Skip to main content

Soil Organic Matter Dynamics and Structure

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 12))

Abstract

Soil ecosystem functions have significantly deteriorated due to agricultural intensification with dramatic consequences on carbon loss, loss of soil biodiversity, erosion, compaction as well as unsustainable use of water and mineral resources. Sustainable agricultural practices are necessary if we are to face the challenge of food security while preserving the integrity of soil and aquatic ecosystems. Conservation agriculture, which is comprised of zero or minimum tillage, carbon amendments and crop rotations, holds great promise in delivering higher yields, using water and soil resources in a sustainable manner and increasing soil biodiversity. This article presents a synthesis of current knowledge on soil ecosystem processes and modeling with a focus on carbon and nitrogen dynamics and their link to soil structure, and proposes a conceptual framework for model parameterization capable of predicting critical soil functions and potential shifts.

We reviewed the dynamics of carbon, nitrogen and soil structure with an emphasis in elucidating predominant state variables and the interaction with plants and food web dynamics. Existing models that simulate the dynamics of organic matter and structure in soils at various scales were evaluated for their ability to simulate the functions of soil ecosystem. Current modeling approaches treat carbon, nitrogen and soil structure for the most part separately without incorporating feedback mechanisms. The synergistic and antagonistic processes between bacteria and plants and fungi and plants are partially understood and more importantly the community lacks the knowledge to predict if and when these processes fail and any related potential ecosystem shift. A conceptual modeling framework is proposed, developed along the following three axes: incorporate emerging ecosystem state variables, account for the ecology of life in soils, and model processes from first principles. A synthesis of the carbon and nitrogen cycles is suggested in which the dynamics of the two cycles are interlinked. State variables in soil ecosystem models that link carbon and nitrogen dynamics with soil structure and the biological community are recommended. Plant feedback mechanisms with the physical, biochemical and biotic soil components and the symbiotic relationship between bacteria, fungi, and plants should be modeled using principles from the ecological succession theory that would relate the taxonomic structure with function and nutrient fluxes. A conceptual model of soil structure and soil stability is suggested that links the soil organic matter sub-model to an aggregation sub-model and a dynamic soil structure sub-model. The development of new generation soil ecosystem models is a necessary step to better quantify soil functions, assess possible soil tipping points, and develop methods to restore soil functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

POM:

Particulate Organic Matter

SOM:

Soil Organic Matter

References

  • Abiven S, Menasseri S, Angers DA, Leterme P (2007) Dynamics of aggregate stability and biological binding agents during decomposition of organic materials. EurJ Soil Sci 58:239–247

    Article  CAS  Google Scholar 

  • Abiven S, Menasseri S, Angers DA, Leterme P (2008) A model to predict soil aggregate stability dynamics following organic residue incorporation under field conditions. Soil Sci Soc Am J 72:119–125

    Article  CAS  Google Scholar 

  • Abiven S, Menasseri S, Chenu C (2009) The effects of organic input over time on soil aggregate stability – a literature analysis. Soil Biol Biochem 41:1–12

    Article  CAS  Google Scholar 

  • Alaoui A, Lipiec J, Gerke HH (2011) A review of the changes in the soil pore system due to soil deformation: a hydrodynamic perspective. Soil Till Res 115–116:1–15

    Article  Google Scholar 

  • Alcamo J, van Vuuren D, Ringler C, Cramer W, Masui T, Alder J, Schulze K (2006) Changes in nature’s balance sheet: model-based estimates of future worldwide ecosystem services. Ecol Soc 10:1551–1601

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging changes risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  • Aune JB (2012) Conventional, organic and conservation agriculture: production and environmental impact. In: Lichtfouse E (ed) Agroecology and strategies for climate change, vol 8, Sustainable agriculture reviews. Springer Science  +  Business Media B.V., Dordrecht, pp 149–165. doi:10.1007/978-90-007-1905-7_7

    Chapter  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  PubMed  CAS  Google Scholar 

  • Barot S, Blouin M, Fontaine S, Jouquet P, Lata J-C, mathieu J (2007) A tale of four stories: soil ecology, theory, evolution and the publication system. PLoS One 11:1248

    Article  Google Scholar 

  • Barto EK, Alt F, Oelmann Y, Wilcke W, Rillig MC (2010) Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol Biochem 42:2316–2324

    Article  CAS  Google Scholar 

  • Batlle-Aguilar J, Brovelli A, Porporato A, Barry DA (2011) Modelling soil carbon and nitrogen cycles during land use change: a review. Agron Sustain Dev 31(2):251–274.

    Google Scholar 

  • Biggs R, Carpenter SR, Brock WA (2009) Turning back from the brink: detecting and impeding regime shift in time to avert it. Proc Natl Acad Sci 106:826–831

    Article  PubMed  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1(48):1–11

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Butler CD, Oluoch-Kosura W (2006) Linking future ecosystem services and future human well-being, ecology and society, 11, 30 www.ecologyandsociety.org/vol11/iss1/art30/

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Carpenter SR, Bennett EM, Peterson GD (2006) Scenarios for ecosystem services: an overview, ecology and society, 11, 29 www.ecologyandsociety.org/vol11/iss1/art29/

  • Chen Y, Zhang X, He H, Xie H, Yan Y, Zhu P, Ren J, Wang L (2010) Carbon and nitrogen pools in different aggregates of a Chinese Mollisol as influenced by long-term fertilization. J Soil Sediment 10:1018–1026

    Article  CAS  Google Scholar 

  • Cheng Z, McConkey J, Glick BR (2010) Proteomic studies of plant-bacterial interactions. Soil Biol Biochem 42:1673–1684

    Article  CAS  Google Scholar 

  • Clark JS, Tillman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    Article  PubMed  CAS  Google Scholar 

  • Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM, Pascual M, Pielke R Jr, Pizer W, Pringle C, Reid WV, Rose KA, Sala O, Schlesinger WH, Wall DH, Wear D (2001) Ecological forecasts: an emerging imperative. Science 293:657–660

    Article  PubMed  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (1999) RothC-26.3 – a model for the turnover of carbon in soil – model description and users guide. IACR, Rothamsted

    Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: the role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Courty PE, Buee M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  • Cowling RM, Egoh B, Knight AT, O’Farrell PJ, Reyers B, Rouget M, Roux DJ, Welz A, Wilhelm-Rechman A (2008) An operational model for mainstreaming ecosystem services for implementation. Proc Natl Acad Sci 105:9483–9488

    Article  PubMed  CAS  Google Scholar 

  • Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–87

    Article  PubMed  Google Scholar 

  • Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190

    Article  PubMed  CAS  Google Scholar 

  • De Gryze S, Six J, Brits C, Merckx R (2005) A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture. Soil Biol Biochem 37:55–66

    Article  Google Scholar 

  • De Gryze S, Six J, Merckx R (2006) Quantifying water-stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study. Eur J Soil Sci 57:693–707

    Article  Google Scholar 

  • Debele B, Srinivasan R, Parlange J-Y (2008) Hourly analyses of hydrological and water quality simulations using the ESWAT model. Water Resour Manag 23:303–324

    Article  Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Ann Rev Environ Resour 30:75–115

    Article  Google Scholar 

  • Falloon PD, Smith P (2000) Modelling refractory soil organic matter. Biol Fertil Soils 30:388–398

    Article  Google Scholar 

  • Fierer N, Grandy AS, Six J, Paul EA (2009) Searching for unifying principles in soil ecology. Soil Biol Biochem 41:2249–2256

    Article  CAS  Google Scholar 

  • Finke PA, Hutson JL (2008) Modelling soil genesis in calcareous loess. Geoderma 145:462–479

    Article  CAS  Google Scholar 

  • Gardenas AI, Agren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Katterer T, Knicker H, Nilsson SI, Nasholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions – from molecular to global scale. Soil Biol Biochem 43:702–717

    Article  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by microorganisms – a review. Soil Biol Biochem 42:2058–2067

    Article  CAS  Google Scholar 

  • Gillis JD, Price GW (2011) Comparison of a novel model to three conventional models describing carbon mineralization from soil amended with organic residues. Geoderma 160:304–310

    Article  CAS  Google Scholar 

  • Heller M (2009) Climate change: impact on agriculture and costs of adaptation. International Food Policy Research Institute (IFPRI). http://www.ifpri.org/publication/climate-change-impact-agriculture-and-costs-adaptation. Accessed 13 Feb 2012

  • Ingwersen J, Poll C, Streck T, Kandeler E (2008) Micro-scalemodelling of carbon turnover driven by microbial succession at a biogeochemical interface. Soil Biol Biochem 40:864–878

    Article  CAS  Google Scholar 

  • Jamtgard S, Nasholm T, Huss-Danell K (2010) Nitrogen compounds in soil solutions of agricultural land. Soil Biol Biochem 42:2325–2330

    Article  Google Scholar 

  • Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Change 80:5–23

    Article  CAS  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Knicker H (2011) Soil organic N – an under-rated player for C sequestration in soils? Soil Biol Biochem 43:1118–1129

    Article  CAS  Google Scholar 

  • Kuka K, Franko U, Ruhlmann J (2007) Modelling the impact of pore space distribution on carbon turnover. Ecol Model 208:295–306

    Article  CAS  Google Scholar 

  • Kutilek M (2011) Soils and climate change. Soil Till Res 117:1–7

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    Article  CAS  Google Scholar 

  • Malamoud K, McBratney AB, Minasny B, field DJ (2009) Modelling how carbon affects soil structure. Geoderma 149:19–26

    Article  CAS  Google Scholar 

  • Manzoni S, Porporato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41:1355–1379

    Article  CAS  Google Scholar 

  • McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535

    Article  CAS  Google Scholar 

  • Minasny B, McBratney AB, Salvador-Blanes S (2008) Quantitative models for pedogenesis – a review. Geoderma 144:140–157

    Article  CAS  Google Scholar 

  • Nannipieri P, Eldor P (2009) The chemical and functional characterization of soil N and its biotic component. Soil Biol Biochem 41:2357–2369

    Article  CAS  Google Scholar 

  • Nelson GC, Bennett E, Berhe AA, Cassman K, DeFries R, Dietz T, Dobermann A, Dobson A, Janetos A, Levy M, Marco D, Nakicenovic N, O’Neill B, Norgaard R, Petschel-Held G, Ojima D, Pingali P, Watson R, Zurek M (2006) Anthropogenic drivers of ecosystem change: an overview, ecology and society, 11, 29 www.ecologyandsociety.org/vol11/iss2/art29/

  • Nikolaidis NP (2011) Human impacts on soil: tipping points and knowledge gaps. Appl Geochem 26:230–233

    Article  Google Scholar 

  • Olson KR, Lang JM, Ebelhar SA (2005) Soil organic carbon changes after 12 years of no-tillage and tillage of grantsburg soils in southern Illinois. Soil Till Res 81:217–225

    Article  Google Scholar 

  • Paul K, Polglase P, Coops N, O’Connel T, Grove T, Mendham D, Carlyle C, May B, Smethurst P, Baillie C (2002) Modelling change in soil carbon following afforestation or reforestation, CSIRO forestry and forest products, national carbon accounting system technical report no 29. Australian Greenhouse Office, Canberra, ACT, p 108

    Google Scholar 

  • Plante AF, Feng Y, McGill WB (2002) A modeling approach to quantifying soil macroaggregate dynamics. Can J Soil Sci 82:181–190

    Article  Google Scholar 

  • Post J, Krysanova V, Suckow F, Mirschel W, Rogasik J, Merbach I (2007) Integrated eco-hydrological modeling of soil organic matter dynamics for the assessment of environmental change impacts in meso- and macro-scale river basins. Ecol Model 206:93–109

    Article  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2010) Nitrogen fertilization inhibits soil microbial respiration regardsless of the form of nitrogen applied. Soil Biol Biochem 42:2336–2338

    Article  CAS  Google Scholar 

  • Rillig MC, Caldwell BA, Wosten HAB, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85:25–44

    Article  CAS  Google Scholar 

  • Rockstrom J, Steffen W, Noone K, Persson E, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475

    Article  PubMed  Google Scholar 

  • Rovira P, Rovira R (2010) Fitting litter decomposition datasets to mathematical curves: towards a generalised exponential approach. Geoderma 155:329–343

    Article  Google Scholar 

  • Saha S (2010) Soil functions and diversity in organic and conventional farming. In: Lichtfouse E (ed) Sociology, organic farming, climate change and soil science, vol 3, Sustainable agriculture reviews. Springer, Dordrecht, pp 275–301. doi:10.1007/978-90-481-3333-8_10

    Chapter  Google Scholar 

  • Sapkota TB (2012) Conservation tillage impact on soil aggregation, organic matter turnover and biodiversity. In: Lichtfouse E (ed) Organic fertilization, soil quality and human health, vol 9, Sustainable agriculture reviews. Springer, Dordrecht, pp 141–160. doi:10.1007/978-94-007-4113-3_6

    Chapter  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AM (2007) Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  PubMed  Google Scholar 

  • Schulten HR, Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26:1–15

    Article  CAS  Google Scholar 

  • Science (2004) Soils-the final frontier. Sci Spec Issue 304:1549–1700

    Article  CAS  Google Scholar 

  • Shibu ME, Leffelaar PA, Van Keulen H, Aggarwal PK (2006) Quantitative description of soil organic matter dynamics – a review of approaches with reference to rice-based cropping systems. Geoderma 137:1–18

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31

    Article  Google Scholar 

  • Stagnari F, Ramazzotti S, Pisante M (2009) Conservation agriculture: a different approach for crop production through sustainable soil and water management: a Review. In: Lichtfouse E (ed) Organic farming, pest control and remediatione, vol 1, Sustainable agriculture reviews. Springer, Dordrecht, pp 55–83

    Chapter  Google Scholar 

  • Steffen W (2009) Interdisciplinary research for managing ecosystem services. Proc Natl Acad Sci 106:1301–1302

    Article  PubMed  CAS  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JF (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:90099015

    Article  Google Scholar 

  • Szanser M, Ilieva-Makulec K, Kajak A, Gorska E, Kusinska A, Kisiel M, Olejniczak I, Russel S, Sieminiak D, Wojewoda D (2011) Impact of litter species diversity on decomposition processes and communities of soil organisms. Soil Biol Biochem 43:9–19

    Article  CAS  Google Scholar 

  • Tallis HM, Kareiva P (2006) Shaping global environmental decisions using socio-ecological models. Trends Ecol Evol 21:562–568

    Article  PubMed  Google Scholar 

  • Thevenot M, Dignac M, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211

    Article  CAS  Google Scholar 

  • Tilman D (2010) Understanding the present and projecting the future of global food demand. AAAS Annual Meeting. AAAS, San Diego

    Google Scholar 

  • UN FAO (2011) Food agriculture and cities: challenges of food and nutrition security, agriculture and ecosystem management in an urbanizing world –food for the cities multi-disciplinary initiative. www.fao.org/fcit. Accessed 13 Feb 2012

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Monographs in Population Dynamics, p 400

    Google Scholar 

  • Wu T (2011) Can ectomycorrhizal fungi circumvent the nitrogen mineralization for plant nutrition in temperate forest ecosystems? Soil Biol Biochem 43:1109–1117

    Article  CAS  Google Scholar 

  • Wu G-L, Li W, Shi Z-H, Shangguan Z-P (2011) Aboveground dominant functional group predicts belowground properties in an alpine grassland community of western China. J Soil Sediment 11:1011–1019

    Article  CAS  Google Scholar 

  • Zhang L, Xu Z (2008) Assessing bacterial diversity in soil. J Soil Sediment 8:379–388

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the EU FP7-ENV-2009 Project SoilTrEC “Soil Transformations in European Catchments” (Grant #244118). This work was conducted at the Institute for Environment and Sustainability of the Joint Research Centre (JRC) of the European Commission. Professor Nikolaidis is grateful for the Technical University of Crete financial support of his sabbatical leave at the JRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos P. Nikolaidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nikolaidis, N.P., Bidoglio, G. (2013). Soil Organic Matter Dynamics and Structure. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5961-9_6

Download citation

Publish with us

Policies and ethics