Skip to main content

Part of the book series: Euro Courses ((EURS,volume 5))

  • 125 Accesses

Abstract

There are an increasing number of projects that use NOAA-AVHRR data for land applications, many of which are described in subsequent chapters. All of the projects which have a mapping and monitoring component require accurate image geometric correction to ensure the quantity that they measure is an actual indicator of a land cover characteristic or its change, and not an artefact of image to image mis-registration. It is therefore increasingly important to make the geometric correction as precise as possible, and also to know the likely limits of the accuracy of the correction, in order to interpret the results in a meaningful way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achard, F. and D’Souza, G., 1994. Collection and Pre-Processing of NOAA-AVHRR 1 km resolution data for tropical forest resource assessment. TREES Series A: Technical Document No. 2, EU-JRC+ ESA, Report EUR 16055 EN, 58pp. Available from JRC.

    Google Scholar 

  • Anderson, D.E., Angel, J.L. and Gorny, A.J., 1973. World Data Bank II: Content, Structure and Application, Office of Geographic and Cartographic Research, Central Intelligence Agency, Washington,D.C.

    Google Scholar 

  • Borkowski, K.M.,1989. Accurate algorithms to transform geocentric to geofetic coordinates, Bulletin Geodesique, 63, 50–56.

    Article  Google Scholar 

  • Brouwer, D., 1959. Solution to the problem of artificial satellite theory without drag, Astronomical Journal,64, 378–397.

    Article  Google Scholar 

  • Brunei, P. and Marsouin, A., 1987. An operational method using Argos orbital elements for navigation of AVHRR imagery, Int. Journal of Remote Sensing,8, 569–578.

    Article  Google Scholar 

  • Brush, R.J.H., 1982. A real-time retrieval system for images from polar orbiting satellites, PhD Thesis, University of Dundee, UK, 243pp.

    Google Scholar 

  • Brush, RJ.H., 1985. A method for real-time navigation of AVHRR imagery, IEEE Trans on Geoscience and Remote Sensing, GE–23, 6, 876–887

    Google Scholar 

  • Brush, R.J.H., 1987. The navigation of AVHRR imagery, Int. Journal of Remote Sensing,9,1491–1502.

    Article  Google Scholar 

  • Eidenshink, J.C. and Faundeen, J.L., 1995. The 1 km AVHRR global land data set: the first stages in implementation, Int. Journal of Remote Sensing, 17,77–98.

    Google Scholar 

  • Emery, W.J. and Ikeda, M., 1984. A comparison of geometric correction methods of AVHRR imagery, Canadian Journal of Remote Sensing,10,46–56.

    Google Scholar 

  • Emery, W.J., Brown, J. and Nowak, Z.P., 1989. AVHRR image navigation, summary and review, Photogramm,. Eng. and Remote Sensing, 55, 1175–1183.

    Google Scholar 

  • ESA 1988. SHARP-1. Technical Specification of CCT format. ESA-Earthnet Program Office. Feb 1988.

    Google Scholar 

  • Forrest R.B.,1981. Simulation of orbital image-sensor geometry. Photogramm,. Eng. and Remote Sensing, 47, 1187

    Google Scholar 

  • Fusco, L., Muirhead, K. and Tobiss, G., 1989: Earthnet’s Coordinated Scheme for AVHRR Data. International Journal of Remote Sensing,10, 625–636.

    Article  Google Scholar 

  • Ho, D. and Asem, A., 1986. NOAA AVHRR image referencing Jnt.Journal of Remote Sensing,77,895–904.

    Article  Google Scholar 

  • Hoots, F.R. and Roehrich, R.L.,1980. Models for propogation of NORAD element sets.Project Space-Track Report No. 3. Aerospace Defence Command, Peterson AFB. CO.

    Google Scholar 

  • Kidwell, K., 1991. NOAA polar orbiter data users guide. National Environmental Satellite Data, and Information Service, National Climate Data Center, Satellite Data Services Division, July 1991.

    Google Scholar 

  • Kloster, E., 1989. Using TBUS orbital elements for AVHRR image gridding, nt. Journal of Remote Sensing, 10, 653–659.

    Article  Google Scholar 

  • Kloster, E. and Farrelly, B.A., 1984. Mapping the Fram strait ice edge using AVHRR imagery and NOAA satellite orbital data. In Procs of IGARSS’84 Symp, Strasbourg 27–30 Aug 1984 (ESA SP 215) 369–372.

    Google Scholar 

  • Legeckis, R. and Pritchard, J., 1976. Algorithm for correcting the VHRR imagery for geometric distortions due to the Earth curvature, Earth rotation and spacecraft roll attitude errors. NOAA Tech Memorandum NESS c, NESS, Washington, DC, USA.

    Google Scholar 

  • Marsouin, A. and Brunei, P., 1991. Navigation of AVHRR images using ARGOS or TBUS bulletins, Int. Journal of Remote Sensing,12, 1575–1592.

    Google Scholar 

  • Marsouin, A. and Brunei, P., 1992. Systematic navigation errors on NOAA-12 AVHRR images, Int. Journal of Remote Sensing, 14, 171–176.

    Google Scholar 

  • Nagle, F.W.,1986. A description of prediction errors associated with the TBUS-4 navigation message and a corrective procedure. NOAA Technical Memorandum NESDIS 16, edited by National Technical Information Service (NTIS), USDoC, US.

    Google Scholar 

  • Price, J.C., 1991. Timing of NOAA afternoon passes, Int. Journal of Remote Sensing, 12, 193–199.

    Article  Google Scholar 

  • Puccinelli, E.F.,1976. Ground location of satellite scanner imagery,Photogramm,. Eng. and Remote Sensing, 42, 537–543.

    Google Scholar 

  • Robertson, B., Erickson, A., Friedel, J., Guindon, B., Fisher, T., Brown, R., Teillet, P.M., D’Orio, M. Cihlar J. and Sanz, A., 1992. GEOCOMP: A NOAA AVHRR data geocoding and compositing system.

    Google Scholar 

  • Rosborough, G.W., Baldwin, D.G. and Emery, W.J., 1994. Precise AVHRR image navigation. Paper accompanying software , IEEE Trans Geoscience and Remote Sensing, 32, 644–657.

    Article  Google Scholar 

  • Roy, A.E., 1978. Orbital Motion. Adam Hilger Ltd. Bristol, UK

    Google Scholar 

  • Sandford, T.D.G.,1992a. A review of image navigation methods for NOAA satellites,. Research Report CS 28 92. Bradford University, Dept of Computing, 18pp.

    Google Scholar 

  • Sandford T.D.G., 1992b. A comparison of orbital prediction algorithms for NOAA satellites,. Research Report CS 29 92. Bradford University, Dept of Computing, 18pp.

    Google Scholar 

  • Sharman, M., LeLerre, A., Barnes, I., and Bierlaire, P., 1992. Software for Processing AVHRR data for the Communities of Europe (SPACE): algorithms, benchmarks and standards. JRC-Ispra, Italy.

    Google Scholar 

  • Smart, W.M., 1953. Celestial Mechanics, John Wiley & Sons Inc., New York.

    Google Scholar 

  • Sowter, A., 1993. Orbital mechanics for Remote Sensing, Eurocourse Notes, Jan 1993, 78 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

D’Souza, G., Sandford, T.D.G. (1996). Techniques for Geometric Correction of NOAA-AVHRR Imagery. In: D’Souza, G., Belward, A.S., Malingreau, JP. (eds) Advances in the Use of NOAA AVHRR Data for Land Applications. Euro Courses, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0203-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0203-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6575-7

  • Online ISBN: 978-94-009-0203-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics