Skip to main content

Modern Venom Profiling: Mining into Scorpion Venom Biodiversity

  • Reference work entry
  • First Online:
Scorpion Venoms

Part of the book series: Toxinology ((TOXI,volume 4))

  • 1723 Accesses

Abstract

Scorpions and their sting are infamous for causing pain, morbidity, and, in some cases, death. However, research into scorpion venoms has revealed the presence of components that potentially have beneficial properties for humans. Such components may be developed into therapeutics or bioinsecticides. In order to assess the biodiversity of components present in scorpion venoms, proteomic and transcriptomic approaches have been applied to numerous scorpion species. This chapter presents our current knowledge in the field of venom-wide studies of scorpions. Discussions on the pros and cons of several proteomic and transcriptomic techniques used to investigate scorpion venoms are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Rahman MA, Quintero-Hernandez V, Possani LD. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon. 2013;74:193–207.

    Article  CAS  PubMed  Google Scholar 

  • Alami M, Ouafik L, Ceard B, Legros C, Bougis PE, Martin-Eauclaire MF. Characterisation of the gene encoding the alpha-toxin Amm V from the scorpion Androctonus mauretanicus mauretanicus. Toxicon. 2001;39(10):1579–85.

    Article  CAS  PubMed  Google Scholar 

  • Almeida DD, Scortecci KC, Kobashi LS, Agnez-Lima LF, Medeiros SR, Silva-Junior AA, et al. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics. 2012;13:362.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashton DS, Beddell CR, Green BN, Oliver RW. Rapid validation of molecular structures of biological samples by electrospray-mass spectrometry. FEBS Lett. 1994;342(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  • Batista CV, Roman-Gonzalez SA, Salas-Castillo SP, Zamudio FZ, Gomez-Lagunas F, Possani LD. Proteomic analysis of the venom from the scorpion Tityus stigmurus: biochemical and physiological comparison with other Tityus species. Comp Biochem Physiol Toxicol Pharmacol CBP. 2007;146(1–2):147–57.

    Article  CAS  Google Scholar 

  • Bontems F, Roumestand C, Gilquin B, Menez A, Toma F. Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science. 1991;254(5037):1521–3.

    Article  CAS  PubMed  Google Scholar 

  • Caliskan F, Quintero-Hernandez V, Restano-Cassulini R, Batista CV, Zamudio FZ, Coronas FI, et al. Turkish scorpion Buthacus macrocentrus: general characterization of the venom and description of Bu1, a potent mammalian Na(+)-channel alpha-toxin. Toxicon. 2012;59(3):408–15.

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, et al. The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Commun. 2013;4:2602.

    PubMed Central  PubMed  Google Scholar 

  • Chippaux JP, Goyffon M. Epidemiology of scorpionism: a global appraisal. Acta Trop. 2008;107(2):71–9.

    Article  PubMed  Google Scholar 

  • Cloudsley-Thompson JL. Scorpions in mythology, folklore, and history. In: Polis GA, editor. The biology of scorpion. Stanford University Press, CA 1990. p. 462–85.

    Google Scholar 

  • Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: an overview. Protein Pept Lett. 2009;16(8):920–32.

    Article  CAS  PubMed  Google Scholar 

  • Conde R, Zamudio FZ, Rodriguez MH, Possani LD. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett. 2000;471(2–3):165–8.

    Article  CAS  PubMed  Google Scholar 

  • Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F. Refined three-dimensional solution structure of insect defensin A. Structure. 1995;3(5):435–48.

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Yasuda A, Naoki H, Corzo G, Andriantsiferana M, Nakajima T. IsCT, a novel cytotoxic linear peptide from scorpion Opisthacanthus madagascariensis. Biochem Biophys Res Commun. 2001;286(4):820–5.

    Article  CAS  PubMed  Google Scholar 

  • DeBin JA, Maggio JE, Strichartz GR. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol. 1993;264(2 Pt 1):C361–9.

    CAS  PubMed  Google Scholar 

  • Diego-Garcia E, Batista CV, Garcia-Gomez BI, Lucas S, Candido DM, Gomez-Lagunas F, et al. The Brazilian scorpion Tityus costatus Karsch: genes, peptides and function. Toxicon. 2005;45(3):273–83.

    Article  CAS  PubMed  Google Scholar 

  • Diego-Garcia E, Schwartz EF, D’Suze G, Gonzalez SA, Batista CV, Garcia BI, et al. Wide phylogenetic distribution of Scorpine and long-chain beta-KTx-like peptides in scorpion venoms: identification of “orphan” components. Peptides. 2007;28(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  • Diego-Garcia E, Peigneur S, Clynen E, Marien T, Czech L, Schoofs L, et al. Molecular diversity of the telson and venom components from Pandinus cavimanus (Scorpionidae Latreille 1802): transcriptome, venomics and function. Proteomics. 2012;12(2):313–28.

    Article  CAS  PubMed  Google Scholar 

  • D’Suze G, Schwartz EF, Garcia-Gomez BI, Sevcik C, Possani LD. Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie. 2009;91(8):1010–9.

    Article  PubMed  Google Scholar 

  • Eauclaire-Martin MF, Couraud F. Scorpion neurotoxins: effects and mechanisms. In: Chang LW, Dyer RS, editors. Handbook of neurotoxicology. New York: Marcel and Dekker; 1995. p. 683–716.

    Google Scholar 

  • Fukuyama Y, Iwamoto S, Tanaka K. Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix. J Mass Spectrom JMS. 2006;41(2):191–201.

    Article  CAS  Google Scholar 

  • Gao B, Harvey PJ, Craik DJ, Ronjat M, De Waard M, Zhu S. Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold. Biosci Rep. 2013;33(3).

    Google Scholar 

  • Hassani O, Loew D, Van Dorsselaer A, Papandreou MJ, Sorokine O, Rochat H, et al. Aah VI, a novel, N-glycosylated anti-insect toxin from Androctonus australis hector scorpion venom: isolation, characterisation, and glycan structure determination. FEBS Lett. 1999;443(2):175–80.

    Article  CAS  PubMed  Google Scholar 

  • Hillenkamp F, Karas M, Beavis RC, Chait BT. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Analyt Chem. 1991;63(24):1193A–203.

    Article  CAS  Google Scholar 

  • Isbister GK, Graudins A, White J, Warrell D. Antivenom treatment in arachnidism. J Toxicol Clin Toxicol. 2003;41(3):291–300.

    Article  CAS  PubMed  Google Scholar 

  • Jungo F, Bougueleret L, Xenarios I, Poux S. The UniProtKB/Swiss-Prot Tox-Prot program: a central hub of integrated venom protein data. Toxicon. 2012;60(4):551–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kozminsky-Atias A, Bar-Shalom A, Mishmar D, Zilberberg N. Assembling an arsenal, the scorpion way. BMC Evol Biol. 2008;8:333.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee CW, Bae C, Lee J, Ryu JH, Kim HH, Kohno T, et al. Solution structure of kurtoxin: a gating modifier selective for Cav3 voltage-gated Ca(2+) channels. Biochemistry. 2012;51(9):1862–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed Central  PubMed  Google Scholar 

  • Luna-Ramirez K, Quintero-Hernandez V, Vargas-Jaimes L, Batista CV, Winkel KD, Possani LD. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon. 2013;63:44–54.

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, et al. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics. 2009;10:290.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma Y, Zhao Y, Zhao R, Zhang W, He Y, Wu Y, et al. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis. Proteomics. 2010;10(13):2471–85.

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, He Y, Zhao R, Wu Y, Li W, Cao Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteomics. 2012;75(5):1563–76.

    Article  CAS  PubMed  Google Scholar 

  • Martin MF, Rochat H. Large scale purification of toxins from the venom of the scorpion Androctonus australis Hector. Toxicon. 1986;24(11–12):1131–9.

    Article  CAS  PubMed  Google Scholar 

  • Michaelis AF, Cornish DW, Vivilecchia R. High pressure liquid chromatography. J Pharm Sci. 1973;62(9):1399–416.

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern D, Rohde BH, King GF, Tal T, Sher D, Zlotkin E. The tale of a resting gland: transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon. 2011;57(5):695–703.

    Article  CAS  PubMed  Google Scholar 

  • Mosbah A, Kharrat R, Fajloun Z, Renisio JG, Blanc E, Sabatier JM, et al. A new fold in the scorpion toxin family, associated with an activity on a ryanodine-sensitive calcium channel. Proteins. 2000;40(3):436–42.

    Article  CAS  PubMed  Google Scholar 

  • Newton KA, Clench MR, Deshmukh R, Jeyaseelan K, Strong PN. Mass fingerprinting of toxic fractions from the venom of the Indian red scorpion, Mesobuthus tamulus: biotope-specific variation in the expression of venom peptides. Rapid Commun Mass Spectrom RCM. 2007;21(21):3467–76.

    Article  CAS  Google Scholar 

  • Osaka I, Sakai M, Takayama M. 5-Amino-1-naphthol, a novel 1,5-naphthalene derivative matrix suitable for matrix-assisted laser desorption/ionization in-source decay of phosphorylated peptides. Rapid Commun Mass Spectrom RCM. 2013;27(1):103–8.

    Article  CAS  Google Scholar 

  • Rates B, Ferraz KK, Borges MH, Richardson M, De Lima ME, Pimenta AM. Tityus serrulatus venom peptidomics: assessing venom peptide diversity. Toxicon. 2008;52(5):611–8.

    Article  CAS  PubMed  Google Scholar 

  • Rendon-Anaya M, Delaye L, Possani LD, Herrera-Estrella A. Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. PLoS One. 2012;7(8):e43331.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez de la Vega RC, Possani LD. Current views on scorpion toxins specific for K+-channels. Toxicon. 2004;43(8):865–75.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon. 2005;46(8):831–44.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez de la Vega RC, Schwartz EF, Possani LD. Mining on scorpion venom biodiversity. Toxicon. 2010;56(7):1155–61.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Ravelo R, Coronas FI, Zamudio FZ, Gonzalez-Morales L, Lopez GE, Urquiola AR, et al. The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): component variations in venom samples collected in different geographical areas. J Venom Anim Toxins Incl Trop Dis. 2013;19(1):13.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, Zhijian C, et al. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genomics. 2010;11:452.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartz EF, Diego-Garcia E, Rodriguez de la Vega RC, Possani LD. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics. 2007;8:119.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartz EF, Camargos TS, Zamudio FZ, Silva LP, Bloch Jr C, Caixeta F, et al. Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion Opisthacanthus cayaporum. Toxicon. 2008;51(8):1499–508.

    Article  CAS  PubMed  Google Scholar 

  • Silva EC, Camargos TS, Maranhao AQ, Silva-Pereira I, Silva LP, Possani LD, et al. Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon. 2009;54(3):252–61.

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Hill JM, Little MJ, Nicholson GM, King GF, Alewood PF. Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif. Proc Natl Acad Sci U S A. 2011;108(26):10478–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith JJ, Jones A, Alewood PF. Mass landscapes of seven scorpion species: the first analyses of Australian species with 1,5-DAN matrix. J Venom Res. 2012;3:7–14.

    PubMed Central  PubMed  Google Scholar 

  • Smith JJ, Herzig V, King GF, Alewood PF. The insecticidal potential of venom peptides. Cell Mol Life Sci CMLS. 2013;70(19):3665–93.

    Article  CAS  Google Scholar 

  • Sofer S. Scorpion envenomation. Intensive Care Med. 1995;21(8):626–8.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan KN, Sivaraja V, Huys I, Sasaki T, Cheng B, Kumar TK, et al. kappa-Hefutoxin1, a novel toxin from the scorpion Heterometrus fulvipes with unique structure and function. Importance of the functional diad in potassium channel selectivity. J Biol Chem. 2002;277(33):30040–7.

    Article  CAS  PubMed  Google Scholar 

  • Ueberheide BM, Fenyo D, Alewood PF, Chait BT. Rapid sensitive analysis of cysteine rich peptide venom components. Proc Natl Acad Sci U S A. 2009;106(17):6910–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valdez-Velazquez LL, Quintero-Hernandez V, Romero-Gutierrez MT, Coronas FI, Possani LD. Mass fingerprinting of the venom and transcriptome of venom gland of scorpion Centruroides tecomanus. PLoS One. 2013;8(6):e66486.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valdivia HH, Kirby MS, Lederer WJ, Coronado R. Scorpion toxins targeted against the sarcoplasmic reticulum Ca(2+)-release channel of skeletal and cardiac muscle. Proc Natl Acad Sci USA. 1992;89(24):12185–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verano-Braga T, Dutra AA, Leon IR, Melo-Braga MN, Roepstorff P, Pimenta AM, et al. Moving pieces in a venomic puzzle: unveiling post-translationally modified toxins from Tityus serrulatus. J Proteome Res. 2013;12(7):3460–70.

    Article  CAS  PubMed  Google Scholar 

  • Wetterstrand KA. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). 2013 [cited 2013 2nd September]. Available from http://www.genome.gov/sequencingcosts

  • Xu J, Zhang X, Guo Z, Yan J, Yu L, Li X, et al. Short-chain peptides identification of scorpion Buthus martensi Karsch venom by employing high orthogonal 2D-HPLC system and tandem mass spectrometry. Proteomics. 2012;12(19–20):3076–84.

    Article  CAS  PubMed  Google Scholar 

  • Zeng XC, Wang SX, Li WX. Identification of BmKAPi, a novel type of scorpion venom peptide with peculiar disulfide bridge pattern from Buthus martensii Karsch. Toxicon. 2002;40(12):1719–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Smith, J.J., Alewood, P.F. (2015). Modern Venom Profiling: Mining into Scorpion Venom Biodiversity. In: Gopalakrishnakone, P., Possani, L., F. Schwartz, E., Rodríguez de la Vega, R. (eds) Scorpion Venoms. Toxinology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6404-0_26

Download citation

Publish with us

Policies and ethics