Skip to main content

Modification of BVOC Emissions by Changes in Atmospheric [CO2] and Air Pollution

  • Chapter
  • First Online:
Biology, Controls and Models of Tree Volatile Organic Compound Emissions

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

Biogenic volatile organic compounds (BVOCs) produced by trees participate in the formation of air pollutants such as ozone and particulate matter. At the same time, the metabolic processes responsible for these emissions are sensitive to ozone and other air pollutants, as well as the solar radiation flux, which is affected by atmospheric particulate concentration. Recent anthropogenic increases in the atmospheric carbon dioxide concentration are also capable of affecting BVOC emissions, although the mechanisms behind these responses can produce variable effects depending on the plant species. Mechanisms of air pollutant effects on BVOC emissions are reviewed and dose-response relationships across a variety of trees with differing pollutant tolerance and emission capacity are compared. From this broad analysis, generalized response patterns have been developed. This chapter emphasizes the need to consider the interactions between BVOC emissions and ozone to understand plant behaviour in future climates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbaugh M, Bytnerowicz A, Grulke N, Fenn M, Poth M, Temple MP (2003) Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains. Environ Int 29:401–406

    CAS  PubMed  Google Scholar 

  • Archibald AT, Levine JG, Abraham NL, Cooke MC, Edwards PM, Heard DE, Jenkin ME, Karunaharan A, Pike RC, Monks PS, Shallcross DE, Telford PJ, Whalley LK, Pyle JA (2011) Impacts of HOx regeneration and recycling in the oxidation of isoprene: consequences for the composition of past, present and future atmospheres. Geophys Res Lett 38:L05804. doi:10.1029/2010GL046520

    Google Scholar 

  • Arneth A, Miller PA, Scholze M, Hickler T, Schurgers G, Smith B, Prentice IC (2007) CO2 inhibition of global terrestrial isoprene emissions: potential implications for atmospheric chemistry. Geophys Res Lett 34:L18813

    Google Scholar 

  • Arneth A, Schurgers G, Hickler T, Miller PA (2008) Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol 10:150–162

    CAS  PubMed  Google Scholar 

  • Ashworth K, Boissard C, Folberth G, Lathière J, Schurgers G (2013) Global modeling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Atkinson R (1997) Gas-phase tropospheric chemistry of volatile organic compounds. 1. Alkanes and alkenes. J Phys Chem Ref Data 26:215–290

    CAS  Google Scholar 

  • Bäck J, Hari P, Hakola H, Juurola E, Kulmala M (2005) Dynamics of monoterpene emissions in Pinus sylvestris during early spring. Boreal Environ Res 10:409–424

    Google Scholar 

  • Baraldi R, Rapparini F, Oechel WC, Hastings SJ, Bryant P, Cheng Y, Miglietta F (2004) Monoterpene emission responses to elevated CO2 in a Mediterranean-type ecosystem. New Phytol 161:1–21

    Google Scholar 

  • Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343

    CAS  Google Scholar 

  • Behnke K, Grote R, Brüggemann N, Zimmer I, Zhou G, Elobeid M, Janz D, Polle A, Schnitzler J-P (2011) Isoprene emission-free poplars – a chance to reduce the impact from poplar plantations on the atmosphere. New Phytol 194:70–82

    PubMed  Google Scholar 

  • Bell M, Ellis H (2004) Sensitivity analysis of tropospheric ozone to modified biogenic emissions for the Mid-Atlantic region. Atmos Environ 38:1879–1889

    CAS  Google Scholar 

  • Brilli F, Tricoli D, Fares S, Centritto M, Loreto F (2007) The use of branch enclosures to asses direct and indirect effects of elevated CO2 on photosynthesis, respiration and isoprene emission of Populus alba leaves. Forest@ 40:60–68

    Google Scholar 

  • Brilli F, Ruuskanen TM, Schnitzhofer R, Müller M, Breitenlechner M, Bittner V, Wohlfahrt G, Loreto F, Hansel A (2011) Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “time-of-flight” mass spectrometry (PTR-TOF). PLoS One 6:e20419

    CAS  PubMed  Google Scholar 

  • Burkey KO, Eason G (2002) Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast. Physiol Plant 114:387–394

    CAS  PubMed  Google Scholar 

  • Calfapietra C, Wiberley AE, Falbel TG, Linskey AR, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD (2007) Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees. Plant Cell Environ 30:654–661

    CAS  PubMed  Google Scholar 

  • Calfapietra C, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD (2008) Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytol 179:55–61

    CAS  PubMed  Google Scholar 

  • Calfapietra C, Fares S, Loreto F (2009) Volatile organic compounds from Italian vegetation and their interaction with ozone. Environ Pollut 157:1478–1486

    CAS  PubMed  Google Scholar 

  • Cardon ZG, Berry JA (1992) Effects of O2 and CO2 concentration of the steady-state fluorescence yield of single guard cell pairs in intact leaf discs of Tradescantia albiflora. Plant Physiol 99:1238–1244

    CAS  PubMed  Google Scholar 

  • Centritto M, Nascetti P, Petrilli L, Raschi A, Loreto F (2004) Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment. Plant Cell Environ 27:403–412

    CAS  Google Scholar 

  • Chameides WL, Lindsay RW, Richardson J, Kiang CS (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241:1473–1475

    CAS  PubMed  Google Scholar 

  • Constable JVH, Litvak ME, Greenberg JP, Monson RK (1999) Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Glob Change Biol 5:255–267

    Google Scholar 

  • de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257

    PubMed  Google Scholar 

  • Delwiche CF, Sharkey TD (1993) Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ 16:587–591

    CAS  Google Scholar 

  • Dickson RE, Lewin KF, Isebrands JG, Coleman MD, Heilman WE, Riemenschneider DE, Sõber J, Host GE, Zak DR, Hendrey GR, Pregitzer KS, Karnosky DF (2000) Forest atmosphere carbon transfer storage-II (FACTS II). The aspen free-air CO2 and O3 enrichment (FACE) project in an overview. USDA Forest Service, North Central Research Station. General Technical Report NC-214, 68 p

    Google Scholar 

  • Emberson LD, Ashmore MR, Cambridge HM, Simpson D, Tuovinen J (2000) Modeling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    CAS  PubMed  Google Scholar 

  • Fall R, Monson RK (1992) Isoprene emission rate and intercellular isoprene concentration as influenced by stomatal distribution and conductance. Plant Physiol 100:987–992

    CAS  PubMed  Google Scholar 

  • Fares S, Barta C, Brilli F, Centritto M, Ederli L, Ferranti F, Pasqualini S, Reale L, Tricoli D, Loreto F (2006) Impact of high ozone on isoprene emission, photosynthesis and histology of developing Populus alba leaves directly or indirectly exposed to the pollutant. Physiol Plant 128:456–465

    CAS  Google Scholar 

  • Fares S, Loreto F, Kleist E, Wildt J (2008) Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. Plant Biol 10:44–54

    CAS  PubMed  Google Scholar 

  • Fares S, McKay M, Holzinger R, Goldstein AH (2010) Ozone fluxes in a Pinus ponderosa ecosystem are dominated by non-stomatal processes: Evidence from long-term continuous measurements. Agr Forest Meteorol 150:420–431

    Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    CAS  PubMed  Google Scholar 

  • Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32

    CAS  Google Scholar 

  • Fuentes JD, Wang D, Gu L (1999) Seasonality variations in isoprene emissions from a boreal aspen forest. J Appl Meteorol 38:855–869

    Google Scholar 

  • Gielen B, Ceulemans R (2001) The likely impact of rising atmospheric CO2 on natural and managed Populus: a literature review. Environ Pollut 115:335–358

    CAS  PubMed  Google Scholar 

  • Gielen B, Liberloo M, Bogaert J, Calfapietra C, De Angelis P, Miglietta F, Scarascia-Mugnozza G, Ceulemans R (2003) Three years of free-air CO2 enrichment (POPFACE) only slightly affect profiles of light and leaf characteristics in closed canopies of Populus. Glob Change Biol 9:1022–1037

    Google Scholar 

  • Grote R, Niinemets Ü (2008) Modeling volatile isoprenoid emission: a story with split ends. Plant Biol 10:8–28

    CAS  PubMed  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound missions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther A, Hewitt NC, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophs Res 100:8873–8892

    CAS  Google Scholar 

  • Heald CL, Wilkinson MJ, Monson RK, Alo CA, Wang G, Guenther A (2009) Response of isoprene emission to ambient CO2 changes and implications for global budgets. Glob Change Biol 15:1127–1140

    Google Scholar 

  • Heiden AC, Kahl J, Kley D, Klockow D, Langebartels C, Melhorn H, Sanderman H Jr, Schraudner M, Schuh G, Wildt J (1999) Emission of volatile organic compounds from ozone-exposed plants. Ecol Appl 94:1160–1167

    Google Scholar 

  • Hewitt CN, MacKenzie AR, Di Carlo P, Di Marco CF, Dorsey JR, Evans M, Fowler D, Gallagher MW, Hopkins JR, Jones CE, Langford B, Lee JD, Lewis AC, Lim SF, McQuaid J, Misztal P, Moller SJ, Monks PS, Nemitz E, Oram DE, Owen SM, Phillips GJ, Pugh TAM, Pylej JA, Reeves CE, Ryder J, Siong J, Skiba U, Stewart DJ (2009) Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc Natl Acad Sci USA 106:18447–18451

    CAS  PubMed  Google Scholar 

  • Hogrefe C, Isukapalli SS, Tang X, Georgopoulos PG, He S, Zalewsky EE, Hao W, Ku J-Y, Key T, Sistla G (2011) Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions. J Air Waste Manag Assoc 61:92–108

    CAS  PubMed  Google Scholar 

  • Holopainen JK, Nerg A-M, Blande JD (2013) Multitrophic signalling in polluted atmospheres. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • IPCC (2007) Intergovernmental Panel on Climate Change fourth assessment report on climate change 2007: synthesis report. http://www.ipcc.ch/ipccreports/

  • Jardine KJ, Monson RK, Abrell L, Saleska SR, Arneth A, Jardine A, Ishida FY, Yanez Serrano AM, Artaxo P, Karl T, Fares S, Goldstein A, Loreto F, Huxman T (2012) Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein. Glob Change Biol 18:973–984

    Google Scholar 

  • Karl T, Potosnak M, Guenther A, Clark D, Walker J, Herrick JD, Geron C (2004) Exchange processes of volatile organic compounds above a tropical rain forest: implications for modelling tropospheric chemistry above dense vegetation. J Geophys Res Atmos 109:D18306

    Google Scholar 

  • Karnosky DF, Mankovska B, Percy K, Dickson RE, Podila GK, Sõber J, Noormets A, Hendrey G, Coleman MD, Kubiske M, Pregitzer KS, Isebrands JG (1999) Effects of tropospheric O3 on trembling aspen and interaction with CO2: results from an O3-gradient and a FACE experiment. Water Air Soil Poll 116:311–322

    CAS  Google Scholar 

  • Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ, Kruger EL, Kubiske ME, Lindroth RL, Mattson WJ, McDonald EP, Noormets A, Oksanen E, Parsons WFJ, Percy KE, Podila GK, Riemenschneider DE, Sharma P, Thakur RC, Sõber A, Sõber J, Jones WS, Anttonen S, Vapaavuori E, Mankovska B, Heilman WE, Isebrands JG (2003) Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the aspen FACE project. Funct Ecol 17:289–304

    Google Scholar 

  • Keeling RF, Piper SC, Bollenbacher AF, Walker JS (2009) Atmospheric CO2 records from sites in the SIO air sampling network. In: Boden TA, Kaiser DP, Sepanski RJ, Stoss FW (eds) Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S Department of Energy, Oak Ridge, pp 16–26

    Google Scholar 

  • Kiirats O, Cruz JA, Edwards GE, Kramer MD (2009) Feedback limitation of photosynthesis at high CO2 acts by modulating the activity of the chloroplast ATP synthase. Funct Plant Biol 36:893–901

    CAS  Google Scholar 

  • Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen V-M (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51

    CAS  PubMed  Google Scholar 

  • Lathière J, Hauglustaine DA, DeNoblet-Ducoudre N, Krinner G, Folberth GA (2005) Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys Res Lett 32:L20818

    Google Scholar 

  • Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452:2008–2740

    Google Scholar 

  • Lerdau M (2007) A positive feedback with negative consequences. Science 316:212–213

    CAS  PubMed  Google Scholar 

  • Li Z, Sharkey TD (2013) Biochemical and molecular controls on biogenic volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Li D, Chen Y, Shi Y, He X, Chen X (2009) Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba. Bull Environ Contam Toxicol 82:473–477

    CAS  PubMed  Google Scholar 

  • Liavonchanka A, Feussner N (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357

    CAS  PubMed  Google Scholar 

  • Liberloo M, Tulva I, Räim O, Kull O, Ceulemans R (2007) Photosynthetic stimulation under long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE). New Phytol 173:537–549

    CAS  PubMed  Google Scholar 

  • Litvak ME, Constable JVH, Monson RK (2002) Supply and demand processes as controls over needle monoterpene synthesis and concentration in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco]. Oecologia 132:382–391

    Google Scholar 

  • Llorens L, Llusià J, Murchie E, Peñuelas J, Beerling DJ (2009) Monoterpene emissions and photoinhibition of “living fossil” trees grown under CO2 enrichment in a simulated Cretaceous polar environment. J Geophys Res 114:G01005

    Google Scholar 

  • Llusiá J, Peñuelas J, Gimeno BS (2002) Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations. Atmos Environ 36:3931–3938

    Google Scholar 

  • Loreto F, Fares S (2007) Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studies. Plant Physiol 143:1096–1100

    CAS  PubMed  Google Scholar 

  • Loreto F, Sharkey TD (1990) A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L. Planta 182:523–531

    CAS  Google Scholar 

  • Loreto F, Sharkey TD (1993) On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions. Planta 189:420–424

    CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    CAS  PubMed  Google Scholar 

  • Loreto F, Fischbach R, Schnitzler J-P, Ciccioli P, Brancaleoni E, Calfapietra C, Seufert G (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob Change Biol 7:709–717

    Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emission and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    CAS  PubMed  Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    CAS  PubMed  Google Scholar 

  • Loreto F, Centritto M, Barta C, Calfapietra C, Fares S, Monson RK (2007) The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L.) leaves. Plant Cell Environ 30:662–669

    CAS  PubMed  Google Scholar 

  • Löw M, Herbinger K, Nunn AJ, Häberle KH, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548

    Google Scholar 

  • Martin MJ, Stirling CM, Humphries SW, Long SP (2000) A process-based model to predict the effects of climatic change on leaf isoprene emission rates. Ecol Model 131:161–174

    CAS  Google Scholar 

  • Miller B, Oschinsky C, Zimmer W (2001) First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213:483–487

    CAS  PubMed  Google Scholar 

  • Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90:267–274

    CAS  PubMed  Google Scholar 

  • Monson RK, Harley PC, Litvak ME, Wildermuth M, Guenther AB, Zimmerman PR, Fall R (1994) Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia 99:260–270

    Google Scholar 

  • Monson RK, Trahan N, Rosenstiel TN, Veres P, Moore D, Wilkinson M, Norby RJ, Volder A, Tjoelker MG, Briske DD, Karnosky DF, Fall R (2007) Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philos T Roy Soc A 365:1677–1695

    CAS  Google Scholar 

  • Monson RK, Wilkinson MJ, Monson ND, Trahan N, Lee S, Rosenstiel TR, Fall R (2009) Biochemical control on the CO2 response of leaf isoprene emisson: an alternative view of Sanadze’s double carboxylation scheme. Ann Agr Sci 7:21–29

    Google Scholar 

  • Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Modeling the isoprene emission rate from leaves. New Phytol 195:541–559

    CAS  PubMed  Google Scholar 

  • Niinemets Ü (2012) Whole plant photosynthesis. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment: a molecular, physiological and ecological approach. Cambridge University Press, Cambridge, pp 399–423

    Google Scholar 

  • Niinemets Ü, Peñuelas J (2008) Gardening and urban landscaping: significant players in global change. Trends Plant Sci 13:60–65

    CAS  PubMed  Google Scholar 

  • Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335

    CAS  Google Scholar 

  • Niinemets Ü, Copolovici L, Hüve K (2010a) High within-canopy variation in isoprene emission potentials in temperate trees: implications for predicting canopy-scale isoprene fluxes. J Geophys Res Biogeosci 115:G04029

    Google Scholar 

  • Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010b) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7:2203–2223

    CAS  Google Scholar 

  • Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Peñuelas J, Staudt M (2010c) The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832

    CAS  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714

    CAS  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Oren RE, Schlesinger WH (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    CAS  PubMed  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional reponses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? Transley review. New Phytol 162:253–280

    Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban Urban Greening 4:115–123

    Google Scholar 

  • Owen SM, Hewitt CN, Rowland CS (2013) Scaling emissions from agroforestry plantations and urban habitats. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Pacifico F, Harrison SP, Jones CD, Sitch S (2009) Isoprene emissions and climate. Atmos Environ 43:6121–6135

    CAS  Google Scholar 

  • Paoletti E, Pfanz H, Raschi A (2005) Pros and cons of CO2 springs as experimental sites. In: Omasa K, Nouchi I, Kok LJ (eds) Plant responses to air pollution and global change. Springer Japan, Tokyo, pp 195–202

    Google Scholar 

  • Pegoraro E, Rey A, Bobich EG, Barron-Gafford G, Grieve KA, Malhi Y, Murthy R (2004) Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought. Funct Plant Biol 31:1137–1147

    CAS  Google Scholar 

  • Pegoraro E, Potosnak MJ, Monson RK, Rey A, Barron-Gafford G, Osmond CB (2007) The effect of elevated CO2, soil and atmosphere water deficit and seasonal phenology on leaf and ecosystem isoprene emission. Funct Plant Biol 34:774–784

    CAS  Google Scholar 

  • Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:105–109

    PubMed  Google Scholar 

  • Peñuelas J, Llusiá J, Gimeno BS (1999) Effects of ozone concentrations on biogenic volatile organic compounds emission in the Mediterranean region. Environ Pollut 105:17–23

    Google Scholar 

  • Petron G, Harley P, Greenberg J, Guenther A (2001) Seasonal temperature variations influence isoprene emission. Geophys Res Lett 28:1707–1710

    CAS  Google Scholar 

  • Pinelli P, Tricoli D (2004) A new approach to ozone plant fumigation: the Web-O3-fumigation. Isoprene response to a gradient of ozone stress in leaves of Quercus pubescens. Forest@ 1:100–108

    Google Scholar 

  • Possell M, Hewitt CN (2011) Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Glob Change Biol 17:1595–1610

    Google Scholar 

  • Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: responses and mechanisms. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Possell M, Heath J, Hewitt N, Ayres E, Kerstiens G (2004) Interactive effects of elevated CO2 and soil fertility on isoprene emission from Quercus robur. Glob Change Biol 10:1835–1843

    Google Scholar 

  • Possell M, Hewitt CN, Beerling DJ (2005) The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Glob Change Biol 11:60–69

    Google Scholar 

  • Rapparini F, Baraldi R, Miglietta F, Loreto F (2004) Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ 27:381–391

    CAS  Google Scholar 

  • Räsänen T, Ryyppö A, Kellomäki S (2008) Effects of elevated CO2 and temperature on monoterpene emission from Scots pine (Pinus sylvestris L.). Atmos Environ 42:4160–4171

    Google Scholar 

  • Rasulov B, Hüve K, Välbe M, Laisk A, Niinemets Ü (2009) Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. Plant Physiol 151:448–460

    CAS  PubMed  Google Scholar 

  • Rasulov B, Hüve K, Bichele I, Laisk A, Niinemets Ü (2010) Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis. Plant Physiol 154:1558–1570

    CAS  PubMed  Google Scholar 

  • Rinnan R, Rinnan A, Holopainen T, Holopainen JK, Pasanen P (2005) Emission of non-methane volatile organic compounds (VOCs) from boreal peatland microcosms – effects of ozone exposure. Atmos Environ 39:921–930

    CAS  Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    CAS  PubMed  Google Scholar 

  • Sanderson M, Jones C, Collins W, Johnson C, Derwent R (2003) Effect of climate change on isoprene emissions and surface ozone levels. Geophys Res Lett 30:1936

    Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tansley Review No. 98. Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436

    Google Scholar 

  • Scholefield PA, Doick KJ, Herbert BMJ, Hewitt CNS, Schnitzler J-P, Pinelli P, Loreto F (2004) Impact of rising CO2 on emission of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:393–401

    CAS  Google Scholar 

  • Schurgers G, Hickler T, Miller PA, Arneth A (2009) European emissions of isoprene and monoterpenes from the Last Glacial Maximum to present. Biogeosciences 6:2779–2797

    CAS  Google Scholar 

  • Sharkey TD (1991) Stomatal control of trace gas emissions. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic, San Diego, pp 335–339

    Google Scholar 

  • Sharkey TD (2009) The future of isoprene research. Bull Georg Nat Acad Sci 3:106–113

    CAS  Google Scholar 

  • Sharkey TD, Loreto F, Delwiche CF (1991) High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant Cell Environ 14:333–338

    CAS  Google Scholar 

  • Sharkey TD, Singsaas EL, Lerdau MT, Geron C (1999) Weather effects on isoprene emission capacity and applications in emissions algorithms. Ecol Appl 9:1132–1137

    Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez D (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712

    CAS  PubMed  Google Scholar 

  • Simpson D, Guenther A, Hewitt N, Steinbrecher R (1995) Biogenic emissions in Europe. 1. Estimates and uncertainties. J Geophys Res 100:22875–22890

    CAS  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794

    CAS  PubMed  Google Scholar 

  • Snow M, Bard R, Olszyk D, Minster L, Hager A, Tingey D (2003) Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiol Plant 117:352–358

    CAS  PubMed  Google Scholar 

  • Staudt M, Joffre R, Rambal S, Kesselmeier J (2001) Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiol 21:437–445

    CAS  PubMed  Google Scholar 

  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V (2012) Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Glob Change Biol 18:3423–3440

    Google Scholar 

  • Sun Z, Niinemets Ü, Hüve K, Rasulov B, Noe SM (2013) Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula x Populus tremuloides). New Phytol 198:788–800

    Google Scholar 

  • Tao Z, Larson MS, Wuebbles D, Williams A, Caughey M (2003) A summer simulation of biogenic contributions to groundlevel ozone over the continental United States. J Geophys Res 108:4404–4423

    Google Scholar 

  • Taraborrelli D, Lawrence MG, Crowley JN, Dilon TJ, Gromov S, Groβ CBM, Vereecken L, Lelieveld J (2012) Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nat Geosci 5:190–193

    CAS  Google Scholar 

  • Trainer M, Parrish DD, Buhr MP, Norton RB, Fehsenfeld FC, Anlauf KG, Bottenheim JW, Tang YZ, Wiebe HA, Roberts JM, Tanner RL, Newman L, Bowersox C, Meagher JF, Olszyna KJ (1993) Correlation of ozone with NOx in photochemically aged air. J Geophys Res 98:2917–2925

    CAS  Google Scholar 

  • Trowbridge AM, Asensio D, Eller ASD, Way DA, Wilkinson MJ, Schnitzler J-P, Jackson RB, Monson RK (2012) Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations. PLoS One 7:e32387

    CAS  PubMed  Google Scholar 

  • Velikova V, Pinelli P, Pasqualini S, Reale L, Ferranti F, Loreto F (2005a) Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytol 166:419–426

    CAS  PubMed  Google Scholar 

  • Velikova V, Tsonev T, Pinelli P, Alessio GA, Loreto F (2005b) Localized O3-fumigation for field studies of the impact of different ozone doses on photosynthesis, respiration, electron transport rate and isoprene emission in Mediterranean species. Tree Physiol 25:1523–1532

    CAS  PubMed  Google Scholar 

  • Velikova V, Fares S, Loreto F (2008) Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. Plant Cell Environ 31:1882–1894

    CAS  PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    CAS  PubMed  Google Scholar 

  • Volz A, Kley D (1988) Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature 322:240–242

    Google Scholar 

  • Vuorinen T, Nerg A-M, Holopainen JK (2004) Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signaling. Environ Pollut 131:305–311

    CAS  PubMed  Google Scholar 

  • Vuorinen T, Nerg A-M, Vapaavuori E, Holopainen JK (2005) Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations. Atmos Environ 39:1185–1197

    CAS  Google Scholar 

  • Wang KY, Shallcross DE (2000) Modeling terrestrial biogenic isoprene fluxes and their potential impact on global chemical species using a coupled LSM-CTM model. Atmos Environ 34:2909–2925

    CAS  Google Scholar 

  • Way D, Schnitzler J-P, Monson R, Jackson R (2011) Enhanced isoprene related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations. Oecologia 166:273–282

    PubMed  Google Scholar 

  • Wiedinmyer C, Tie X, Guenther A, Neilson R, Granier C (2006) Future changes in biogenic isoprene emissions: how might they affect regional and global atmospheric chemistry? Earth Interact 10:1–19

    Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Change Biol 15:1189–1200

    Google Scholar 

  • Winner WE, Lefohn AS, Cotter IS, Greitner CS, Nellessen J, McEvoy LR, Olson RL, Atkinson CJ, Moore LD (1989) Plant responses to elevational gradients of O3 exposures in Virginia. Proc Natl Acad Sci 86:8828–8832

    CAS  PubMed  Google Scholar 

  • Yokouchi Y, Ambe Y (2007) Aerosols formed from the chemical reaction of monoterpenes and ozone. Atmos Environ 41:192–197

    Google Scholar 

  • Young PJ, Arneth A, Schurgers G, Zeng G, Pyle JA (2009) The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atmos Chem Phys 9:2793–2803

    CAS  Google Scholar 

  • Zavala JA, Nabity PD, DeLucia EH (2013) An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomol 58:79–97

    CAS  PubMed  Google Scholar 

  • Zimmer W, Brüggemann N, Emeis S, Giersch C, Lehning A, Steinbrecher R, Schnitzler J-P (2000) Process-based modelling of isoprene emission by oak leaves. Plant Cell Environ 23:585–595

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Calfapietra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Calfapietra, C., Pallozzi, E., Lusini, I., Velikova, V. (2013). Modification of BVOC Emissions by Changes in Atmospheric [CO2] and Air Pollution. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_10

Download citation

Publish with us

Policies and ethics