Skip to main content

Biology of Human Pathogenic Trypanosomatids: Epidemiology, Lifecycle and Ultrastructure

  • Chapter
  • First Online:
Proteins and Proteomics of Leishmania and Trypanosoma

Abstract

Leishmania and Trypanosoma belong to the Trypanosomatidae family and cause important human infections such as leishmaniasis, Chagas disease, and sleeping sickness. Leishmaniasis, caused by protozoa belonging to Leishmania, affects about 12 million people worldwide and can present different clinical manifestations, i.e., visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL), and post-kala-azar dermal leishmaniasis (PKDL). Chagas disease, also known as American trypanosomiasis, is caused by Trypanosoma cruzi and is mainly prevalent in Latin America but is increasingly occurring in the United States, Canada, and Europe. Sleeping sickness or human African trypanosomiasis (HAT), caused by two sub-species of Trypanosoma brucei (i.e., T. b. rhodesiense and T. b. gambiense), occurs only in sub-Saharan Africa countries. These pathogenic trypanosomatids alternate between invertebrate and vertebrate hosts throughout their lifecycles, and different developmental stages can live inside the host cells and circulate in the bloodstream or in the insect gut. Trypanosomatids have a classical eukaryotic ultrastructural organization with some of the same main organelles found in mammalian host cells, while also containing special structures and organelles that are absent in other eukaryotic organisms. For example, the mitochondrion is ramified and contains a region known as the kinetoplast, which houses the mitochondrial DNA. Also, the glycosomes are specialized peroxisomes containing glycolytic pathway enzymes. Moreover, a layer of subpellicular microtubules confers mechanic rigidity to the cell. Some of these structures have been investigated to determine their function and identify potential enzymes and metabolic pathways that may constitute targets for new chemotherapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acestor N, Zíková A, Dalley RA et al (2011) Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol Cell Proteomics 10:1–14. doi:10.1074/mcp.M110.006908

    Google Scholar 

  • Adhiambo C, Forney JD, Asai DJ et al (2005) The two cytoplasmic dynein-2 isoforms in Leishmania mexicana perform separate functions. Mol Biochem Parasitol 143:216–225

    PubMed  CAS  Google Scholar 

  • Aksoy S, Gibson WC, Lehane MJ (2003) Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. Adv Parasitol 53:1–83

    PubMed  Google Scholar 

  • Alavi-Naini R, Fazaeli A, O’Dempsey T (2012) Topical treatments modalities for old world cutaneous leishmaniasis: a review. Prague Medical Rep 113:105–118

    CAS  Google Scholar 

  • Alberio SO, Dias SS, Faria FP et al (2004) Ultrastructural and cytochemical identification of megasome in Leishmania (Leishmania) chagasi. Parasitol Res 92:246–254

    PubMed  Google Scholar 

  • Alexander J, Vickerman K (1975) Fusion of host cell secondary lysosomes with parasitophorous vacuole of Leishmania mexicana-infected macrophages. J Protozool 22:502–508

    PubMed  CAS  Google Scholar 

  • Allen CL, Goulding D, Field MC (2003) Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J 22:4991–5002

    PubMed  CAS  Google Scholar 

  • Alvar J, Vélez IV, Bern C et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671

    PubMed  CAS  Google Scholar 

  • Anderson WA, Ellis RA (1965) Ultrastructure of Trypanosoma lewisi: flagellum, microtubules and the kinetoplast. J Protozool 12:483–489

    Google Scholar 

  • Barry JD, McCulloch R (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49:1–70

    PubMed  CAS  Google Scholar 

  • Bastin P, Pullen TJ, Moreira-Leite FF et al (2000) Inside and outside of the trypanosome flagellum: a multifunctional organelle. Microbes Infect 2:1865–1874

    PubMed  CAS  Google Scholar 

  • Bates PA (1994) The developmental biology of Leishmania promastigotes. Exp Parasitol 79:215–218

    PubMed  CAS  Google Scholar 

  • Batters C, Woodall KA, Toseland CP et al (2012) Cloning, expression, and characterization of a novel molecular motor, Leishmania myosin-XXI. J Biol Chem 287:27556–27566

    PubMed  CAS  Google Scholar 

  • Benchimol M, de Souza W (1980) Freeze-fracture study of the plasma membrane of Leishmania mexicana amazonensis. J Parasitol 66:941–947

    PubMed  CAS  Google Scholar 

  • Bente M, Harder S, Wiesgigl M et al (2003) Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3:1811–1829

    PubMed  CAS  Google Scholar 

  • Blum JA, Neumayr AL, Hatz CF (2012) Human African trypanosomiasis in endemic populations and travellers. Eur J Clin Microbiol Infect Dis 31:905–913

    PubMed  CAS  Google Scholar 

  • Boatin BA, Wyatt GB, Wurapa FK et al (1986) Use of symptoms and signs for diagnosis of Trypanosoma brucei rhodesiense trypanosomiasis by rural health personnel. Bull World Health Organ 64:389–395

    PubMed  CAS  Google Scholar 

  • Böhringer S, Hecker H (1974) Quantitative ultrastructural differences between strains of Trypanosoma brucei subgroup during transformation in blood. J Protozool 21:694–698

    PubMed  Google Scholar 

  • Böhringer S, Hecker H (1975) Quantitative ultrastructural investigations of the life cycle of Trypanosoma brucei: a morphometric analysis. J Protozool 22:463–467

    PubMed  Google Scholar 

  • Brennand A, Gualdrón-López M, Coppens I et al (2011) Autophagy in parasitic protists: unique features and drug targets. Mol Biochem Parasitol 177:83–89

    PubMed  CAS  Google Scholar 

  • Brun R, Krassner SM (1976) Quantitative ultrastructural investigations of mitochondrial development in Leishmania donovani during transformation. J Protozool 23:493–497

    PubMed  CAS  Google Scholar 

  • Bunn MM, Soares TC, Angluster J et al (1977) Effect of 2-deoxy-D-glucose on Herpetomonas samuelpessoai. Z Parasitenkd 52:245–256

    PubMed  CAS  Google Scholar 

  • Burton P, Dusanic DG (1968) Fine structure and replication of the kinetoplast of Trypanosoma lewisi. J Cell Biol 39:318–331

    PubMed  CAS  Google Scholar 

  • Cavalcanti DP, Fragoso SP, Goldenberg S et al (2004) The effect of topoisomerase II inhibitors on the kinetoplast ultrastructure. Parasitol Rex 94:439–448

    Google Scholar 

  • Cevallos AM, Segura-Kato YX, Merchant-Larios H et al (2011) Trypanosoma cruzi: multiple actin isovariants are observed along different developmental stages. Exp Parasitol 127:249–259

    PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134

    CAS  Google Scholar 

  • Chaudhuri M, Ott RD, Hill GC (2006) Trypanosome alternative oxidase: from molecule to function. Trends Parasitol 22:485–491

    Google Scholar 

  • Clarckson AB Jr, Bienen EJ, Pollakis G et al (1989) Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem 264:17770–17776

    Google Scholar 

  • Clayton CE, Michels P (1996) Metabolic compartmentation in African trypanosomes. Parasitol Today 12:465–471

    PubMed  CAS  Google Scholar 

  • Cunha-e-Silva N, Sant’Anna C, Pereira MG et al (2006) Reservosomes: multipurpose organelles? Parasitol Res 99:325–327

    PubMed  Google Scholar 

  • Dai K, Yuan G, Liao S et al (2011) 1H, 13C and 15N resonance assignments for a putative ADF/Cofilin from Trypanosoma brucei. Biomol NMR Assign 5:249–251

    PubMed  CAS  Google Scholar 

  • de Jesus AR, Cooper R, Espinosa M et al (1993) Gene deletion suggests a role for Trypanosoma cruzi surface glycoprotein GP72 in the insect and mammalian stages of the life cycle. J Cell Sci 106:1023–1033

    PubMed  Google Scholar 

  • de Souza W (1984) Cell biology of Trypanosoma cruzi. Int Rev Cytol 86:197–283

    PubMed  Google Scholar 

  • de Souza W (1989) Components of the cell surface of trypanosomatids. Prog Protistol 3:87–184

    Google Scholar 

  • de Souza L (1995) Structural organization of the cell surface of pathogenic protozoa. Micron 26:405–430

    PubMed  Google Scholar 

  • de Souza W (2002) Special organelles of some pathogenic protozoa. Parasitol Res 88:1013–1025

    PubMed  Google Scholar 

  • de Souza W (2008) An introduction to the structural organization of parasitic protozoa. Curr Pharm Des 14:822–838

    PubMed  Google Scholar 

  • de Souza W, Attias M (2010) Subpellicular microtubules in Apicomplexa and Trypanosomatids. In: de Souza W (ed) Structures and organelles in pathogenic protists, microbiology monographs 17. Springer, Heidelberg

    Google Scholar 

  • de Souza W, Souto-Padron T (1980) The paraxial structure of the flagellum of trypanosomatidae. J Parasitol 66:229–236

    PubMed  Google Scholar 

  • de Souza W, Angluster J, Bunn MM (1977) Cytochemical detection of cytochrome oxidase on the mitochondrion-kinetoplast complex of Herpetomonas samuelpessoai. Influence of the growth medium. J Submicr Cytol 9:355–361

    Google Scholar 

  • de Souza W, Martinez-Palomo A, Gonzalez-Robles A (1978) The cell surface of Trypanosoma cruzi: cytochemistry and freeze-fracture. J Cell Sci 33:285–299

    PubMed  Google Scholar 

  • de Souza W, Attias M, Rodrigues JCF (2009a) Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 41:2069–2080

    PubMed  Google Scholar 

  • de Souza W, Sant’Anna C, Cunha-e-Silva NL (2009b) Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. Prog Histochem Cytochem 44:67–124

    PubMed  Google Scholar 

  • de Souza W, Carvalho, TMU, Barrias ES (2010) Review on Trypanosoma cruzi: host cell interaction. Int J Cell Biol, article ID 295394, doi:10.1155/2010/295394

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–381

    PubMed  CAS  Google Scholar 

  • Docampo R, Scott DA, Vercesi AE et al (1995) Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 310:1005–1012

    PubMed  CAS  Google Scholar 

  • Docampo R, de Souza MK et al (2005) Acidocalcisomes-conserved from bacteria to man. Nat Rev Microbiol 3:251–261

    PubMed  CAS  Google Scholar 

  • Dorlo TPC, Balasegaram M, Beijnen JH et al (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597

    PubMed  CAS  Google Scholar 

  • Durieux PO, Schütz P, Brun R et al (1991) Alterations in Krebs cycle enzyme activities and carbohydrate catabolism in two strains of Trypanosoma brucei during in vitro differentiation of their bloodstream to procyclic stages. Mol Biochem Parasitol 45:19–27

    PubMed  CAS  Google Scholar 

  • Duszenko M, Ginger ML, Brennand A et al (2011) Autophagy in protists. Autophagy 7:127–158

    PubMed  CAS  Google Scholar 

  • Fampa P, Correa-da-Silva MS, Lima DC et al (2003) Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines. Int J Parasitol 33:1019–1026

    PubMed  Google Scholar 

  • Faria-e-Silva PM, Attias M, de Souza W (2000) Biochemical and ultrastructural changes in Herpetomonas roitmani related to the energy metabolism. Biol Cell 92:39–47

    PubMed  CAS  Google Scholar 

  • Farina M, Attias M, Souto-Padron T et al (1986) Further studies on the organization of the paraxial rod of trypanosomatids. J Protozool 33:552–557

    Google Scholar 

  • Fenn K, Matthews KR (2007) The cell biology of Trypanosoma brucei differentiation. Curr Op Microbiol 10:539–546

    CAS  Google Scholar 

  • Ferguson MAJ (1997) The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci 352:1295–1302

    PubMed  CAS  Google Scholar 

  • Field MC, Carrington M (2004) Intracellular membrane transport systems in Trypanosoma cruzi. Traffic 5:1–9

    Google Scholar 

  • Figueiredo RCBQ, Soares MJ (2000) Low temperature blocks fluid-phase pinocytosis and receptor-mediated endocytosis in Trypanosoma cruzi epimastigotes. Parasitol Res 86:413–418

    PubMed  Google Scholar 

  • Freymuller E, Camargo EP (1981) Ultrastructural differences between species of trypanosomatids with and without endosymbiont. J Protozool 16:160–166

    Google Scholar 

  • Ganguly NK (2002) Oral miltefosine may revolutionize treatment of visceral leishmaniasis. The potential impact of miltefosine on visceral leishmaniasis in India. TDR News 68:2

    Google Scholar 

  • Girard-Dias W, Alcântara CL, Cunha-e-Silva NL et al (2012) On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Hitochem Cell Biol 138:821–831

    CAS  Google Scholar 

  • Gluenz E, Höög JL, Smith AE et al (2010) Beyond 9 + 0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB J 24:3118–3121

    Google Scholar 

  • Gonçalves RLS, Menna-Barreto RFS, Polycarpo CR et al (2011) A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi. J Bioenerg Biomembr 43:651–661

    PubMed  Google Scholar 

  • Grunferlder CG, Engstler M, Weise F et al (2003) Endocytosis of a glycosylphosphatidylinositol-anchored protein via clathrin-coated vesicles, sorting by default in endosomes, and exocytosis via RAB11-positive carries. Mol Biol Cell 14:2029–2040

    Google Scholar 

  • Gualdrón-López M, Brennand A, Hannaert V et al (2012) When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 42:1–20

    PubMed  Google Scholar 

  • Hajduk SL (1984) Antigenic variation during the developmental cycle of Trypanosoma brucei. J Protozool 31:41–47

    PubMed  CAS  Google Scholar 

  • Harder S, Thiel M, Clos J et al (2010) Characterization of a subunit of the outer dynein arm docking complex necessary for correct flagellar assembly in Leishmania donovani. PLoS One 4:e586

    Google Scholar 

  • Hasne MP, Coppens I, Soysa R et al (2010) A high-affinity putrescine-cadeverine transporter from Trypanosoma cruzi. Mol Microbiol 76:78–91

    PubMed  CAS  Google Scholar 

  • Herman M, Pérez-Morga D, Schtickzelle N et al (2008) Turnover of glycosomes during differentiation of Trypanosoma brucei. Autophagy 4:294–308

    PubMed  CAS  Google Scholar 

  • Hill GC, Anderson WA (1969) Effects of acriflavine on the mitochondria and kinetoplast of Crithidia fasciculata. Correlation of fine structure changes with decreased mitochondrial enzyme activity. J Cell Biol 41:547–561

    PubMed  CAS  Google Scholar 

  • Höög JL, Bouchet-Marquis C, McIntosh JR et al (2012) Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. J Struct Biol 178:189–198

    PubMed  Google Scholar 

  • Igoilho-Esteve M, Maugeri D, Stern AL et al (2007) The pentose phosphate pathway in Trypanosoma cruzi: a potential target for the chemotherapy of Chagas disease. An Acad Bras Cienc 79:649–663

    Google Scholar 

  • Kakkar P, Singh BK (2007) Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 305:235–253

    PubMed  CAS  Google Scholar 

  • Kollien AH, Grospietsch T, Kleffmann T et al (2001) Ionic composition of the rectal contents and excreta of the reduviid bug Triatoma infestans. J Insect Physiol 47:739–747

    PubMed  CAS  Google Scholar 

  • Kuhls K, Alam MZ, Cupolillo L et al (2011) Comparative microsatellite typing of new world Leishmania infantum reveals low heterogeneity among populations and its recent old world origin. PLoS Negl Trop Dis 5:e1155

    PubMed  Google Scholar 

  • Kumar G, Srivastava R, Mitra K et al (2012) Overexpression of S4D mutant of Leishmania donovani ADF/Cofilin impairs flagellum assembly by affecting actin dynamics. Eukaryot Cell 11:752–760

    PubMed  CAS  Google Scholar 

  • LaCount DJ, Barrett B, Donelson JE (2002) Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. J Biol Chem 277:17580–17588

    PubMed  CAS  Google Scholar 

  • Le Loup G, Pialoux G, Lescure FX (2011) Updated in treatment of Chagas disease. Curr Op Infect Dis 24:428–434

    Google Scholar 

  • Li Z-H, Alvarez VE, de Gaudenzi JG et al (2011) Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi. J Biol Chem 286:43959–43971

    PubMed  CAS  Google Scholar 

  • Liu Y, Englund PT (2007) Te rotational dynamics of kinetoplast DNA replication. Mol Microbiol 64:676–690

    PubMed  CAS  Google Scholar 

  • Liu B, Liu Y, Motyka SA et al (2005) Fellowship of the rings: the replication of the kinetoplast DNA. Trends Parasitol 21:363–369

    PubMed  CAS  Google Scholar 

  • Lodge R, Descoteaux A (2008) Leishmania invasion and phagosome biogenesis. In: Burleigh BA, Soldati-Favre D (eds) Molecular mechanisms of parasite invasion, subcellular biochemistry, vol 47. Springer, New York, pp 174–181

    Google Scholar 

  • Lorente SO, Rodrigues JCF, Jiménez CJ et al (2004) Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother 48:2937–2950

    PubMed  Google Scholar 

  • Lukes J, Guilbride DL, Votýpka J et al (2002) Kinetoplast DNA network: evolution of an improbable structure. Euk Cell 1:495–502

    CAS  Google Scholar 

  • MacLean LM, Odiit M, Chisi JE et al (2010) Focus-specific clinical profiles in human African trypanosomiasis caused by Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis 4:e906

    PubMed  Google Scholar 

  • Maga JA, Sherwin T, Francis S et al (1999) Genetic dissection of the Leishmania paraflagellar rod, a unique flagellar cytoskeleton structure. J Cell Sci 112:2753–2763

    PubMed  CAS  Google Scholar 

  • Malckow D, Lusche DF, Schlatterer C et al (2006) The contractile vacuole in Ca2+-regulation in Dictyostelium: its essential function for cAMP-induced Ca2+-influx. BMC Dev Biol 6:31

    Google Scholar 

  • Malvy D, Chappuis F (2011) Sleeping sickness. Clin Microbiol Infect 17:986–995

    PubMed  CAS  Google Scholar 

  • Martinez-Palomo A, de Souza W, Gonzalez-Robles A (1976) Topographical differences in the distribution of surface coat components and intramembranous particles. A cytochemical and freeze-fracture study in culture forms of Trypanosoma cruzi. J Cell Biol 69:507–513

    PubMed  CAS  Google Scholar 

  • McConville MJ, Mullin KA, Ilgoutz SC et al (2002) Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 66:122–154

    PubMed  CAS  Google Scholar 

  • Melo LDB, Sant’anna C, Reis SA et al (2008) Evolutionary conservation of actin-binding proteins in Trypanosoma cruzi and unusual subcellular localization of the actin homologue. Parasitol 135:955–965

    Google Scholar 

  • Meyer H (1968) The fine structure of the flagellum and the kinetoplast-chondriome of Trypanosoma (Schyzotrypanum) cruzi in tissue culture. J Protozool 15:614–621

    PubMed  CAS  Google Scholar 

  • Miranda K, Benchimol M, Docampo R et al (2000) The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol Res 86:373–384

    PubMed  CAS  Google Scholar 

  • Miranda K, Docampo R, Grillo O et al (2004a) Acidocalcisomes of trypanosomatids have species-specific elemental composition. Protist 155:395–405

    PubMed  CAS  Google Scholar 

  • Miranda K, Docampo R, Grillo O et al (2004b) Dynamics of polymorphism of acidocalcisomes in Leishmania parasite. Histochem Cell Biol 121:407–418

    PubMed  CAS  Google Scholar 

  • Moniakis J, Coukell MB, Janiec A (1999) Involvement of the Ca2+-ATPase PAT1 and the contractile vacuole in calcium regulation in Dictyostelium discoideum. J Cell Sci 112:405–414

    PubMed  CAS  Google Scholar 

  • Montalvetti A, Rohloff P, Docampo R (2004) A functional aquaporin colocalizes with the vacuolar proton pyrophosphate to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 279:38673–38682

    PubMed  CAS  Google Scholar 

  • Motta MCM (2008) Kinetoplast as a potential chemotherapeutic target of trypanosomatids. Curr Pharm Des 14:847–854

    PubMed  CAS  Google Scholar 

  • Nayak RC, Sahasrabuddhe AA, Bajpai VK et al (2005) A novel homologue of coronin colocalizes with actin in filament-like structures in Leishmania. Mol Biochem Parasitol 143:152–164

    PubMed  CAS  Google Scholar 

  • Nozaki T, Haynes PA, Cross GAM (1996) Characterization of the Trypanosoma brucei homologue of a Trypanosoma cruzi flagellum-adhesion glycoprotein. Mol Biochem Parasitol 82:245–255

    PubMed  CAS  Google Scholar 

  • Odiit M, Kansiime F, Enyaru JC (1997) Duration of symptoms and case fatality of sleeping sickness caused by Trypanosoma brucei rhodesiense in Tororo, Uganda. East Afr Med J 74:792–795

    PubMed  CAS  Google Scholar 

  • Odronitz F, Kollmar M (2007) Drawing the three of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8:R196

    PubMed  Google Scholar 

  • Ogbadoyi EO, Robinson DR, Gull K (2003) A high-order transmembrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 4:1769–1779

    Google Scholar 

  • Oliveira LF, Schubach AO, Martins MM et al (2011) Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the new world. Acta Trop 118:87–96

    PubMed  CAS  Google Scholar 

  • Ono S (2007) Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int Rev Cytol 258:152–164

    Google Scholar 

  • Opperdoes FR (1987) Compartmentalization of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol 41:127–151

    PubMed  CAS  Google Scholar 

  • Opperdoes FR, Borst P (1977) Localization of nine glycolitic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80:360–364

    PubMed  CAS  Google Scholar 

  • Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23:149–158

    PubMed  CAS  Google Scholar 

  • Opperdoes FR, Szikora JP (2006) In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol 147:193–206

    PubMed  CAS  Google Scholar 

  • Overath P, Engstler M (2004) Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 53:735–744

    PubMed  CAS  Google Scholar 

  • Paulin JJ (1975) The chondriome of selected trypanosomatids. A three-dimensional study based on serial thick sections and high voltage electron microscopy. J Cell Biol 66:404–413

    PubMed  CAS  Google Scholar 

  • Peck RF, Shiflett AM, Schwartz KJ et al (2008) The LAMP-like protein p67 plays an essential role in the lysosome of African trypanosomes. Mol Microbiol 68:933–946

    PubMed  CAS  Google Scholar 

  • Pereira MG, Nakayasu ES, Sant’Anna C et al (2011) Trypanosoma cruzi epimastigotes are able to store and mobilize high amounts of cholesterol in reservosome lipid conclusions. PLoS One 6:e22359

    PubMed  CAS  Google Scholar 

  • Portman N, Gull K (2010) The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 40:135–148

    PubMed  CAS  Google Scholar 

  • Porto-Carreiro I, Attias M, Miranda K et al (2000) Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. Eur J Cell Biol 79:858–869

    PubMed  CAS  Google Scholar 

  • Priotto G, Kasparian S, Mutombo W et al (2009) Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374:56–64

    PubMed  CAS  Google Scholar 

  • Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402

    PubMed  Google Scholar 

  • Rassi A Jr, Rassi A, Rezende JM (2012) American trypanosomiasis (Chagas disease). Infect Dis Clin N Am 26:275–291

    Google Scholar 

  • Riou G, Delain E (1979) Electron microscopy of the circular kinetoplastic DNA from Trypanosoma cruzi: occurrence of concatenated forms. Proc Natl Acad Sci 62:210–217

    Google Scholar 

  • Rocha GM, Brandão BA, Mortara RA et al (2006) The flagellar attachment zone of Trypanosoma cruzi epimastigotes forms. J Struct Biol 154:89–99

    PubMed  CAS  Google Scholar 

  • Rocha GM, Teixeira DE, Miranda K et al (2010) Structural changes of the paraflagellar rod during flagellar beating in Trypanosoma cruzi. PLoS One 5:e11407

    PubMed  Google Scholar 

  • Rodrigues JCF, Concepcion JL, Rodrigues C et al (2008) In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical and ultrastructural effects. Antimicrob Agents Chemother 52:4098–4114

    PubMed  CAS  Google Scholar 

  • Rohloff P, Docampo R (2008) A contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Exp Parasitol 118:17–24

    PubMed  CAS  Google Scholar 

  • Rohloff P, Montalvetti A, Docampo R (2004) Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J Biol Chem 279:52270–52281

    PubMed  CAS  Google Scholar 

  • Sahasrabuddhe AA, Bjapai VK, Gupta CM (2004) A novel form of actin in Leishmania: molecular characterization, subcellular localization and association with subpellicular microtubules. Mol Biochem Parasitol 134:105–114

    PubMed  CAS  Google Scholar 

  • Sant’Anna C, Parussini F, Lourenço D et al (2008a) All Trypanosoma cruzi developmental forms present lysosome-related organelles. Histochem Cell Biol 130:1187–1198

    PubMed  Google Scholar 

  • Sant’Anna C, Pereira MG, Lemgruber L et al (2008b) New insights into the morphology of Trypanosoma cruzi reservosome. Microsc Res Tech 71:599–605

    PubMed  Google Scholar 

  • Sant’Anna C, Nakayasu ES, Pereira MG et al (2009) Subcellular proteomics of Trypanosoma cruzi reservosomes. Proteomics 9:1782–1794

    PubMed  Google Scholar 

  • Santos CC, Sant’Anna C, Terres A et al (2005) Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J Cell Sci 118:901–915

    PubMed  CAS  Google Scholar 

  • Santrich C, Morre L, Sherwin T et al (1997) A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR2 gene knockouts. Mol Biochem Parasitol 90:95–109

    PubMed  CAS  Google Scholar 

  • Schagger H (2001) Respiratory chain complexes. IUBMB Life 52:119–128

    PubMed  CAS  Google Scholar 

  • Schoijet AC, Miranda K, Medeiros LCS et al (2011) Defining the role of a FYVE domain in the localization and activity of a cAMP phosphodiesterase implicated in osmoregulation in Trypanosoma cruzi. Mol Microbiol 79:50–62

    PubMed  CAS  Google Scholar 

  • Sen N, Majumder HK (2008) Mitochondrion of protozoan parasite emerges as potent therapeutic target: exciting drugs are on the horizon. Curr Pharm Des 14:839–846

    PubMed  CAS  Google Scholar 

  • Sesaki H, Wong EF, Siu CH (1997) The cell adhesion molecule DdCAD-1 in Dictyostelium is target to the cell surface by a nonclassical transport pathway involving contractile vacuoles. J Cell Biol 138:939–951

    PubMed  CAS  Google Scholar 

  • Shapiro TA, Englund PT (1995) The structure and replication of the kinetoplast DNA. Ann Rev Microbiol 49:117–143

    CAS  Google Scholar 

  • Sherwin T, Gull K (1989) The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci 323:573–588

    PubMed  CAS  Google Scholar 

  • Simarro PP, Franco J, Diarra A et al (2012) Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitol 139:842–846

    CAS  Google Scholar 

  • Soares MJ, de Souza W (1988) Cytoplasmic organelles of trypanosomatids: a cytochemical and stereological study. J Submicrosc Cytol Pathol 20:349–361

    PubMed  CAS  Google Scholar 

  • Soares MJ, de Souza W (1991) Endocytosis of gold-labeled proteins and LDL by Trypanosoma cruzi. Parasitol Res 77:461–468

    PubMed  CAS  Google Scholar 

  • Souto-Padrón T, de Souza W (1982) Fine structure and cytochemistry of peroxisomes (microbodies) in Leptomonas samueli. Cell Tiss Res 22:153–158

    Google Scholar 

  • Souto-Padrón T, de Lima VMQG, Roitman I et al (1980) An electron microscopic and cytochemical study of Leptomonas samueli. Z Parasitenkd 62:127–143

    Google Scholar 

  • Souto-Padrón T, Campetella OE, Cazzullo JJ et al (1990) Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite–host cell interaction. J Cell Sci 96:485–490

    PubMed  Google Scholar 

  • Spitznagel D, O’Rourke JF, Leddy N et al (2010) Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei. PLoS One 5:e12282

    PubMed  Google Scholar 

  • Steinert G, Firket H, Steinert M (1958) Synthesis of deoxyribonucleic acid in the parabasal body of body of Trypanosoma mega. Exp Cell Res 15:632–635

    PubMed  CAS  Google Scholar 

  • Stuart K, Panigrahi AK (2002) RNA editing: complexity and complications. Mol Microbiol 45:591–596

    PubMed  CAS  Google Scholar 

  • Sugrue P, Hirons MR, Adam JU et al (1988) Flagellar wave reversal in the kinetoplastida flagellate Crithidia oncopelti. Biol Cell 63:127–131

    PubMed  CAS  Google Scholar 

  • Sundar S, Rai M, Chakravarty J et al (2008) New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin B followed by short-course oral miltefosine. Clin Infect Dis 47:1000–1006

    PubMed  CAS  Google Scholar 

  • Sundar S, Chakravarty J, Agarwal D et al (2010) Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med 362:504–512

    PubMed  CAS  Google Scholar 

  • Tammana TVS, Sahasrabuddhe AA, Mitra K et al (2008) Actin-depolymerizing factor, ADF/Cofilin, is essentially required in assembly of Leishmania flagellum. Mol Microbiol 70:837–852

    PubMed  CAS  Google Scholar 

  • Thakur CP, Kanyok TP, Pandey AK et al (2000) Treatment of visceral leishmaniasis with injectable paromomycin (aminosidine). An open-label randomized phase-II clinical study. Trans R Soc Trop Med Hyg 94:432–443

    PubMed  CAS  Google Scholar 

  • Tielens AG, Van Hellemond JJ (1998) Differences in energy metabolism between trypanosomatidae. Parasitol Today 14:265–272

    PubMed  CAS  Google Scholar 

  • Tyler KM, Engman DM (2001) The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31:472–481

    PubMed  CAS  Google Scholar 

  • Ulrich PN, Jimenez V, Park M et al (2011) Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 6:e18013

    PubMed  CAS  Google Scholar 

  • Urbina JA (2010) Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115:55–68

    PubMed  Google Scholar 

  • Vercesi AE, Moreno SNJ, Docampo R (1994) Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J 304:227–233

    PubMed  CAS  Google Scholar 

  • Vickerman K (1962) The mechanism of cyclical development in trypanosomes of Trypanosoma brucei sub-group: a hypothesis based on ultrastructural observations. Trans R Soc Trop Med Hyg 56:487–495

    PubMed  CAS  Google Scholar 

  • Vickerman K (1969) On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 5:163–193

    PubMed  CAS  Google Scholar 

  • Vickerman K, Tetley L (1977) Recent ultrastructural studies on trypanosomes. Ann Soc Belge Med Trop 57:441–457

    CAS  Google Scholar 

  • Vieira M, Rohloff P, Luo S et al (2005) Role for a P-type H + -ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi. Biochem J 392:467–474

    PubMed  CAS  Google Scholar 

  • Waller RF, McConville MJ (2002) Developmental changes in lysosome morphology and function Leishmania parasites. Int J Parasitol 32(12):1432–1445

    Google Scholar 

  • Webster P (1989) Endocytosis by African trypanosomes. I. Three-dimensional structure of the endocytic organelles in Trypanosoma brucei and T. congolense. Eur J Cell Biol 49:295–302

    PubMed  CAS  Google Scholar 

  • Weise F, Stierhof YD, Kuhn C et al (2000) Distribution of GPI-anchored proteins in the protozoan parasite Leishmania, based on an improved ultrastructural description using high-pressure frozen cells. J Cell Sci 113:4587–4603

    PubMed  CAS  Google Scholar 

  • World Health Organization (2006) Human African trypanosomiasis (sleeping sickness): epidemiological update. Wkly Epidemiol Rec 8:71–80

    Google Scholar 

  • World Health Organization (2010a) Control of the leishmaniases. World Health Organ Tech Rep Ser 949:186

    Google Scholar 

  • World Health Organization (2010b) Chagas disease (American trypanosomiasis) fact sheet (revised in June 2010). Wkly Epidemiol Rec 85:334–336

    Google Scholar 

  • World Health Organization (2010c) Working to overcome the global impact of neglected tropical diseases. Publications of World Health Organization. http://whqlibdoc.who.int/publications

  • Xu C, Ray DS (1993) Isolation of protein associated with the kinetoplast-DNA networks in vivo. Proc Natl Acad Sci USA 90:1786–1789

    PubMed  CAS  Google Scholar 

  • Yeoh S, Pope B, Manneherz HG et al (2002) Determining the differences in actin binding by human ADF and cofilin. J Mol Biol 315:911–925

    PubMed  CAS  Google Scholar 

  • Yun O, Priotto G, Tong J et al (2010) NECT is next: implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 4:e720

    PubMed  Google Scholar 

  • Zijlstra EE, Musa AM, Khalil EAG et al (2003) Post-kala-azar dermal leishmaniasis. Lancet Infect Dis 3:87–98

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support has been provided to the authors by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Financiadora de Estudos e Projetos (FINEP). We are grateful to the following people that help with some images: Thiago Luiz de Barros Moreira, Juliana Vidal, Dr. Thais Cristina Souto Padron, Dr. Narcisa Leal da Cunha-e-Silva and Dr. Marcia Attias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliany Cola Fernandes Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rodrigues, J.C.F., Godinho, J.L.P., de Souza, W. (2014). Biology of Human Pathogenic Trypanosomatids: Epidemiology, Lifecycle and Ultrastructure. In: Santos, A., Branquinha, M., d’Avila-Levy, C., Kneipp, L., Sodré, C. (eds) Proteins and Proteomics of Leishmania and Trypanosoma. Subcellular Biochemistry, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7305-9_1

Download citation

Publish with us

Policies and ethics