Skip to main content

The Role of Proinflammatory Cytokines in Regulation of Cardiac Bioelectrical Activity: Link to Mechanoelectrical Feedback

  • Chapter
  • First Online:
Mechanical Stretch and Cytokines

Abstract

In this review we cover key issues, concerned with the effects of cytokines in cardiac tissue and cardiac cells. We discuss the effects of proinflammatory cytokines under non-pathological conditions and their mechanisms dependent and independent of nitric oxide. The role of proinflammatory cytokines is considered in acute myocardial infarction and in heart failure. We also describe proinflammatory cytokines as inductors of arrhythmia. We discuss ionic current alternation as possible mechanisms of cytokines action in heart. We consider TNF-α as a possible player in this signaling cascade. It was shown that TNF-α induced alternation of transmembrane action potentials. Influence of TNF-α on transient outward current (I to), I Kur, I Kr, I Ks, I K1 is also reported. We discuss the interplay between TNF-α and Ca2+ current, influence of TNF-α on SERCA. Then we consider influence of IL-1 on action potentials, I Na, I Ca, I K. We also address the role of IL-2, IL-6, and IL-11. Finally using TNF-α and IL-6 as an example we discuss the effects of cytokines on mechanoelectrical feedback. Perfusion of cardiac tissue with TNF-α containing solution leads to abnormalities in cardiac electrical activity, majorly to prolongation of APD90 and appearance of hump-like depolarization at APD90 level. After reaching E c hump-like depolarization transforms into extra-AP, leading to sustained arrhythmias. TNF-α activates NO cardiomyocyte synthases and the rise of intracellular NO levels opens MGCs, which leads to sodium entry into the cell, which depolarizes cellular membrane, shifting resting potential towards E C. We proposed and proved that TNF-α triggered arrhythmias can be mediated through activation of MGCs. Stretching of preparations removed TNF-α. Perfusion of preparation with IL-6 containing solution leads to fibrillation in response to low levels of stretch. IL-6 mechanisms of action are mediated by NO synthases in cardiomyocytes. The circulating levels of TNF-α and IL-6 were found to be significantly higher in patients suffering from atrial fibrillation. It suggests a positive feedback between inflammation and atrial fibrillation. Proinflammatory cytokines are believed to be markers of atrial fibrillation, and more over, the key element in this positive feedback system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate A, Salloum FN, Vecile E et al (2008) Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 117:2670–2683

    PubMed  CAS  Google Scholar 

  • Abi-Gerges N, Fischmeister R, Mery PF (2001) G protein mediated inhibitory effect of a nitric oxide donor on the L-type Ca2+ current in rat ventricular myocytes. J Physiol (London) 531:117–130

    CAS  Google Scholar 

  • Alloattia G, Pennaa C, De Martinoa A et al (1999) Role of nitric oxide and platelet-activating factor in cardiac alterations induced by tumor necrosis factor-a in the guinea-pig papillary muscle. Cardiovasc Res 41:611–619

    Google Scholar 

  • Amadou A, Nawrocki A, Best-Belpomme M et al (2002) Arachidonic acid mediates dual effect of TNF-α on Ca2+ transients and contraction of adult rat cardiomyocytes. Am J Physiol 282:C1339–C1347

    CAS  Google Scholar 

  • Arai K, Nishida J, Hayashida K et al (1990) Coordinate regulation of immune and inflammatory responses by cytokines. Rinsho Byori 38(4):347–353

    Google Scholar 

  • Araujo DM, Lapchak PA, Collier B, Quirion R (1989) Localization of interleukin-2 immunoreactivity and interleukin-2 receptors in the rat brain: interaction with the cholinergic system. Brain Res 498(2):257–266

    Google Scholar 

  • Aviles R, Martin D, Apperson-Hansen C et al (2003) Inflammation as a risk factor for atrial fibrillation. Circulation 108:3006–3010

    PubMed  Google Scholar 

  • Balligand JL (1999) Regulation of cardiac β-adrenergic response by nitric oxide. Cardiovasc Res 43:607–620

    PubMed  CAS  Google Scholar 

  • Balligand JL, Ungureanu D, Kelly RA, Kozaik L, Pimental D, Michel T, Smith TW (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91(5):2314–2319

    PubMed  CAS  Google Scholar 

  • Balligand JL, Ungureanu-Longrois D, Simmons WW et al (1994) Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 269:27580–27588

    PubMed  CAS  Google Scholar 

  • Belosjorow S, Bolle I, Duschin A et al (2003) TNF-alpha antibodies are as effective as ischemic preconditioning in reducing infarct size in rabbits. Am J Physiol 284:H927–H930

    CAS  Google Scholar 

  • Benardeau A, Hatem SN, Rucker-Martin C et al (1996) Contribution of Na+/Ca2+ exchange to action potential of human atrial myocytes. Am J Physiol 271:H1151–H1161

    PubMed  CAS  Google Scholar 

  • Benitah JP, Gomez AM, Bailly P et al (1993) Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts. J Physiol (London) 469:111–138

    CAS  Google Scholar 

  • Beuckelmann DJ, Näbauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73(2):379–385

    PubMed  CAS  Google Scholar 

  • Bick RJ, Liao JP, King TW, LeMaistre A, McMillin JB, Buja LM (1997) Temporal effects of cytokines on neonatal cardiac myocyte calcium transients and adenylate cyclase activity. Am J Physiol 272:H1937–H1944

    PubMed  CAS  Google Scholar 

  • Bick RJ, Wood DE, Poindexter B, McMillin JB, Karoly A, Wang D et al (1999) Cytokines increase neonatal cardiac myocyte calcium concentrations: the involvement of nitric oxide and cyclic nucleotides. J Interferon Cytokine Res 19:645–653

    PubMed  CAS  Google Scholar 

  • Bittar MN, Carey JA, Barnard J et al (2005) Interleukin 6 G-174C polymorphism influences outcome following coronary revascularization surgery. Heart Surg Forum 8(3):E140–145

    PubMed  Google Scholar 

  • Bougaki M, Searles RJ, Kida K, Yu J, Buys ES, Ichinose F (2010) NOS3 protects against systemic inflammation and myocardial dysfunction in murine polymicrobial sepsis. Shock 34(3):281–290

    PubMed  CAS  Google Scholar 

  • Bracco MM, Fink SB, Finiasz MR et al (1991) Positive inotropic effect of interleukin-2. Role of phospholipases and protein kinase C. Int J Immunopharm 13:509–515

    Google Scholar 

  • Brinkmeier H, Kaspar A, Wiethoelter H, Ruedel R (1992) Interleukin-2 inhibits sodium currents in human muscle cells. Eur J Physiol 420:621–623

    CAS  Google Scholar 

  • Brouillette J, Clark RB, Giles WR, Fiset C (2004) Functional properties of K+ currents in adult mouse ventricular myocytes. J Physiol (London) 559(Pt 3):777–798

    CAS  Google Scholar 

  • Brown JM, White CW, Terada LS et al (1990) Interleukin 1 pretreatment decreases ischemia/reperfusion injury. PNAS 87:5026–5030

    PubMed  CAS  Google Scholar 

  • Bundgaard H, Kjeldsen K (1996) Human myocardial Na,K-ATPase concentration in heart failure. Mol Cell Biochem 163–164:277–283

    PubMed  Google Scholar 

  • Cailleret M, Amadou A, Andrieu-Abadie N, Nawrocki A, Adamy C, Ait-Mamar B, Rocaries F, Best-Belpomme M, Levade T, Pavoine C, Pecker F (2004) N-Acetylcysteine prevents the deleterious effect of tumor necrosis factor-(alpha) on calcium transients and contraction in adult rat cardiomyocytes. Circulation 109(3):406–411

    PubMed  CAS  Google Scholar 

  • Cain BS, Meldrum DR, Dinarello CA et al (1999) Tumor necrosis factor-α and interleukin-1β synergistically depress human myocardial function. Crit Care Med 27:1309–1318

    PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11:2717–2739

    PubMed  CAS  Google Scholar 

  • Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes – dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293

    PubMed  CAS  Google Scholar 

  • Cao C, Xia Q, Bruce Iain C, Zhang X, Fu C, Chen JZ (2003a) Interleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATPase, but decreases its sensitivity to calcium in rat cardiomyocytes. J Pharmacol Exp Ther 306:572–580

    PubMed  CAS  Google Scholar 

  • Cao CM, Xia Q, Bruce IC, Shen YL, Ye ZG, Lin GH, Chen JZ, Li GR (2003b) Influence of interleukin-2 on Ca2+ handling in rat ventricular myocytes. J Mol Cell Cardiol 35:1491–1503

    PubMed  CAS  Google Scholar 

  • Casadei B, Sears CE (2003) Nitric-oxide-mediated regulation of cardiac contractility and stretch responses. Prog Biophys Mol Biol 82(1–3):67–80

    PubMed  CAS  Google Scholar 

  • Chandrasekar B, Vemula K, Surabhi RM et al (2004) Activation of intrinsic and extrinsic proapoptotic signaling pathways in interleukin-18-mediated human cardiac endothelial cell death. J Biol Chem 279:20221–20233

    PubMed  CAS  Google Scholar 

  • Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M (2005) Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem 280:4553–4567

    PubMed  CAS  Google Scholar 

  • Chandrasekar B, Valente AJ, Freeman GL et al (2006) Interleukin-18 induces human cardiac endothelial cell death via a novel signaling pathway involving NF-kappaB-dependent PTEN activation. Biochem Biophys Res Commun 339:956–963

    PubMed  CAS  Google Scholar 

  • Chen Z, Siu B, Ho YS et al (1998) Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 30:2281–2289

    PubMed  CAS  Google Scholar 

  • Chen SA, Hsieh MH, Tai CT et al (1999) Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation 100:1879–1886

    PubMed  CAS  Google Scholar 

  • Chen YJ, Tsai CF, Chiou CW, Chan P, Chen SA (2001) Effect of nitric oxide on strophanthidin-induced ventricular tachycardia. Pharmacology 62:213–217

    PubMed  CAS  Google Scholar 

  • Chen Y, Pat B, Zheng J, Cain L, Powell P, Shi K, Sabri A, Husain A, Dell’italia LJ (2010) Tumor necrosis factor-alpha produced in cardiomyocytes mediates a predominant myocardial inflammatory response to stretch in early volume overload. J Mol Cell Cardiol 49(1):70–78

    PubMed  CAS  Google Scholar 

  • Cheng XS, Shimokawa H, Momii H et al (1999) Role of superoxide anion in the pathogenesis of cytokine-induced myocardial dysfunction in dogs in vivo. Cardiovasc Res 42:651– 659

    PubMed  CAS  Google Scholar 

  • Chung MK, Gulick TS, Rotondo RE et al (1990) Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes. Impairment of signal transduction. Circ Res 67:753–763

    PubMed  CAS  Google Scholar 

  • Colston JT, Boylston WH, Feldman MD, Jenkinson CP, de la Rosa SD, Barton A, Trevino RJ, Freeman GL, Chandrasekar B (2007) Interleukin-18 knockout mice display maladaptive cardiac hypertrophy in response to pressure overload. Biochem Biophys Res Commun 354:552–558

    PubMed  CAS  Google Scholar 

  • Cugno M, Agostoni P, Brunner HR et al (2000) Plasma bradykinin levels in human chronic congestive heart failure. Clin Sci (London) 99:461–466

    CAS  Google Scholar 

  • Damron DS, Summers BA (1997) Arachidonic acid enhances contraction and intracellular Ca2+ transients in individual rat ventricular myocytes. Am J Physiol 272:H350–H359

    PubMed  CAS  Google Scholar 

  • Debrunner M, Schuiki E, Minder E et al (2008) Proinflammatory cytokines in acute myocardial infarction with and without cardiogenic shock. Clin Res Cardiol 97:298–305

    PubMed  CAS  Google Scholar 

  • Dernellis J, Panaretou M (2001) C-reactive protein and paroxysmal atrial fibrillation: evidence of the implication of an inflammatory process in paroxysmal atrial fibrillation. Acta Cardiol 56:375–380

    PubMed  CAS  Google Scholar 

  • Dernellis J, Panaretou M (2006) Effects of C-reactive protein and the third and fourth components of complement (C3 and C4) on incidence of atrial fibrillation. Am J Cardiol 97:245–248

    PubMed  CAS  Google Scholar 

  • Dettbarn CA, Betto R, Salviati G et al (1994) Modulation of cardiac sarcoplasmic reticulum ryanodine receptor by sphingosine. J Mol Cell Cardiol 26:229–242

    PubMed  CAS  Google Scholar 

  • DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55:455–472

    PubMed  CAS  Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    PubMed  CAS  Google Scholar 

  • Dizdarević-Hudić L, Kušljugić Z, Baraković F, Brkić S, Sabitović D, Jahić E, Isabegović M, Smajić E, Hudić I, Divković K (2009) Correlation between interleukin 6 and interleukin 10 in acute myocardial infarction. Bosn J Basic Med Sci 9(4):301–306

    PubMed  Google Scholar 

  • Duncan DJ, Yang Z, Hopkins PM et al (2010) TNF-α and IL-1β increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium 47:378–386

    PubMed  CAS  Google Scholar 

  • Eddy LJ, Goeddel DV, Wong GH (1992) Tumor necrosis factor alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 184:1056–1059

    PubMed  CAS  Google Scholar 

  • Edmunds NJ, Woodward B (1998) Effects of tumour necrosis factor-α on the coronary circulation of the rat isolated perfused heart: a potential role for thromboxane A2 and sphingosine. Br J Pharmacol 124:493–498

    PubMed  CAS  Google Scholar 

  • Edmunds NJ, Lal H, Woodward B (1999) Effects of tumour necrosis factor-α on left ventricular function in the rat isolated perfused heart: possible mechanisms for a decline in cardiac function. Br J Pharmacol 126:189–196

    PubMed  CAS  Google Scholar 

  • El-Ani D, Zimlichman R (2003) TNFalpha stimulated ATP-sensitive potassium channels and attenuated deoxyglucose and Ca uptake of H9c2 cardiomyocytes. Ann N Y Acad Sci 1010:716–720

    PubMed  CAS  Google Scholar 

  • Evans HG, Lewis MJ, Shah AH (1993) Interleukin-1β modulates myocardial contraction via a dexamethasone sensitive production of nitric oxide. Cardiovasc Res 27:1486–1490

    PubMed  CAS  Google Scholar 

  • Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure from molecules to man (part II). Cardiovasc Pathol 14:49–60

    PubMed  CAS  Google Scholar 

  • Ferdinandy P, Danial H, Ambrus I et al (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241–247

    PubMed  CAS  Google Scholar 

  • Fernandez-Velasco M, Ruiz-Hurtado G, Hurtado O et al (2007) TNF-α downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. Am J Physiol 293:H238–H245

    CAS  Google Scholar 

  • Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    PubMed  CAS  Google Scholar 

  • Flaherty MP, Guo Y, Tiwari S et al (2008) The role of TNF-alpha receptors p55 and p75 in acute myocardial ischemia/reperfusion injury and late preconditioning. J Mol Cell Cardiol 45:735–741

    PubMed  CAS  Google Scholar 

  • Flesch M, Hoper A, Dell’Italia L et al (2003) Activation and functional significance of the renin-angiotensin system in mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 108:598–604

    PubMed  CAS  Google Scholar 

  • Friedrichs GS, Swillo RE, Jow B et al (2002) Sphingosine modulates myocyte electrophysiology, induces negative inotropy, and decreases survival after myocardial ischemia. J Cardiovasc Pharmacol 39:18–28

    PubMed  CAS  Google Scholar 

  • Gaudino M, Andreotti F, Zamparelli R et al (2003) The -174G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation 108(10 Suppl 1):II195–II199

    PubMed  Google Scholar 

  • Goldhaber JI, Kim KH, Natterson PD, Lawrence T, Ph Y, Weiss JN (1996) Effects of TNF-α on [Ca2+]i and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol 271:H1449–H1455

    PubMed  CAS  Google Scholar 

  • Grandel U, Fink L, Blum A et al (2000) Endotoxin-induced myocardial tumor necrosis factor-α synthesis depresses contractility of isolated rat hearts: evidence for a role of sphingosine and cyclooxygenase-2-derived thromboxane production. Circulation 102:2758–2764

    PubMed  CAS  Google Scholar 

  • Grandy SA, Fiset C (2009) Ventricular K+ currents are reduced in mice with elevated levels of serum TNFα. J Mol Cell Cardiol 47:238–246

    PubMed  CAS  Google Scholar 

  • Grandy SA, Brouillette J, Fiset C (2010) Reduction of ventricular sodium current in a mouse model of HIV. J Cardiovasc Electrophysiol 21:916–922

    PubMed  Google Scholar 

  • Gulick T, Chung MK, Pieper SJ et al (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte β-adrenergic responsiveness. PNAS 86:6753–6757

    PubMed  CAS  Google Scholar 

  • Harada E, Nakagawa O, Yoshimura M et al (1999) Effect of interleukin-1 beta on cardiac hypertrophy and production of natriuretic peptides in rat cardiocyte culture. J Mol Cell Cardiol 31:1997–2006

    PubMed  CAS  Google Scholar 

  • Harding P, Carretero OA, LaPointe MC (1995) Effects of interleukin-1β and nitric oxide on cardiac myocytes. Hypertension 25:421–430

    PubMed  CAS  Google Scholar 

  • Hare JM (2003) Nitric oxide and excitation–contraction coupling. J Mol Cell Cardiol 35:719–729

    PubMed  CAS  Google Scholar 

  • Hatada K, Washizuka T, Horie M et al (2006) Tumor necrosis factor-alpha inhibits the cardiac delayed rectifier K current via the asphingomyelin pathway. Biochem Biophys Res Commun 344(1):189–193

    PubMed  CAS  Google Scholar 

  • Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117:2692–2701

    PubMed  CAS  Google Scholar 

  • Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N (2010) Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 15:543–562

    PubMed  CAS  Google Scholar 

  • Heger J, Goedecke A, Flögel U, Merx MW, Molojavyi A, Kühn-VeltenW N, Schrader J (2002) Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 90:93–99

    PubMed  CAS  Google Scholar 

  • Hofmann U, Domeier E, Frantz S et al (2003) Increased myocardial oxygen consumption by TNF-α is mediated by a sphingosine signaling pathway. Am J Physiol 284:H2100–H2105

    CAS  Google Scholar 

  • Hoppe UC, Beuckelmann DJ (1998) Characterization of the hyperpolarization-activated current in isolated human atrial myocytes. Cardiovasc Res 38:788–801

    PubMed  CAS  Google Scholar 

  • Hosenpud JD, Campbell SM, Mendelson DJ (1989) Interleukin-l-induced myocardial depression in an isolated beating heart preparation. J Heart Transplant 8:460–464

    PubMed  CAS  Google Scholar 

  • Hu Y, Chen YC, Cheng CC, Higa S, Chen YJ, Chen SA (2009) Fluvastatin reduces pulmonary vein spontaneous activity through nitric oxide pathway. J Cardiovasc Electrophysiol 20:200–206

    PubMed  Google Scholar 

  • Hund TJ, Rudy Y (2004) Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110:3168–3174

    PubMed  CAS  Google Scholar 

  • Ing DJ, Zang J, Dzau VJ et al (1999) Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 84:21–33

    PubMed  CAS  Google Scholar 

  • Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, Kamkin A (2003) Differential effects of stretch and compression on membrane currents and [Na+]C in ventricular myocytes. Prog Biophys Mol Biol 82:43–56

    PubMed  CAS  Google Scholar 

  • Issac TT, Dokainish H, Lakkis NM (2007) Role of inflammation in initiation and perpetuation of atrial fibrillation. J Am Coll Cardiol 50:2021–2028

    PubMed  CAS  Google Scholar 

  • Janczewski AM, Kadokami T, Lemster B et al (2003) Morphological and functional changes in cardiac myocytes isolated from mice overexpressing TNF-α. Am J Physiol 284:H960–H969

    CAS  Google Scholar 

  • Janse MJ (1992) The premature beat. Cardiovasc Res 26:89–100

    PubMed  CAS  Google Scholar 

  • Janse MJ (1997) Why does atrial fibrillation occur? Eur Heart J 18(suppl):C12–C18

    PubMed  Google Scholar 

  • Janssen SPM, Gayan-Ramirez G, Van Den Bergh A, Herijgers P, Maes K, Verbeken E, Decramer M (2005) Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats. Circulation 111:996–1005

    PubMed  CAS  Google Scholar 

  • Jayadev S, Linardic CM, Hannun YA (1994) Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor-α. J Biol Chem 269:5757–5763

    PubMed  CAS  Google Scholar 

  • Joe EK, Schussheim AE, Longrois D et al (1998) Regulation of cardiac myocyte contractile function by inducible nitric oxide synthase (iNOS): mechanisms of contractile depression by nitric oxide. J Mol Cell Cardiol 30:303–315

    PubMed  CAS  Google Scholar 

  • Ju H, Dixon IM (1996) Extracellular matrix and cardiovascular diseases. Can J Cardiol 12:1259–1267

    PubMed  CAS  Google Scholar 

  • Kaab S, Dixon J, Duc J et al (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98:1383–1393

    PubMed  CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Leiterer KP, Theres H, Scholz H, Günther J, Lab MJ (2000a) Mechano-electric feedback in right atrium after left ventricular infarction in rats. J Mol Cell Cardiol 32:465–477

    PubMed  CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G (2000b) Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc Res 48:409–420

    PubMed  CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G (2003a) Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes. Eur J Physiol 446(2):220–231

    CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Bohm J, Theres H, Günther J, Scholz H (2003b) Characterization of stretch-activated ion currents in isolated atrial myocytes from human hearts. Eur J Physiol 446(3):339–346

    CAS  Google Scholar 

  • Kang JX, Leaf A (1994) Effects of long-chain polyunsaturated fatty acids on the contraction of neonatal rat cardiac myocytes. PNAS 91:9886–9890

    PubMed  CAS  Google Scholar 

  • Kao YH, Chen YC, Cheng CC et al (2010) Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Crit Care Med 8(1):217–222

    Google Scholar 

  • Karmazym M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K (1999) The myocardial Na+-H+ exchange structure, regulation, and its role in heart disease. Circ Res 85:777–786

    Google Scholar 

  • Kaspar A, Brinkmeier H, Riidel R (1994) Local anaesthetic-like effect of interleukin-2 on muscular Na+-channels: no evidence for involvement of the IL-2 receptor. Eur J Physiol 426:61–67

    CAS  Google Scholar 

  • Kato D, Cragoe EJ, Smith TW (1987) Relations among sodium pump inhibition, Na-Ca and Na-H exchange activities, and Ca-H interaction in cultured chick heart cells. Circ Res 60:185–193

    Google Scholar 

  • Kawada H, Niwano S, Niwano H et al (2006) Tumor necrosis factor-alpha downregulates the voltage gated outward K_ current in cultured neonatal rat cardiomyocytes: a possible cause of electrical remodeling in diseased hearts. Circulation 70:605–609

    CAS  Google Scholar 

  • Kazanski VE, Kamkin AG, Makarenko EY, Lysenko NN, Sutiagin PV, Bo T, Kiseleva IS (2010a) Role of nitric oxide in activity control of mechanically gated ionic channels in cardiomyocytes: NO-donor study. Bull Exp Biol Med 150(1):1–5 English

    PubMed  CAS  Google Scholar 

  • Kazanski VE, Kamkin AG, Makarenko EY, Lysenko NN, Sutiagin PV, Kiseleva IS (2010b) Role of nitric oxide in the regulation of mechanosensitive ionic channels in cardiomyocytes: Contribution of NO-synthases. Bull Exp Biol Med 150(2):263–267 English

    PubMed  CAS  Google Scholar 

  • Kazanski V, Kamkin A, Makarenko E, Lysenko N, Lapina N, Kiseleva I (2011) The role of nitric oxide in regulation of mechanically gated channels in the heart. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues 4. Mechanosensitivity and mechanotransduction. Springer, New York, NY, pp 109–140

    Google Scholar 

  • Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79:363–380

    PubMed  CAS  Google Scholar 

  • Kinugawa K, Takahashi T, Kohmoto O, Yao A, Aoyagi T, Momomura S, Hirata Y, Serizawa T (1994) Nitric oxide-mediated effects of interleukin-6 on [Ca2+]i and cell contraction in cultured chick ventricular myocytes. Circ Res 75:285–295

    PubMed  CAS  Google Scholar 

  • Kiseleva I, Kamkin A, Wagner KD, Theres H, Ladhoff A, Scholz H, Günther J, Lab MJ (2000) Mechano-electric feedback after left ventricular infarction in rats. Cardiovasc Res 45:370–378

    PubMed  CAS  Google Scholar 

  • Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41:514–523

    PubMed  CAS  Google Scholar 

  • Kolesnick R (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110:3–8

    PubMed  CAS  Google Scholar 

  • Kondratev D, Gallitelli MF (2003) Increments in the concentration of sodium and calcium in cell compartments of stretched mouse ventricular myocytes. Cell Calcium 34:193–203

    PubMed  CAS  Google Scholar 

  • Kreydiyyeh SI, Abou-Chahine C, Hilal-Dandan R (2004) Interleukin-1beta inhibits Na+-K+ ATPase activity and protein expression in cardiac myocytes. Cytokine 26(1):1–8

    PubMed  CAS  Google Scholar 

  • Krown KA, Yasui K, Brooker MJ, Dubin AE, Nguyen C, Harris GL, McDonough PM, Glembotski CC, Palade PT, Sabbadini RA (1995) TNF alpha receptor expression in rat cardiac myocytes: TNF alpha inhibition of L-type Ca2+ current and Ca2+ transients. FEBS Lett 376(1–2):24–30

    PubMed  CAS  Google Scholar 

  • Kubota T, McTiernan CF, Frye CS et al (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α. Circ Res 81:627–635

    PubMed  CAS  Google Scholar 

  • Kubota I, Han X, Opel DJ, Zhao YY, Baliga R, Huang P, Fishman MC, Shannon RP, Michel T, Kelly RA (2000) Increased susceptibility to development of triggered activity in myocytes from mice with raged disruption of endothelial nitric oxide synthase. J Mol Cell Cardiol 32:1239–1248

    PubMed  CAS  Google Scholar 

  • Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor-alpha and interleukin 1-beta are responsible for the in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183(3):949–958

    PubMed  CAS  Google Scholar 

  • Kumar A, Brar R, Wang P et al (1999) Role of nitric oxide and cGMP in human septic serum induced depression of cardiac myocyte contractility. Am J Physiol 276:R265–R276

    PubMed  CAS  Google Scholar 

  • Kunisada K, Negoro S, Tone E et al (2000) Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. PNAS 97:315–319

    PubMed  CAS  Google Scholar 

  • Latini R, Bianchi M, Correale E, Dinarello CA, Fantuzzi G, Fresco C, Maggioni AP, Mengozzi M, Romano S, Shapiro L, Sironi M, Tognoni G, Turato R, Ghezzi P (1994) Cytokines in acute myocardial infarction: selective increase in circulating tumor necrosis factor, its soluble receptor, and interleukin 1 receptor antagonist. J Cardiovasc Pharmacol 23(1):1–6

    PubMed  CAS  Google Scholar 

  • Lee SH, Chen YC, Chen YJ et al (2007) Tumor necrosis factor-alpha alters calcium handling and increases arrhythmogenesis of pulmonary vein cardiomyocytes. Life Sci 80(19):1806–1815

    PubMed  CAS  Google Scholar 

  • Levi RC, Alloatti G, Fischmeister R (1989) Cyclic GMP regulates the Ca channel current in guinea pig ventricular myocytes. Eur J Physiol 413:685–687

    CAS  Google Scholar 

  • Levi RC, Alloatti G, Penna C, Gallo MP (1994) Guanylate-cyclase-mediated inhibition of cardiac ICa by carbachol and sodium nitroprusside. Pflugers Arch 426(5):419–426

    Google Scholar 

  • Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323(4):236–241

    PubMed  CAS  Google Scholar 

  • Li Y-H, Rozanski GJ (1993) Effects of human recombinant interleukin-1 on electrical properties of guinea pig ventricular cells. Cardiovasc Res 27:525–530

    PubMed  CAS  Google Scholar 

  • Li J, Hampton T, Morgan JP, Simons M (1997) Stretch-induced VEGF expression in the heart. J Clin Invest 100(1):18–24

    PubMed  CAS  Google Scholar 

  • Li YY, Feng YQ, Kadokami T et al (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. PNAS 97:12746–12751

    PubMed  CAS  Google Scholar 

  • Li GR, Lau CP, Leung TK, Nattel S (2004) Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm 1:460–468

    PubMed  Google Scholar 

  • Liu SJ, McHowat J (1998) Stimulation of different phospholipase A2 isoforms by TNF-α and IL-1β in adult rat ventricular myocytes. Am J Physiol 275:H1462–H1472

    PubMed  CAS  Google Scholar 

  • Liu S, Schreur KD (1995) G protein-mediated suppression of L-type Ca2+ current by interleukin-1β in cultured rat ventricular myocytes. Am J Physiol 268:C339–C349

    PubMed  CAS  Google Scholar 

  • Liu B, Andrieu-Abadie N, Levade T et al (1998) Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-α-induced cell death. J Biol Chem 273:11313–11320

    PubMed  CAS  Google Scholar 

  • Liu SJ, Zhou W, Kennedy RH (1999) Suppression of β-adrenergic responsiveness of L-type Ca2+ current by IL-1β in rat ventricular myocytes. Am J Physiol 276:H141–H148

    PubMed  CAS  Google Scholar 

  • Liu J, Kim KH, London B et al (2011) Dissection of the voltage-activated potassium outward currents in adult mouse ventricular myocytes: Ito,f, Ito,s, IK,slow1, IK,slow2, and Iss. Basic Res Cardiol 106:189–204

    PubMed  CAS  Google Scholar 

  • London B, Baker LC, Lee JS, Shusterman V, Choi BR, Kubota T, McTiernan CF, Feldman AM, Salama G (2003) Calcium-dependent arrhythmias in transgenic mice with heart failure. Am J Physiol 284:H431–H441

    CAS  Google Scholar 

  • Long CS (2001) The role of interleukin-1 in the failing heart. Heart Fail Rev 6:81–94

    PubMed  CAS  Google Scholar 

  • Lorenzon P, Ruzzier F, Caratsch CG et al (1991) Interleukin-2 lengthens extrajunctional acetylcholine receptor channel open time in mammalian muscle cells. Pflugers Arch 419(3-4):380–385

    Google Scholar 

  • Low-Friedrich I, Weisensee D, Mitrou P, Schoeppe W (1992) Cytokines induce stress protein formation in cultured cardiac myocytes. Basic Res Cardiol 87(1):12–18

    PubMed  CAS  Google Scholar 

  • Lozinsky I, Kamkin A (2010) Mechanosensitive alterations of action potentials and membrane currents in healthy and diseased cardiomyocytes: cardiac tissue and isolated cell. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues 3. Mechanosensitivity of the heart. Springer, New York, NY, pp 185–238

    Google Scholar 

  • Luan Y, Guo Y, Li S et al (2010) Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease. Europace 12:1713–1718

    PubMed  Google Scholar 

  • Marcus GM, Whooley MA, Glidden DV, Pawlikowska L, Zaroff JG, Olgin JE (2008) Interleukin 6 and atrial fibrillation in patients with coronary disease: data from the heart and soul study. Am Heart J 155(2):303–309

    PubMed  CAS  Google Scholar 

  • Marino E, Cardier JE (2003) Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-alpha and Fas (CD95). Cytokine 22:142–148

    PubMed  CAS  Google Scholar 

  • Massion PB, Balligand JL (2003) Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): lessons from genetically modified mice. J Physiol (London) 546(1):63–75

    CAS  Google Scholar 

  • Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388 –398

    PubMed  CAS  Google Scholar 

  • Maulik N, Engelman RM, Wei Z et al (1993) Interleukin-1 alpha preconditioning reduces myocardial ischemia reperfusion injury. Circulation 88:387–394

    CAS  Google Scholar 

  • McDonough AA, Zhang Y, Shin V, Frank JS (1996) Subcellular distribution of sodium pump isoform subunits in mammalian cardiac myocytes. Am J Physiol 270:C1221–C1227

    PubMed  CAS  Google Scholar 

  • McGowan FX, Takeuchi K, del Nido PJ et al (1994) Myocardial effects of interleukin-2. Transplant Proc 26:209–210

    PubMed  CAS  Google Scholar 

  • Mery PF, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 88:1197–1201

    PubMed  CAS  Google Scholar 

  • Mery PF, Pavoine C, Belhassen L, Pecker F, Fischmeister R (1993) Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem 268:26286–26295

    PubMed  CAS  Google Scholar 

  • Meyer M, Schillinger W, Pieske B et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784

    PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide physiology, pathophysiology. Pharmacol Rev 433:109–142

    Google Scholar 

  • Monsuez JJ, Escaut L, Teicher E, Charniot JC, Vittecoq D (2007) Cytokines in HIV-associated cardiomyopathy. Int J Cardiol 2:150–157

    Google Scholar 

  • Nakano M, Knowlton AA, Yokoyama T et al (1996) Tumor necrosis factor-alpha-induced expression of heat shock protein 72 in adult feline cardiac myocytes. Am J Physiol 270:H1231–H1239

    PubMed  CAS  Google Scholar 

  • Nakano M, Knowlton AA, Dibbs Z, Mann DL (1998) Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 97:1392–1400

    PubMed  CAS  Google Scholar 

  • Nakayama H, Bodi I, Correll RN, Chen X, Lorenz J, Houser SR, Robbins J, Schwartz A, Molkentin JD (2009) alpha1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. J Clin Invest 119(12):3787–3796

    PubMed  CAS  Google Scholar 

  • Narayan SM, Cain ME, Smith JM (1997) Atrial fibrillation. Lancet 350:943–950

    PubMed  CAS  Google Scholar 

  • Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456

    PubMed  CAS  Google Scholar 

  • Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253

    PubMed  CAS  Google Scholar 

  • Nishikawa K, Yoshida M, Kusuhara M et al (2006) Left ventricular hypertrophy in mice with a cardiac-specific overexpression of interleukin-1. Am J Physiol 291:H176–H183

    CAS  Google Scholar 

  • Nuss HB, Kaab S, Kass DA et al (1999) Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am J Physiol 277:H80–H91

    PubMed  CAS  Google Scholar 

  • Ono K, Trautwein W (1991) Potentiation by cyclic GMP of b-adrenergic effect on Ca2+ current in guinea pig ventricular cells. J Physiol (London) 443:387–404

    CAS  Google Scholar 

  • Opthof T (1988) The membrane current (If) in human atrial cells: implications for atrial arrhythmias. Cardiovasc Res 38:537–540

    Google Scholar 

  • Oral H, Dorn GWII, Mann DL (1997) Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-α in the adult mammalian cardiac myocyte. J Biol Chem 272:4836–4842

    PubMed  CAS  Google Scholar 

  • Oyama J, Shimokawa H, Momii H (1998) Role of nitric oxide and peroxynitrite in the cytokine-induced sustained myocardial dysfunction in dogs in vivo. J Clin Invest 101:2207–2214

    PubMed  CAS  Google Scholar 

  • Packer M (1995) Is tumor necrosis factor an important neurohormoral mechanism in chronic heart failure? Circulation 92(6):1379–1382

    PubMed  CAS  Google Scholar 

  • Paganelli F, Mougenot R, Maixentt JM (2001) Defective activity and isoform of the Na,K-ATPase in the dilated cardiomyopathic hamster. Cell Mol Biol (Noisy-le-grand) 47:255–260

    CAS  Google Scholar 

  • Palmer JN, Hartogensis WE, Patten M et al (1995) Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 95:2555–2564

    PubMed  CAS  Google Scholar 

  • Panas D, Khadour FH, Szabo C, Schulz R (1998) Proinflammatory cytokines depress cardiac efficiency by a nitric oxide-dependent mechanism. Am J Physiol 275:H1016–H1023

    PubMed  CAS  Google Scholar 

  • Park CO, Xiao XH, Allen DG (1999) Changes in intracellular sodium and pH in the rat heart during ischaemia: role of the Na+/H+ exchanger. Am J Physiol 276(5Pt2):H1581–H1590

    PubMed  CAS  Google Scholar 

  • Petkova-Kirova PS, Gursoy E, Mehdi H et al (2006) Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-α. Am J Physiol 290(5):H2098–H2107

    CAS  Google Scholar 

  • Pino R, Cerbai E, Calamai G et al (1998) Effect of 5-HT4 receptor stimulation on the pacemaker current If in human isolated atrial myocytes. Cardiovasc Res 40:516–522

    PubMed  CAS  Google Scholar 

  • Porciatti F, Pelzmann B, Cerbai E et al (1997) The pacemaker current If in single human atrial myocytes and the effect of beta-adrenoceptor and A1-adenosine receptor stimulation. Br J Pharmacol 122:963–969

    PubMed  CAS  Google Scholar 

  • Prabhu SD (2004a) Cytokine-induced modulation of cardiac function. Circ Res 95:1140–1153

    PubMed  CAS  Google Scholar 

  • Prabhu SD (2004b) Nitric oxide protects against pathological ventricular remodeling: reconsideration of the role of NO in the failing heart. Circ Res 94:1155–1157

    PubMed  CAS  Google Scholar 

  • Priebe L, Beuckelmann DJ (1998) Simulation study of cellular electric properties in heart failure. Circ Res 82:1206–1223

    PubMed  CAS  Google Scholar 

  • Proebstle T, Mitrovics M, Scneider M, Hombach V, Ruedel R (1995) Recombinant interleukin-2 acts like a class I antiarrhythmic drug on human cardiac sodium channels. Eur J Physiol 429:462–469

    CAS  Google Scholar 

  • Psychari SN, Apostolou TS, Sinos L, Hamodraka E, Liakos G, Kremastinos DT (2005) Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation. Am J Cardiol 95(6):764–767

    PubMed  CAS  Google Scholar 

  • Rashmi RS, Hondeghem LM (2005) Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm 2:758–772

    Google Scholar 

  • Robinson BS, Hii CS, Poulos A, Ferrante A (1997) Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 91:274–280

    PubMed  CAS  Google Scholar 

  • Roedler S, Roth M, Nauck M, Tamm M, Block LH (1994) Ca2+-channel blockers modulate the expression of interleukin-6 and interleukin-8 genes in human vascular smooth muscle cells. J Mol Cell Cardiol 27:2295–2302

    Google Scholar 

  • Rozanski GJ, Witt RC (1994a) IL-l inhibits β-adrenergic control of cardiac calcium current: role of L-arginine/nitric oxide pathway. Am J Physiol 267:H1753–H1758

    PubMed  CAS  Google Scholar 

  • Rozanski GJ, Witt RC (1994b) Interleukin-1 enhances β-responsiveness of cardiac L-type calcium current suppressed by acidosis. Am J Physiol 267:H1361–H1367

    PubMed  CAS  Google Scholar 

  • Saba S, Janczewski AM, Baker LC et al (2004) Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor-α. Am J Physiol 289:H1456–H1467

    Google Scholar 

  • Sani MU, Okeahialam BN (2005) QTc interval prolongation in patients with HIV and AIDS. J Natl Med Assoc 12:1657–1661

    Google Scholar 

  • Sartiani L, Paoli PD, Lonardo G, Pino R, Conti AA, Cerbai E, Pelleg A, Belardinelli L, Mugelli A (2002) Does recombinant human interleukin-11 exert direct electrophysiologic effects on single human atrial myocytes? J Cardiovasc Pharmacol 39:425–434

    PubMed  CAS  Google Scholar 

  • Sata N, Hamada N, Horinouchi T et al (2004) C-reactive protein and atrial fibrillation: Is inflammation a consequence or cause of atrial fibrillation? Japan Heart J 45:441–445

    Google Scholar 

  • Schreur KD, Liu S (1997) Involvement of ceramide in inhibitory effect of IL-1β on L-type Ca2+ current in adult rat ventricular myocytes. Am J Physiol 272:H2591–H2598

    PubMed  CAS  Google Scholar 

  • Schulz R (2008) TNF-α in myocardial ischemia/reperfusion: damage vs. protection. J Mol Cell Cardiol 45:712–714

    PubMed  CAS  Google Scholar 

  • Schulz R, Heusch G (2009) Tumor necrosis factor-α and its receptors 1 and 2. Yin and Yang in myocardial infarction? Circulation 119:1355–1357

    PubMed  Google Scholar 

  • Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75(2):315–326

    PubMed  CAS  Google Scholar 

  • Shah AM, MacCarthy PA (2000) Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther 86(1):49–86

    PubMed  CAS  Google Scholar 

  • Sivasubramanian N, Coker ML, Kurrelmeyer KM et al (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104:826–831

    PubMed  CAS  Google Scholar 

  • Siwik DA, Colucci WS (2004) Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev 9:43–51

    PubMed  CAS  Google Scholar 

  • Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86:1259–1265

    PubMed  CAS  Google Scholar 

  • Smart N, Mojet MH, Latchman DS et al (2006) IL-6 induces PI 3-kinase and nitric oxide dependent protection and preserves mitochondrial function in cardiomyocytes. Cardiovasc Res 69:164–177

    PubMed  CAS  Google Scholar 

  • Smith MD, Haynes DR, Roberts-Thomson PJ (1989) Interleukin 2 and interleukin 2 inhibitors in human serum and synovial fluid. I. Characterization of the inhibitor and its mechanism of action. J Rheumatol 16(2):149–157

    Google Scholar 

  • Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106:675–683

    PubMed  CAS  Google Scholar 

  • Stamm C, Cowan DB, Friehs I et al (2001a) Rapid endotoxin-induced alterations in myocardial calcium handling: obligatory role of cardiac TNF-alpha. Anesthesiology 95:1396–1405

    PubMed  CAS  Google Scholar 

  • Stamm C, Friehs I, Cowan DB et al (2001b) Inhibition of tumor necrosis factor-α improves postischemic recovery of hypertrophied hearts. Circulation 104:I350–I355

    PubMed  CAS  Google Scholar 

  • Sugano M, Hata T, Tsuchida K et al (2004) Local delivery of soluble TNF-alpha receptor 1 gene reduces infarct size following ischemia/reperfusion injury in rats. Mol Cell Biochem 266:127–132

    PubMed  CAS  Google Scholar 

  • Sugishita K, Kinugawa K, Shimizu T, Harada K, Matsui H, Takahashi T, Serizawa T, Kohmoto O (1999) Cellular basis for the acute inhibitory effects of IL-6 and TNF-α on excitation-contraction coupling. J Mol Cell Cardiol 31:1457–1467

    PubMed  CAS  Google Scholar 

  • Tavi P, Laine M, Weckstrom M (1996) Effect of gadolinium on stretch-induced changes in contraction and intracellularly recorded action- and after potentials of rat isolated atrium. Br J Pharmacol 118:407–413

    PubMed  CAS  Google Scholar 

  • Tavi P, Han C, Weckstrom M (1998) Mechanisms of stretch induced changes in [Ca2+]i in rat atrial myocytes: role of increased troponin C affinity and stretch-activated ion channels. Circ Res 83:1165–1177

    PubMed  CAS  Google Scholar 

  • Testa M, Yeh M, Lee P et al (1996) Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 28:964–971

    PubMed  CAS  Google Scholar 

  • Trotter JL, Clifford DB, Anderson CB et al (1988) Elevated serum interleukin-2 levels in chronic progressive multiple sclerosis. N Engl J Med 318(18):1206

    Google Scholar 

  • Thaik CM, Calderone A, Takahashi N, Colucci WS (1995) Interleukin-1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 96:1093–1099

    PubMed  CAS  Google Scholar 

  • Thakkar J, Tang SB, Sperelakis N, Wahler GM (1988) Inhibition of cardiac slow action potentials by 8-bromo-cyclic GMP occurs independent of changes in cyclic AMP levels. Can J Physiol Pharmacol 66:1092–1095

    PubMed  CAS  Google Scholar 

  • Ungureanu-Longrois D, Balligand JL et al (1995) Contractile responsiveness of ventricular myocytes to isoproterenol is regulated by induction of nitric oxide synthase activity in cardiac microvascular endothelial cells in heterotypic primary culture. Circ Res 77:486–493

    PubMed  CAS  Google Scholar 

  • Ungureanu-Longrois D, Bezie Y, Perret C, Laurent S (1997) Effects of exogenous and endogenous nitric oxide on the contractile function of cultured chick embryo ventricular myocytes. J Mol Cell Cardiol 29:677–687

    PubMed  CAS  Google Scholar 

  • Vaughan Williams EM (1984) A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol 24:129–147

    PubMed  CAS  Google Scholar 

  • Virag L, Iost N, Opincariu M et al (2001) The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc Res 49:790–797

    PubMed  CAS  Google Scholar 

  • Wahler GM, Dollinger SJ (1995) Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol 268:C45–C54

    PubMed  CAS  Google Scholar 

  • Wan S, DeSmet JM, Barvais L, Goldstein M, Vincent JL, LeClerc JL (1996) Myocardium is a major source of proinflammatory cytokines in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 112:806–811

    PubMed  CAS  Google Scholar 

  • Wang J, Wang H, Zhang Y, Gao H, Nattel S, Wang Z (2004) Impairment of HERG K+ channel function by tumor necrosis factor-alpha: role of reactive oxygen species as a mediator. J Biol Chem 279(14):13289–13292

    PubMed  CAS  Google Scholar 

  • Ward M-L, David G, Allen DG (2010) Stretch-activated channels in the heart: contribution to cardiac performance. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues 3. Mechanosensitivity of the heart. Springer, New York, NY, pp 141–167

    Google Scholar 

  • Weisensee D, Bereiter-Hahn J, Schoeppe W, Low-Friedrich I (1993) Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmacol 15:581–587

    PubMed  CAS  Google Scholar 

  • Wong GH, Goeddel DV (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242:941–944

    PubMed  CAS  Google Scholar 

  • Wyeth RP, Temma K, Seifen E, Kennedy RH (1996) Negative inotropic actions of nitric oxide require high doses in rat cardiac muscle. Eur J Physiol 432:678–684

    CAS  Google Scholar 

  • Yamauchi-Takihara K, Kishimoto T (2000) Cytokines and their receptors in cardiovascular diseases – role of gp130 signalling pathway in cardiac myocyte growth and maintenance. Int J Exp Pathol 81:1–16

    PubMed  CAS  Google Scholar 

  • Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-a in the adult mammalian cardiac myocytes. J Clin Invest 92(5):2303–2312

    PubMed  CAS  Google Scholar 

  • Yokoyama T, Sekiguchi K, Tanaka T, Tomaru K, Arai M, Suzuki T, Nagai R (1999) Angiotensin II and mechanical stretch induce production of tumor necrosis factor in cardiac fibroblasts. Am J Physiol 276(6 Pt 2):H1968–H1976

    PubMed  CAS  Google Scholar 

  • Yu X, Kennedy RH, Liu SJ (2003a) JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem 278:16304–16309

    PubMed  CAS  Google Scholar 

  • Yu X-W, Kennedy RH, Liu SJ (2003b) JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem 278:16304–16308

    PubMed  CAS  Google Scholar 

  • Yu X-W, Chen Q, Kennedy RH, Liu SJ (2005a) Inhibition of sarcoplasmic reticular function by chronic interleukin-6 exposure via iNOS in adult ventricular myocytes. J Physiol (London) 566(2):327–340

    CAS  Google Scholar 

  • Yu X, Patterson E, Huang S et al (2005b) Tumor necrosis factor α, rapid ventricular tachyarrhythmias, and infarct size in canine models of myocardial infarction. J Cardiovasc Pharmacol 45:153–159

    PubMed  CAS  Google Scholar 

  • Zeng T, Bett GCL, Sachs F (2000) Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol 278:H548–H557

    CAS  Google Scholar 

  • Zhang WM and Wong TM (1998) Suppression of cAMP by phosphoinositol/Ca2+ pathway in the cardiac kappa-opioid receptor. Am J Physiol 274(1 Pt 1):C82–C87

    Google Scholar 

  • Zhang YH, Youm JB, Sung HK, Lee SH, Ryu SY, Lee S-H, Ho W-K, Earm YE (2000) Stretch-activated and background non-selective cation channels in rat atrial myocytes. J Physiol (London) 523:607–619

    CAS  Google Scholar 

  • Zingman LV, Alekseev AE, Hodgson-Zingman DM, Terzic A (2007) ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J Appl Physiol 103(5):1888–1893

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (grant no. 09-04-01277-a). Department of Fundamental and Applied Physiology (Professor and Chairman – Andre Kamkin) was supported by Ministry of Education and Science of the Russian Federation. The Order of Ministry of Education and Science of the Russian Federation No. 743 from 01 July 2010, Supplement, Event 4.4, the Period of Financing 2010–2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Kamkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kuzmin, V.S. et al. (2012). The Role of Proinflammatory Cytokines in Regulation of Cardiac Bioelectrical Activity: Link to Mechanoelectrical Feedback. In: Kamkin, A., Kiseleva, I. (eds) Mechanical Stretch and Cytokines. Mechanosensitivity in Cells and Tissues, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2004-6_5

Download citation

Publish with us

Policies and ethics