abstract), 1982.

    Google Scholar 

  224. Selwyn AP, Allan RM, L’Abatta A, Horlock P, Camici P, Clark J, O’Brien HA, Grant PM: Relation between regional myocardial uptake of rubidium-82 and perfusion: Absolute reduction of cation uptake in ischemia. Am J Cardiol 50: 112–121, 1982.

    PubMed  CAS  Google Scholar 

  225. Wilson R, Shea M, Landsheere C. de, Deanfield J, Lammetsma A, Terton D, Selwyn A: Myocardial blood flow: clinical application and recent advances. In: Nuclear Imaging in Clinical Cardiology. ML Simoons, JHC Reiber (Eds). Martinus Nijhoff Publishers, Boston: 39 - 54, 1984.

    Google Scholar 

  226. Ross RS, Ueda K, Lichten PR, Rees JR: Measurement of myocardial blood flow in animals and man by selective injection of radioactive inert gas into the coronary arteries. Circ Res 15: 28–41, 1964.

    PubMed  CAS  Google Scholar 

  227. Cannon PJ, Weiss MB, Sciacca RR: Myocardial blood flow in coronary artery disease: studies at rest and during stress with inert gas washout techniques. Progr in Cardiov Dis XX: 95–120, 1977.

    Google Scholar 

  228. Engel HJ, Hundeshagen H, Lichtlen P: Auswirkungen von Koronarstenosen und ventrikulären Funktionsstörungen auf die regionale Myokarddurchblutung bei koronarer Herzkrankheit. Schweiz Med Wschr 107: 1920–1927, 1977.

    PubMed  CAS  Google Scholar 

  229. Smith SC, Gorlin R, Herman MV, Taylor WJ, Collins JJ: Myocardial blood flow in man: effects of coronary collateral circulation and coronary artery bypass surgery. J Clin Invest 51: 2556– 2565, 1972.

    PubMed  Google Scholar 

  230. Vogel R, LeFree M, Bates E, O’Neill W, Foster R, Kirlin P, Smith D, Pitt B: Application of digital techniques to selective coronary arteriography: use of myocardial contrast appearance time to measure coronary flow reserve. Am Heart J 107: 153–164, 1984.

    PubMed  CAS  Google Scholar 

  231. Hodgson JMcB, LeGrand V, Bates ER, Mancini GBJ, Aueron FM, O’Neill WW, Simon SB, Beauman GJ, LeFree MT, Vogel RA: Validation in dogs of a rapid digital angiographic technique to measure relative coronary blood flow during routine cardiac catheterization. Am J Cardiol 55: 188–193, 1985.

    PubMed  CAS  Google Scholar 

  232. Chappuis F, Ratib O, Meier B, Righetti A, Rutishauser W: Assessment of coronary flow reserve by computer analysis of digitized coronary angiograms at rest and after dipyridamol infusion. J Am Coll Cardiol 5: 475 (Abstract), 1985.

    Google Scholar 

  233. Legrand V, Hodgson JMcB, Aueron FM, Mancini J, Bates ER, Smith JS, LeFree MT, Vogel RA: The correlation of percent diameter coronary stenosis with the functional significance of individual coronary artery stenoses. J Am Coll Cardiol 5: 475 (Abstract), 1985.

    Google Scholar 

  234. Bürsch JH, Hahne HJ, Beyer C, Seemann S, Meissner L, Brennecke R, Heintzen PH: Myocardial perfusion studies by digital angiography. Comp in Cardiol: 343–346, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publisher, Dordrecht

About this chapter

Cite this chapter

Reiber, J.H.C., Serruys, P.W., Slager, C.J. (1986). Left ventricular and coronary cineangiography; overview of techniques, applications and limitations. In: Quantitative Coronary and Left Ventricular Cineangiography. Developments in Cardiovascular Medicine, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4239-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4239-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8382-9

  • Online ISBN: 978-94-009-4239-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics