Skip to main content

Abstract

The actinide series of elements encompasses all the 15 chemical elements that have properties attributable to the presence of low-lying 7p, 6d, and 5f orbitals such that their tripositive ions have electronic configurations 7p06d05fn, where n = 0,1,2,…,14. According to this definition, actinium, element 89, is the first member of the actinide series of elements, although it has no 5f electrons in its metallic, gaseous, or ionic forms. As such, its position in group 3 (in current IUPAC terminology) or group 3B (commonly used in some American textbooks) of the periodic table is analogous to that of its homolog, lanthanum, in the lanthanide series. This definition, which includes actinium as the first of the actinides (Seaborg, 1994), parallels the accepted inclusion of lanthanum as the first member of the lanthanide series (Moeller, 1963).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov, A. A., Eliseeva, O. V., and Iofa, B. Z. (1998) Radiochemistry, 40, 302–5; Radiokhimiya, 40, 292–5.

    CAS  Google Scholar 

  • Adloff, J. P. (2000) Radiochim. Acta, 88, 123–7.

    CAS  Google Scholar 

  • Ahmad, I. (2002) Unpublished; personal communication to L. Morss.

    Google Scholar 

  • Allison, M., Moore, R. W., Richardson, A. E., Peterson, D. T., and Voight, A. F. (1954) Nucleonics, 12(5), 32–4.

    CAS  Google Scholar 

  • Andrews, H. C. and Hagemann, F. (1948) in Summary Report for April, May, and June 1948. Chemistry Division, Section C-I, ANL–4176 (eds. W. M. Manning and D. W. Osborne), pp. 13–6.

    Google Scholar 

  • Arblaster, J. W. (1995) Calphad, 19, 373.

    CAS  Google Scholar 

  • Arnoux, M. and Giaon, A. (1969) C. R. Acad. Sci. Paris, 269B, 317–20.

    Google Scholar 

  • Aziz, A. and Lyle, S. J. (1970) J. Inorg. Nucl. Chem., 32, 1925–32.

    CAS  Google Scholar 

  • Backe, H., Dretzke, A., Eberhardt, K., Fritsche, S., Grüning, C., Gwinner, G., Haire, R. G., Huber, G., Kratz, J. V., Kube, G., Kunz, P., Lassen, J., Lauth, W., Passler, G., Repnow, R., Schwalm, D., Schwamb, P., Sewtz, M., Thörle, P., Trautmann, N., and Waldek, A. (2002) J. Nucl. Sci. Technol., (Suppl. 3), 86–9.

    Google Scholar 

  • Baetslé, L. H., Dejonghe, P., Demildt, A. C., De Troyer, A., Droissart, A., and Dumont, G. (1967) Ind. Chim. Belge, 32 (2), 56–60.

    Google Scholar 

  • Baetslé, L. H., Brabers, M. J., Dejonghe, P., Demildt, A. C., De Troyer, A., Droissart, A., and Poskin, M. (1972) Proc. 4th UN Int. Conf. on Peaceful Uses of Atomic Energy. A/CONF.49/P/287, United Nations, New York, pp. 191–203.

    Google Scholar 

  • Baetslé, L. H. (1973) in CEN-SCK Annual Scientific Report, 1972, Belgian Report BLG–481 (eds. R. Billiau, K. Bobin, W. Drent, and L. Hespeels), ch. 6.

    Google Scholar 

  • Baetslé, L. H. and Droissart, A. (1973) Production and Applications of227Ac. Belgian Report BLG 483.

    Google Scholar 

  • Bagnall, K. W. (1957) in Chemistry of the Rare Radioelements: Polonium–Actinium, Butterworths, London, pp. 15–45.

    Google Scholar 

  • Barkatt, A., Barkatt, A., and Sousanpour, W. (1982) Nucl. Technol., 60, 218–27.

    Google Scholar 

  • Bastin-Scoffier, G. (1967) C. R. Acad. Sci. Paris, 265B, 863–5.

    CAS  Google Scholar 

  • Baybarz, R. D., Bohet, J., Buijs, K., Colson, L., Müller, W., Reul, J., Spirlet, J. C., and Toussaint, J. C. (1976) Transplutonium Elements. Proc. 4th Int. Transplutonium Elements Symp., 1975 (eds. W. Müller and R. Lindner), North Holland, Amsterdam, pp. 61–8.

    Google Scholar 

  • Beckmann, W. (1955) Z. Phys., 142, 585–601.

    Google Scholar 

  • Bhatki, K. S. and Adloff, J. P. (1964) Radiochim. Acta, 3, 123–6.

    Google Scholar 

  • Bjornholm, S., Nielsen, B., and Sheline, R. K. (1956) Nature, 178, 1110–1.

    CAS  Google Scholar 

  • Bjornholm, S., Nathan, O., Nielsen, O. B., and Sheline, R. K. (1957) Nucl. Phys., 4, 313–24.

    CAS  Google Scholar 

  • Boll, R. A., Malkemus, D., and Mirzadeh, S. (2004) Appl. Radiat. Isot., 62, 667–9.

    Google Scholar 

  • Bouissières, G. (1960) in Nouveau Traité de Chimie Minérale (ed. P. Pascal), Masson, Paris 7, pp. 1413–46.

    Google Scholar 

  • Bouissières, G., Haïssinsky, M., and Legoux, Y. (1961) Bull. Soc. Chim. Fr., 1028–30.

    Google Scholar 

  • Bouissières, G. and Legoux, Y. (1965) Bull. Soc. Chim. Fr., 386–8.

    Google Scholar 

  • Bratsch, S. G. and Lagowski, J. J. (1986) J. Phys. Chem., 90, 307–12.

    CAS  Google Scholar 

  • Brewer, L. (1971a) J. Opt. Soc. Am., 61, 1101–11.

    Google Scholar 

  • Brewer, L. (1971b) J. Opt. Soc. Am., 61, 1666–82.

    CAS  Google Scholar 

  • Browne, E. (2001) Nucl. Data Sheets, 93, 763.

    CAS  Google Scholar 

  • Bryukher, E. (1963) Sov. Radiochem., 5, 123–5; Radiokhimiya, 5, 142–3.

    Google Scholar 

  • Burns, W. G., Hughes, A. E., Marples, J. A. C., Nelson, R. S., and Stoneham, A. M. (1982) J. Nucl. Mater., 107, 245–70.

    CAS  Google Scholar 

  • Butterfield, D. and Woollatt, R. (1968) J. Inorg. Nucl. Chem., 30, 801–5.

    CAS  Google Scholar 

  • Cabell, M. J. (1959) Can. J. Chem., 37, 1094–1103.

    CAS  Google Scholar 

  • Carlson, T. A., Nestor, C. W. J., Wasserman, N., and McDowell, J. F. (1970) Comprehensive Calculation of Ionization Potentials and Binding Energies for Multiply-Charged Ions, US Report ORNL-4562.

    Google Scholar 

  • Chayawattanangkur, K., Herrmann, G., and Trautmann, N. (1973) J. Inorg. Nucl. Chem., 35, 3061–73.

    CAS  Google Scholar 

  • Clarke, R. W. (1954) Actinium. A Bibliography of Unclassified and Declassified Atomic Energy Project Reports and References to the Published Literature (1906–1953), UK Report AERE Inf/Bib 95.

    Google Scholar 

  • Clarke, R. W. (1958) Abstracts of Atomic Energy Project Unclassified Reports and Published Literature on the Actinide Elements (Papers dated 1957 noted up to February, 1958), Part I. Actinium, Protactinium, Neptunium, UK Report AERE C/R 2472.

    Google Scholar 

  • Dalmasso, J., Herment, M., and Ythier, C. (1974) C. R. Acad. Sci. Paris, 278B, 97–100.

    Google Scholar 

  • Danon, J. (1956) J. Am. Chem. Soc., 78, 5953–4.

    CAS  Google Scholar 

  • Danon, J. (1958) J. Inorg. Nucl. Chem., 5, 237–9.

    CAS  Google Scholar 

  • David, F. (1970a) Rev. Chim. Minér., 7, 1–11.

    CAS  Google Scholar 

  • David, F. (1970b) C. R. Acad. Sci. Paris, 271, 440–2.

    CAS  Google Scholar 

  • David, F. (1970c) Radiochem. Radioanal. Lett., 5, 279–85.

    CAS  Google Scholar 

  • David, F. and Bouissières, G. (1965) Bull. Soc. Chim. Fr., 1001–7.

    Google Scholar 

  • David, F. and Bouissières, G. (1966) in Physico-Chimie du Protactinium, Colloques internationaux du CNRS, Paris, No. 154, pp. 301–6.

    Google Scholar 

  • David, F. and Bouissières, G. (1968) Inorg. Nucl. Chem. Lett., 4, 153–9.

    CAS  Google Scholar 

  • David, F., Samhoun, K., Guillaumont, R., and Edelstein, N. (1978) J. Inorg. Nucl. Chem., 40, 69–74.

    CAS  Google Scholar 

  • Deal, K. A., Davis, I. A., Mirzadeh, S., Kennel, S. J., and Brechbiel, M. W. (1999) J. Med. Chem., 42, 2988–92.

    CAS  Google Scholar 

  • Debierne, A. (1899) C. R. Acad. Sci. Paris, 129, 593–5.

    Google Scholar 

  • Debierne, A. (1900) C. R. Acad. Sci. Paris, 130, 906–8.

    Google Scholar 

  • Debierne, A. (1904) C. R. Acad. Sci. Paris, 139, 538–40.

    Google Scholar 

  • Dempster, A. J. (1935) Nature, 136, 180.

    CAS  Google Scholar 

  • De Troyer, A. and Dejonghe, P. (1966) in Large Scale Production and Applications of Radioisotopes, US Report DP 1066, edn 1, session III, pp. 63–9.

    Google Scholar 

  • Deworm, J. P., Fieuw, G., and Marlein, J. (1979) Ann. Belg. Ver. Stralingsbescherming, 4, 107–28; Chem. Abstr., 93, 83093b.

    CAS  Google Scholar 

  • Duyckaerts, G. and Lejeune, R. (1960) J. Chromatogr., 3, 58–62.

    CAS  Google Scholar 

  • Dzhelepov, B. S., Ivanov, R. B., Mikhailova, M. A., Moskvin, L. N., Nazarenko, O. M., and Rodionov, V. F. (1967) Bull. Acad. Sci. USSR, Phys. Ser., 31, 563–74; Dokl. Akad. Nauk USSR, Fiz. Ser., 31, 568–80.

    Google Scholar 

  • Eichelberger, J. F., Grove, G. R., and Jones, L. V. (1964) Mound Laboratory Progress Report for April, 1964. US Report MLM-1196, pp. 9–11.

    Google Scholar 

  • Eichelberger, J. F., Grove, G. R., and Jones, L. V. (1965) Mound Laboratory Progress Report for November, 1964. US Report MLM-1227.

    Google Scholar 

  • Eliav, E., Shmulyian, S., and Kaldor, U. (1998) J. Chem. Phys., 109, 3954–8.

    CAS  Google Scholar 

  • Engle, P. M. (1950) Preliminary Report on the Actinium Separation Project. US Report MLM-454.

    Google Scholar 

  • Farr, J. D., Giorgi, A. L., Money, R. K., and Bowman, M. G. (1953) The Crystal Structure of Actinium Metal and Actinium Hydride. US Report LA-1545, Los Alamos National Laboratory.

    Google Scholar 

  • Farr, J. D., Giorgi, A. L., Bowman, M. G., and Money, R. K. (1961) J. Inorg. Nucl. Chem., 18, 42–7.

    CAS  Google Scholar 

  • Firestone, R. B. and Shirley, V. S. (eds.) (1996) Table of Isotopes, Wiley, New York.

    Google Scholar 

  • Foster, K. W. (1966) Radioisotopes for Heat Sources. II. Calculations for preparation of Ac-227 by Neutron Irradiation of Ra-226. US Report MLM-1297.

    Google Scholar 

  • Foster, K. W. and Fauble, L. G. (1960) J. Phys. Chem., 64, 958–9.

    CAS  Google Scholar 

  • Fournier, J. M. (1976) J. Phys. Chem. Solids, 37, 235–44.

    CAS  Google Scholar 

  • Fred, M., Tomkins, F. S., and Meggers, W. F. (1955) Phys. Rev., 98, 1514.

    CAS  Google Scholar 

  • Fried, S., Hagemann, F., and Zachariasen, W. H. (1950) J. Am. Chem. Soc., 72, 771–5.

    CAS  Google Scholar 

  • Fukusawa, T., Kawasuji, I., Mitsugashira, T., Sato, A., and Suzuki, S. (1982) Bull. Chem. Soc. Jpn., 55, 726–9.

    Google Scholar 

  • Geerlings, M. W., Kaspersen, F. M., Apostolidis, C., and Van Der Hout, R. (1993) Nucl. Med. Commun., 14, 121–5.

    CAS  Google Scholar 

  • Geibert, W., Rutgers van der Loeff, M. M., Hanfland, C., and Dauelsberg, H.-J. (2002) Earth Planet. Sci. Lett., 198, 147–65.

    CAS  Google Scholar 

  • Giesel, F. (1902) Ber. Dtsch. Chem. Ges., 35, 3608–11.

    CAS  Google Scholar 

  • Giesel, F. (1903) Ber. Dtsch. Chem. Ges., 36, 342–7.

    CAS  Google Scholar 

  • Giesel, F. (1904a) Ber. Dtsch. Chem. Ges., 37, 1696–9.

    CAS  Google Scholar 

  • Giesel, F. (1904b) Ber. Dtsch. Chem. Ges., 37, 3963–6.

    CAS  Google Scholar 

  • Giesel, F. (1905) Ber. Dtsch. Chem. Ges., 38, 775–8.

    CAS  Google Scholar 

  • Gmelin (1942) Handbuch der Anorganischen Chemie, 8. Auflage, System-Nummer 40, Actinium und Isotope (MsTh2), Verlag Chemie, Berlin, (English translation by G. A. Young (1954)). U.S. Report AEC-tr-l734.

    Google Scholar 

  • Gmelin (1981) Handbook of Inorganic Chemistry, Actinium, 8th edn, System Number 40 Suppl. vol. 1, Springer-Verlag, Berlin.

    Google Scholar 

  • Godlewski, T. (1904–5) Nature, 71, 294–5.

    Google Scholar 

  • Godlewski, T. (1905) Phil. Mag., 10, 35–45.

    CAS  Google Scholar 

  • Gomm, P. J. and Eakins, I. D. (1966) The Determination of Actinium-227 in Urine. UK Report AERE-R 4972.

    Google Scholar 

  • Gomm, P. J. and Eakins, J. D. (1968) Analyst, 93, 228–34.

    CAS  Google Scholar 

  • Hagemann, F. (1950) J. Am. Chem. Soc., 72, 768–71.

    CAS  Google Scholar 

  • Hagemann, F. T. (1954) The Chemistry of Actinium, in The Actinide Elements, Nat. Nucl. En. Ser. Div. IV, 14A (eds. G. T. Seaborg and J. J. Katz), McGraw-Hill, New York, pp. 14–44.

    Google Scholar 

  • Hahn, O. (1905) Jahrb. Radioaktivitat Elektronik, 2, 233–66.

    Google Scholar 

  • Hahn, O. (1906a) Ber. Dtsch. Chem. Ges., 39, 1605–7.

    CAS  Google Scholar 

  • Hahn, O. (1906b) Phys. Z., 7, 855–64.

    Google Scholar 

  • Hahn, O. (1907) Ber. Dtsch. Chem. Ges., 40, 1462–9.

    CAS  Google Scholar 

  • Hahn, O. (1908) Phys. Z., 9, 146–8.

    Google Scholar 

  • Hahn, O. and Meitner, L. (1918) Phys. Z., 19, 208–18.

    CAS  Google Scholar 

  • Hahn, O. and Erbacher, O. (1926) Phys. Z., 27, 531–3.

    CAS  Google Scholar 

  • Heath, R. L. (1974) Gamma-ray Spectrum Catalogue. Ge(Li) and Si(Li) Spectrometry. US Report ANCR-1000-2, 3rd edn, vol. 2.

    Google Scholar 

  • Heydemann, A. (1969) in Handbook of Geochemistry (ed. K. H. Wedepohl), Springer-Verlag, New York, vol. 1, pp. 276–412.

    Google Scholar 

  • Hill, H. H. (1972) Chem. Phys. Lett., 16, 114–8.

    CAS  Google Scholar 

  • Holden, N. E. (1977) Isotopic Composition of the Elements and Their Variation in Nature A Preliminary Report, BNL-NCS–50605; (1979) Pure Appl. Chem., 52, 2371.

    Google Scholar 

  • Horen, D. J. (1973) Nucl. Data Sheets, 10, 387–90.

    Google Scholar 

  • Huys, D. and Baetslé, L. H. (1967) Separation of 226Ra, 227Ac and 228Th by Ion Exchange. Belgian Report BLG 422.

    Google Scholar 

  • Hyde, E. K., Perlman, I., and Seaborg, G. T. (1964) The Nuclear Properties of the Heavy Elements, vol. 2, Prentice-Hall, Englewood Cliffs, NJ, pp. 584–6.

    Google Scholar 

  • Ihde, A. J. (1964) The Development of Modern Chemistry, Harper & Row, New York, p. 492.

    Google Scholar 

  • Jordan, K. C. and Blanke, B. C. (1967) in Standardization of Radionuclides, IAEA Proc. Series STI/PUB/139. IAEA, Vienna, pp. 567–78.

    Google Scholar 

  • Kahn, M. (1951) in Radioactivity Applied to Chemistry (eds. A. C. Wahl and N. A. Bonner) Wiley, New York, pp. 403–33.

    Google Scholar 

  • Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1977a) Soviet Radiochem., 19, 31–3; Radiokhimiya, 19, 38–41.

    Google Scholar 

  • Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1977b) Sov. Radiochem., 19, 34–7; Radiokhimiya, 19, 42–5.

    Google Scholar 

  • Karalova, Z. K., Nekrasova, V. V., Pyzhova, Z. I., Rodionova, L. M., and Myasoedov, B. F. (1978a) Radiokhimiya, 20, 845–50.

    CAS  Google Scholar 

  • Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1978b) Sov. Radiochem., 20, 30–3; Radiokhimiya, 20, 42–6.

    Google Scholar 

  • Karalova, Z. K. (1979) Sov. Radiochem., 20, 712–20; Radiokhimiya, 20, 834–44.

    Google Scholar 

  • Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1979a) Sov. Radiochem., 21, 7–10; Radiokhimiya, 21, 11–4.

    Google Scholar 

  • Karalova, Z. K., Rodionova, L. M., Pyzhova, Z. I., and Myasoedov, B. F. (1979b) Sov. Radiochem., 21, 335–9; Radiokhimiya, 21, 394–9.

    Google Scholar 

  • Katz, J. J. and Seaborg, G. T. (1957) in The Chemistry of the Actinide Elements, Methuen, London, pp. 5–15.

    Google Scholar 

  • Keller, C. and Mosdzelewski, K. (1967) Radiochim. Acta, 7, 185–8.

    CAS  Google Scholar 

  • Keller, C. and Schreck, H. (1969) J. Inorg. Nucl. Chem., 31, 1121–32.

    CAS  Google Scholar 

  • Keller, C. (1977) Chem.-Z., 101, 500–7.

    CAS  Google Scholar 

  • Kennel, S. J., Chappell, L. L., Dadachova, K., Brechbiel, M. W., Lankford, T. K., Davis, I. A., Stabin, M., and Mirzadeh, S. (2000) Cancer Biotherapy Radiopharm., 15, 235–44.

    CAS  Google Scholar 

  • Kennel, S. J., Brechbiel, M. W., Milenic, D. E., Schlom, J., and Mirzadeh, S. (2002) Cancer Biotherapy Radiopharm., 17, 219–31.

    CAS  Google Scholar 

  • Khalkin, V. A., Tsupko- Sitnikov, V. V., and Zaitseva, N. G. (1997) Radiochemistry, 39, 481–90; Radiokhimiya, 39, 483–92.

    Google Scholar 

  • Kirby, H. W. (1951) Mound Laboratory Report for General Research. December 11, 1950 to April 2, 1951 (Actinium volume). US Report MLM-558, pp. 13–4.

    Google Scholar 

  • Kirby, H. W. (1952) Tentative Procedure for the Analysis of Mixtures Containing Radium-226, Actinium-227 and Thorium-228. US Report MLM-773.

    Google Scholar 

  • Kirby, H. W., Grove, G. R., and Timma, D. L. (1956) Phys. Rev., 102, 1140–1.

    CAS  Google Scholar 

  • Kirby, H. W. (1967) Prog. Nucl. Energy, Ser. IX, 8(1), 89–139.

    Google Scholar 

  • Kirby, H. W. (1969) J. Inorg. Nucl. Chem., 31, 3375–85.

    CAS  Google Scholar 

  • Kirby, H. W. (1970) J. Inorg. Nucl. Chem., 32, 2823–37.

    CAS  Google Scholar 

  • Kirby, H. W. (1971) Isis, 62, 290–308.

    CAS  Google Scholar 

  • Kirby, H. W. (1974) Geochemistry of the Naturally Occurring Radioactive Series. US Report MLM-2111.

    Google Scholar 

  • Korotkin, Y. S. (1981) Sov. Radiochem., 23, 145–9; Radiokhimiya, 23, 181–5.

    Google Scholar 

  • Kosynkin, V. D., Moiseev, S. D., and Vdovichev, V. S. (1995) J. Alloys Compds., 225, 320–3.

    CAS  Google Scholar 

  • Kraus, K. A. (1979) J. Chromatogr., 178, 163–8.

    Google Scholar 

  • Küchle, W., Dolg, M., and Stoll, H. (1997) J. Phys. Chem. A, 101, 7128–33.

    Google Scholar 

  • Kulikov, E. V., Novgorodov, A. F., and Schumann, D. (1992) J. Radioanal. Nucl. Chem., Lett., 164, 103–8.

    CAS  Google Scholar 

  • Kumok, V. N. (1978) Sov. Radiochem., 20, 590–4; Radiokhimiya, 20, 691–4.

    Google Scholar 

  • Laerdahl, J. K., Faegri, J., Visscher, L., and Saue, T. (1998) J. Chem. Phys., 109, 10806–17.

    CAS  Google Scholar 

  • Lange, R. G. and Mastal, E. F. (1994) A tutorial review of radioisotope power systems in A Critical Review of Space Nuclear Power and Propulsion, 1984–1993 (ed. M. S. El-Genk), American Institute of Physics, New York, pp. 1–20.

    Google Scholar 

  • Lecoin, M., Perey, M., Riou, M., and Teillac, J. (1950) J. Phys. Radium., 11, 227–34.

    CAS  Google Scholar 

  • Maly, J. (1969) J. Inorg. Nucl. Chem., 31, 1007–17.

    CAS  Google Scholar 

  • Makarova, T. P., Sinitsyna, G. S., Stepanov, A. V., Shestakova, I. A., and Shestakov, B. I. (1972) Sov. Radiochem., 14, 555–8; Radiokhimiya, 14, 538–41.

    Google Scholar 

  • Makarova, T. P., Stepanov, A. V., and Shestakov, B. I. (1973) Russ. J. Inorg. Chem., 18, 783–785; Zh. Neorg. Khim., 18, 1845–9.

    Google Scholar 

  • Makarova, T. P., Sinitsyna, G. S., Stepanov, A. V., Gritschenko, I. A., Shestakova, I. A., and Shestakov, B. I. (1974) Chem. Abs., 82, 176644.

    Google Scholar 

  • Maples, C. (1973) Nucl. Data Sheets, 10, 643–71.

    CAS  Google Scholar 

  • Marckwald, W. (1909) Am. Chem. J., 41, 515–57.

    CAS  Google Scholar 

  • Martin, P., Hancock, G. J., Paulka, S., and Akber, R. A. (1995) Appl. Radiat. Isot., 46, 1065–70.

    CAS  Google Scholar 

  • Matthias, B. T., Zachariasen, W. H., Webb, G. W., and Engelhardt, J. J. (1967) Phys. Rev. Lett., 18, 781–4.

    CAS  Google Scholar 

  • McDevitt, M. R., Ma, D., Lai, L. T., Simon, J., Borchardt, P., Frank, R. K., Wu, K., Pellegrini, V., Curcio, M. J., Miederer, M., Bander, N. H., and Scheinberg, D. A. (2001) Science, 294, 1537–40.

    CAS  Google Scholar 

  • Meggers, W. F., Fred, M., and Tomkins, F. S. (1951) J. Opt. Soc. Am., 41, 867–8.

    Google Scholar 

  • Meggers, W. F. (1957) Spectrochim. Acta, 10, 195–200.

    Google Scholar 

  • Meggers, W. F., Fred, M., and Tomkins, F. S. (1957) J. Res. NBS, 58, 297–315.

    CAS  Google Scholar 

  • Mikhailichenko, A. I., Goryacheva, E. G., Aksenova, N. M., and Denisov, A. F. (1982) Sov. Radiochem., 24, 173–5; Radiokhimiya, 24, 207–9.

    Google Scholar 

  • Mikheev, N. B., Kamenskaya, A. N., Rumer, I. A., Kulyukhin, S. A., and Novichenko, V. L. (1994) Radiokhimiya, 36, 160–2; Radiochemistry, 36, 173–5.

    CAS  Google Scholar 

  • Mikheev, N. B., Veleshko, I. E., Kamenskaya, A. N., and Rumer, I. A. (1995) Radio-khimiya, 37, 322–5; Radiochemistry, 37, 297–9.

    CAS  Google Scholar 

  • Mitsugashira, T., Yamana, H., and Suzuki, S. (1977) Bull. Chem. Soc. Jpn, 50, 2913–6.

    CAS  Google Scholar 

  • Moeller, T. and Kremers, H. E. (1945) Chem. Rev., 37, 97–159.

    CAS  Google Scholar 

  • Moeller, T. (1963) The Chemistry of the Lanthanides, Reinhold, New York.

    Google Scholar 

  • Monsecour, M., De Regge, P., and Demildt, A. (1973) Radiochem. Radioanal. Lett., 14, 365–71.

    CAS  Google Scholar 

  • Monsecour, M., De Regge, P., Demildt, A., and Baetslé, L. H. (1974) J. Inorg. Nucl. Chem., 36, 719–23.

    CAS  Google Scholar 

  • Monsecour, M. and De Regge, P. (1975) J. Inorg. Nucl. Chem., 37, 1841–3.

    CAS  Google Scholar 

  • Mosdzelewski, K. (1966) Die Extraktion der Elemente Radium, Actinium, Protactinium, Americium, und Curium mit 8-Hydroxychinolin, Thesis. German Report KFK–432.

    Google Scholar 

  • Moutte, A. and Guillaumont, R. (1969) Rev. Chim. Minér., 6, 603–10.

    CAS  Google Scholar 

  • Nelson, F. (1964) J. Chromatogr., 16, 538–40.

    CAS  Google Scholar 

  • Nikula, T. K., McDevitt, M. R., Finn, R. D., Wu, C., Kozak, R. W., Garmestani, K., Brechbiel, M. W., Curcio, M. J., Pippin, C. G., Tiffany-Jones, L., Geerlings, M. W., Sr., Apostolidis, C., Molinet, R., Geerlings, M. W. Jr., Gansow, O. A., and Scheinberg, D. A. (1999) J. Nucl. Med., 40, 166–76.

    CAS  Google Scholar 

  • Novikova, G. I., Volkova, E. A., Gol'din, L. L., Ziv, D. M., and Tret'yakov, E. F. (1960) Sov. Phys. JETP, 37, 663–9; Zh. Eks. Teor. Fiz., 37, 928–37.

    Google Scholar 

  • Nozaki, Y. (1984) Nature, 310, 486–8.

    CAS  Google Scholar 

  • Nugent, L. J., Baybarz, R. D., Burnett, J. L., and Ryan, J. L. (1973a) J. Phys. Chem., 77, 1528–39.

    CAS  Google Scholar 

  • Nugent, L. J., Burnett, J. L., and Morss, L. R. (1973b) J. Chem. Thermodyn., 5, 665–78.

    CAS  Google Scholar 

  • Nugent, L. J., and Vander Sluis, K. L. (1971) J. Opt. Soc. Am., 61, 1112–5.

    CAS  Google Scholar 

  • Ouadi, A., Loussouarn, A., Remaud, P., Morandeau, L., Apostolidis, C., Musikas, C., Fauve-Chauvet, A., and Gestin, J.-F. (2000) Tetrahedron Lett., 41, 7207–9.

    CAS  Google Scholar 

  • Partington, J. R. (1964) A History of Chemistry, Macmillan, London, vol. 4, p. 938.

    Google Scholar 

  • Peppard, D. F., Mason, G. W., Gray, P. R., and Mech, J. F. (1952) J. Am. Chem. Soc., 74, 6081–4.

    CAS  Google Scholar 

  • Perey, M. (1939a) C. R. Acad. Sci. Paris, 208, 97–9.

    CAS  Google Scholar 

  • Perey, M. (1939b) J. Phys. Radium, 10, 435–8.

    CAS  Google Scholar 

  • Peterson, S. (1949) Natl. Nucl. En. Ser., Div. IV, in The Transuranium Elements (eds. G. Seaborg, J. J. Katz, and W. M. Manning), McGraw-Hill, New York, vol. 14B, pp. 1393–4.

    Google Scholar 

  • Pippin, C. G., Gansow, O. A., Brechbiel, M. W., Koch, L., Molinet, R., van Geel, J., Apostolidis, C., Geerlings, M. W., and Scheinberg, D. A. (1995) in Chemist's Views of Imaging Centers (ed. A. M. Emran), Plenum Press, New York, pp. 315–25.

    Google Scholar 

  • Poskanzer, A. M. and Foreman, B. M. J. (1961) J. Inorg. Nucl. Chem., 16, 323–36.

    CAS  Google Scholar 

  • Rao, C. L. and Gupta, A. R. (1961) J. Chromatogr., 5, 147–52.

    CAS  Google Scholar 

  • Rao, C. L., Shahani, C. I., and Mathew, K. A. (1968) Inorg. Nucl. Chem. Lett., 4, 655–9.

    Google Scholar 

  • Rao, V. K., Shahani, C. J., and Rao, C. L. (1970) Radiochim. Acta, 14, 31–4.

    CAS  Google Scholar 

  • Rutherford, E. (1904) Phil. Trans. R. Soc. Lond., 204A, 169–219.

    Google Scholar 

  • Rutherford, E. (1911) in Encyclopaedia Britannica, 11th edn, vol. 22, pp. 795–802.

    Google Scholar 

  • Salutsky, M. L. (1962) in Comprehensive Analytical Chemistry (eds. C. L. Wilson and D. W. Wilson), Elsevier, Amsterdam, 1C, pp. 492–6.

    Google Scholar 

  • Salutsky, M. L. and Kirby, H. W. (1956) Anal. Chem., 28, 1780–2.

    CAS  Google Scholar 

  • Sani, A. R. (1970) J. Radioanal. Chem., 4, 127–9.

    CAS  Google Scholar 

  • Seaborg, G. T. (1994) Origin of the Actinide Concept, in Handbook on the Chemistry and Physics of the Rare Earths (eds. K. A. Gschneidner, L. Eyring, G. R. Choppin, and G. Lander), North-Holland, Amsterdam, 18, 1–27.

    Google Scholar 

  • Sedlet, J. (1964) Actinium, Astatine, Francium, Polonium, and Protactinium, in Treatise on Analytical Chemistry, Part II, vol. 6 (eds. I. M. Kolthoff, P. J. Elving, and E. B. Sandell), Wiley, New York, pp. 435–610.

    Google Scholar 

  • Sekine, T., Koike, Y., and Sakairi, M. (1967) J. Nucl. Sci. Technol., 4, 308–11.

    CAS  Google Scholar 

  • Sekine, T., Koike, Y., and Hasegawa, Y. (1969) Bull. Chem. Soc. Japan, 42, 432–6.

    CAS  Google Scholar 

  • Sekine, T. and Sakairi, M. (1969) Bull. Chem. Soc. Jpn., 42, 2712–3.

    CAS  Google Scholar 

  • Shahani, C. J., Mathew, K. A., Rao, C. L., and Ramaniah, M. V. (1968) Radiochim. Acta, 10, 165–7.

    CAS  Google Scholar 

  • Shannon, R. D. (1976) Acta Crystallogr., A32, 751–67.

    CAS  Google Scholar 

  • Sinitsyna, G. S., Shestakova, I. A., Shestakov, B. I., Plyushcheva, N. A., and Malyshev, N. A., Belyatskii, A. F. (1977) Tezisy Dokl.-Konf. Anal. Khim. Radioakt., Nauka, Moscow.

    Google Scholar 

  • Sinitsyna, G. S., Shestakova, I. A., Shestakov, B. I., Plyushcheva, N. A., Malyshev, N. A., Belyatskii, A. F., and Tsirlin, V. A. (1979) Sov. Radiochem., 21, 146–51; Radiokhimiya, 21, 172–7.

    Google Scholar 

  • Skarnemark, G. and Skalberg, M. (1985) Int. J. Appl. Radiat. Isot., 36, 439–41.

    CAS  Google Scholar 

  • Soddy, F. and Cranston, J. A. (1918a) Nature, 100, 498–9.

    Google Scholar 

  • Soddy, F. and Cranston, J. A. (1918b) Proc. R. Soc. Lond., 94A, 384–404.

    Google Scholar 

  • Stein, L. and Hohorst, F. A. (1982) Envir. Sci. Technol., 16, 419–22.

    CAS  Google Scholar 

  • Stevenson, P. C. and Nervik, W. E. (1961) The Radiochemistry of the Rare Earths, Scandium, Yttrium and Actinium. US Report NAS-NS 3020. All the volumes of the series “The Radiochemistry of…” can be found on the site http://lib-www.lanl.gov/ radiochemistry/elements.htm

    Google Scholar 

  • Stites, J. G. Jr., Salutsky, M. L., and Stone, B. D. (1955) J. Am. Chem. Soc., 77, 237–40.

    CAS  Google Scholar 

  • St. John, D. S. and Toops, E. C. (1958) Formation of U-232 During the Irradiation of Thorium. US Report DP-279.

    Google Scholar 

  • Sugar, J. (1973) J. Chem. Phys., 59, 788–91.

    CAS  Google Scholar 

  • Sugar, J. (1984) Personal communication to L. R. Morss.

    Google Scholar 

  • Szeglowski, Z. and Kubica, B. (1990) J. Radioanal. Nucl. Chem., 143, 389–95.

    CAS  Google Scholar 

  • Szeglowski, Z. and Kubica, B. (1991) J. Radioanal. Nucl. Chem. Lett., 153, 67–74.

    CAS  Google Scholar 

  • Taylor, S. R. (1964) Geochim. Cosmochim. Acta, 28, 1273–85.

    CAS  Google Scholar 

  • Tomkins, F. S., Fred, M., and Meggers, W. F. (1951) Phys. Rev., 84, 168.

    CAS  Google Scholar 

  • Tousset, J. (1961) Les Spectres Béta de Faible Energie de Que1ques Eléments Lourds, Thesis, Univ. Lyon (F.) French Report NP-13367.

    Google Scholar 

  • Tsoupko-Sitnikov, V., Norseev, Y., and Khalkin, C. (1996) J. Radioanal. Nucl. Chem., 205, 75–83.

    Google Scholar 

  • U.S. Department of Energy (1987) Atomic Power in Space: a History (excerpted in Nuclear News, May 2003, pp. 37–44).

    Google Scholar 

  • U.S. Nuclear Regulatory Commission (2005) U.S. Code of Federal Regulations, 10 CFR 20.

    Google Scholar 

  • Valli, K. (1964) Ann. Acad. Sci. Fenn., Ser. A, VI, no. 165.

    Google Scholar 

  • Vander Sluis, K. L. and Nugent, L. J. (1972) Phys. Rev. A, 6, 86–94.

    Google Scholar 

  • Vander Sluis, K. L. and Nugent, L. J. (1974) J. Opt. Soc. Am., 64, 687–95.

    CAS  Google Scholar 

  • Wagman, D. D., Evans, W. E., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L. (1982) J. Phys. Chem. Ref. Data, 11, Suppl. No. 2.

    Google Scholar 

  • Ward, J. W., Kleinschmidt, P. D., and Peterson, D. E. (1986) in Handbook on the Physics and Chemistry of the Actinides, vol. 4 (eds. A. J. Freeman and C. Keller), ch. 7.

    Google Scholar 

  • Weeks, M. E. and Leicester, H. M. (1968) Discovery of the Elements, Journal of Chemical Education, Easton, PA, p. 794.

    Google Scholar 

  • Weigel, F. and Hauske, H. (1977) J. Less-Common Met., 55, 243–7.

    CAS  Google Scholar 

  • Wlodzimirska, B., Bartoś, B., and Bilewicz, A. (2003) Radiochim. Acta, 91, 553–6.

    CAS  Google Scholar 

  • Xu, J., He, P., and Zhu, Y. (1983) He Huaxue Yu Fangshe Huaxue, 5, 202–10; Chem. Abstr., 99, 192397.

    Google Scholar 

  • Yamana, H., Mitsugashira, T., and Shiokawa, Y. (1983) J. Radioanal. Nucl. Chem., 76, 19–26.

    CAS  Google Scholar 

  • Zachariasen, W. H. (1961) in The Metal Plutonium (eds. W. N. Miner and A. S. Coffinberry), University of Chicago Press, Chicago, pp. 99–107.

    Google Scholar 

  • Zachariasen, W. H. (1973) J. Inorg. Nucl. Chem., 35, 3487–97.

    CAS  Google Scholar 

  • Ziv, D. M. and Shestakova, I. A. (1965a) Sov. Radiochem., 7, 168–75; Radiokhimiya, 7, 166–75.

    Google Scholar 

  • Ziv, D. M. and Shestakova, I. A. (1965b) Sov. Radiochem., 7, 176–86; Radiokhimiya, 7, 175–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Kirby, H., Morss, L. (2010). Actinium. In: Morss, L.R., Edelstein, N.M., Fuger, J. (eds) The Chemistry of the Actinide and Transactinide Elements. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0211-0_2

Download citation

Publish with us

Policies and ethics