Skip to main content

Shaping Vent and Seep Communities: Habitat Provision and Modification by Foundation Species

  • Chapter
  • First Online:
The Vent and Seep Biota

Part of the book series: Topics in Geobiology ((TGBI,volume 33))

Abstract

Ecologists strive to identify mechanisms that determine the structure or composition of biological communities. Until the past decade, the role of positive species interactions in regulating community structure had been relatively overlooked, compared to negative species interactions, such as competition and predation. While mutualism and commensalism have long been recognized as critically important in pairwise species interactions, the impact of facilitation and habitat provision or modification on community dynamics and species diversity has received increased attention only more recently (Bertness and Callaway 1994; Hacker and Gaines 1997). Part of the reason for the oversight is that positive species interactions are more prevalent in habitats with harsh environmental ­conditions (Bertness et al. 1999; Crain and Bertness 2006) and are more often detectable at regional scales (Bertness and Leonard 1997; van de Koppel et al. 2006). Communities may be structured by facilitation cascades, where foundation species create the habitat or modify the environment that facilitates the settlement of other species, which subsequently interact with one another (Bruno 2000; Altieri et al 2007). Foundation species are large or spatially dominant organisms that create or provide habitats, colonized by other species (Bruno and Bertness 2001; for review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294

    Google Scholar 

  • Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via facilitation cascade in intertidal cordgrass bed communities. Am Nat 160(2):195–206

    Google Scholar 

  • Andersen AC, Flores JF, Hourdez S (2006) Comparative branchial plume biometry between two extreme ecotypes of the hydrothermal vent tubeworm Ridgeia piscesae. Can J Zool 84(12):1810–1822

    Google Scholar 

  • Arp AJ, Childress JJ, Fisher CR (1984) Metabolic and blood-gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica. Physiol Zool 57(6):648–662

    Google Scholar 

  • Bachraty C, Legendre P, Desbruyères D (2009) Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale. Deep Sea Res I 56(8):1371–1378

    Google Scholar 

  • Barry JP, Kochevar RE, Baxter CH (1997) The influence of pore-water chemistry and physiology on the distribution of vesicomyid clams at cold seeps in Monterey Bay: Implications for patterns of chemosynthetic community organization. Limnol Oceanogr 42(2):318–328

    Google Scholar 

  • Bates AE, Tunnicliffe V, Lee RW (2005) Role of thermal conditions in habitat selection by hydrothermal vent gastropods. Mar Ecol Prog Ser 305:1–15

    Google Scholar 

  • Becker EL, Cordes EE, Macko SA, Fisher CR (2009) Importance of seep primary production to Lophelia pertusa and associated fauna in the Gulf of Mexico. Deep Sea Res I 56(5):786–800

    Google Scholar 

  • Bergquist DC, Williams FM, Fisher CR (2000) Longevity record for deep-sea invertebrate – the growth rate of a marine tubeworm is tailored to different environments. Nature 403:4999–5000

    Google Scholar 

  • Bergquist DC, Urcuyo IA, Fisher CR (2002) Establishment and persistence of seep vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico. Mar Ecol Prog Ser 241:89–98

    Google Scholar 

  • Bergquist DC, Andras JP, McNelis T, Howlett S, van Horn MJ, Fisher CR (2003a) Succession in Gulf of Mexico cold seep vestimentiferan aggregations: The importance of spatial variability. Mar Ecol 24(1):31–44

    Google Scholar 

  • Bergquist DC, Ward T, Cordes EE, NcNelis T, Howlett S, Kosoff R, Hourdez S, Carney R, Fisher CR (2003b) Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps. J Exp Mar Biol Ecol 289(2):197–222

    Google Scholar 

  • Bergquist DC, Fleckenstein C, Knisel J, Begley B, MacDonald IR, Fisher CR (2005) Variations in seep mussel bed communities along physical and chemical environmental gradients. Mar Ecol Prog Ser 293:99–108

    Google Scholar 

  • Bergquist DC, Eckner JT, Urcuyo IA, Cordes EE, Hourdez S, Macko SA, Fisher CR (2007) Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar Ecol Prog Ser 330:49–65

    Google Scholar 

  • Berkenbusch K, Rowden AA (2007) An examination of the spatial and temporal generality of the influence of ecosystem engineers on the composition of associated assemblages. Aquat Ecol 41:129–147

    Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9(5):191–193

    Google Scholar 

  • Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989

    Google Scholar 

  • Bertness MD, Leonard GH, Levine JM, Schmidt PR, Ingraham AO (1999) Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80(8):2711–2726

    Google Scholar 

  • Boetius A, Kavenschlag K, Schubert CJ, Rickert D, Widdel F, Gleseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Google Scholar 

  • Boutet I, Jollivet D, Shillito B, Moraga D, Tanguy A (2009) Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genomics 10:222–239

    Google Scholar 

  • Bruno JF (2000) Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora. Ecology 81(5):1179–1192

    Google Scholar 

  • Bruno JF, Bertness MD (2001) Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, MA

    Google Scholar 

  • Bustamante RH, Branch GM, Eekhout S, Robertson B, Zoutendyk P, Schleyer M, Dye A, Hanekom N, Keats D, Jurd M, McQuaid C (1995) Gradients of intertidal primary productivity around the coast of South Africa and their relationships with consumer biomass. Oecologia 102:189–201

    Google Scholar 

  • Carney RS (1994) Consideration of the oasis analogy for chemosynthetic communities at Gulf of Mexico hydrocarbon vents. Geo Mar Lett 14:149–159

    Google Scholar 

  • Carney SL, Peoples JR, Fisher CR, Schaeffer SW (2002) AFLP analyses of genomic DNA reveal no differentiation between two phenotypes of the vestimentiferan tubeworm Ridgeia piscesae. Cah Biol Mar 43(3–4):363–366

    Google Scholar 

  • Carney SL, Flores JF, Orobona KM, Butterfield DA, Fisher CR, Schaeffer SW (2007) Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae. Comp Biochem Phys B 146(3):326–337

    Google Scholar 

  • Chevaldonné P, Jollivet D, Feldman RA, Desbruyères D, Lutz RA, Vrijenhoek RC (1998) Commensal scale-worms of the genus Branchipolynoe (Polychaeta: Polynoidae) at deep-sea hydrothermal vents and cold seeps. Cah Biol Mar 39(3–4):347–350

    Google Scholar 

  • Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441

    Google Scholar 

  • Colaço A, Deshairs F, Desbruyères D (2002) Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep Sea Res I 49(2):395–412

    Google Scholar 

  • Colaço A, Bustamente P, Fouquet Y, Sarradin PM, Serrao-Santos R (2006) Bioaccumulation of Hg, Cu, Zn, in the Azores triple junction hydrothermal vent fields food web. Chemosphere 65:2260–2267

    Google Scholar 

  • Company R, Serafim A, Cosson R, Camus L, Shillito B, Fiala-Médioni A, Bebianno MJ (2006) The effect of cadmium on antioxidant responses and the susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus azoricus. Mar Biol 148(4):817–825

    Google Scholar 

  • Company R, Serafim A, Cosson RP, Fiala-Médioni A, Camus L, Colaço A, Serrao-Santos R, Benianno MJ (2008) Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent. Sci Tot Environ 289:407–417

    Google Scholar 

  • Cordes EE, Bergquist DC, Shea K, Fisher CR (2003) Hydrogen sulphide demand of long-lived vestimentiferan tube worm aggregations modifies the chemical environment at deep-sea hydrocarbon seeps. Ecol Lett 6(3):212–219

    Google Scholar 

  • Cordes EE, Hourdez S, Predmore BL, Redding ML, Fisher CR (2005) Succession of hydrocarbon seep communities associated with the long-lived foundation species Lamellibrachia luymesi. Mar Ecol Prog Ser 305:17–29

    Google Scholar 

  • Cordes EE, Carney SL, Hourdez S, Carney RS, Brooks JM, Fisher CR (2007) Cold seeps of the deep Gulf of Mexico: community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep Sea Res I 54:637–653

    Google Scholar 

  • Cordes EE, McGinley MP, Podowski EL, Becker EL, Lessard-Pilon S, Viada ST, Fisher CR (2008) Coral communities of the deep Gulf of Mexico. Deep Sea Res I 55:777–787

    Google Scholar 

  • Cordes EE, Bergquist DC, Fisher CR (2009) Macro-ecology of Gulf of Mexico cold seeps. Annu Rev Mar Sci 1:143–168

    Google Scholar 

  • Cosson RP, Thiébaut E, Company R, Castrec-Rouelle M, Colaço A, Martins I, Sarradin P-M, Bebianno MJ (2008) Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus. Mar Environ Res 65:405–415

    Google Scholar 

  • Cottin D, Ravaux J, Léger N, Halary S, Toullec J-Y, Sarradin P-M, Gaill F, Shillito B (2008) Thermal biology of the deep-sea vent annelid Paralvinella grasslei: in vivo studies. J Exp Biol 211:2196–2204

    Google Scholar 

  • Crain CM, Bertness MD (2006) Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56(3):211–218

    Google Scholar 

  • Cravo A, Foster P, Almeida C, Company R, Cosson RP, Bebianno MJ (2007) Metals in the shell of Bathymodiolus azoricus from a hydrothermal vent site on the Mid-Atlantic Ridge. Environ Intl 33:609–615

    Google Scholar 

  • Crooks JA (1998) Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar Ecol Prog Ser 162:137–152

    Google Scholar 

  • Cuvelier D, Sarrazin J, Colaço A, Copley J, Desbruyères D, Glover AG, Tyler P, Santos RS (2009) Distribution and spatial variation of hydrothermal faunal assemblages at Lucky Strike (Mid-Atlantic Ridge) revealed by high-resolution video image analysis. Deep Sea Res I 56:2026–2040

    Google Scholar 

  • Dando PR, Southward AJ, Southward EC, Lamont P, Harvey R (2008) Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic. Deep Sea Res I 55:966–996

    Google Scholar 

  • Dattagupta S, Miles LL, Barnabei MS, Fisher CR (2006) The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply. J Exp Biol 209(19):3795–3805

    Google Scholar 

  • Dattagupta S, Arthur MA, Fisher CR (2008) Modification of sediment geochemistry by the hydrocarbon seep tubeworm Lamellibrachia luymesi: A combined empirical and modeling approach. Geochem Cosmochem Acta 72(9):2298–2315

    Google Scholar 

  • Desbruyères D, Chevaldonné P, Alayse A-M, Jollivet D, Lallier FH, Jouin-Toulmond C, Zal F, Sarradin P-M, Cosson R, Caprais J-C, Arndt C, O’Brien J, Guezennec J, Hourdez S, Riso R, Gaill F, Laubier L, Toulmond A (1998) Biology and ecology of the “Pompeii worm” (Alvinella pompejana Desbruyères and Laubier) a normal dweller of an extreme deep-sea environment: A synthesis of current knowledge and recent developments. Deep Sea Res II 45:383–422

    Google Scholar 

  • Desbruyères D, Almeida A, Biscoito M, Comtet T, Khripounoff A, Le Bris N, Sarradin P-M, Segonzac M (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440:201–216

    Google Scholar 

  • Dreyer JC, Knick KE, Flickinger WB, Van Dover CL (2005) Development of macrofaunal community structure in mussel beds on the northern East Pacific Rise. Mar Ecol Prog Ser 302:121–134

    Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Google Scholar 

  • Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, DeChaine E, Cavanaugh CM, Dublier N (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8(8):1441–1447

    Google Scholar 

  • Ergorov AV, Crane K, Vogt PR, Rozhkov AN (1999) Gas hydrates that outcrop the sea floor: stability models. Geo Mar Lett 19:89–96

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436

    Google Scholar 

  • Fisher CR, Childress JJ, Arp JJ, Brooks JM, Distel D, Favuzzi JA, Felbeck H, Hessler RR, Johnson KS, Kennicutt MC, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988a) Microhabitat variation in the hydrothermal vent mussel Bathymodiolus thermophilus, at Rose Garden vent on the Galapagos rift. Deep Sea Res A 35:1769–1792

    Google Scholar 

  • Fisher CR, Childress JJ, Arp JJ, Brooks JM, Distel D, Dugan JA, Felbeck H, Fritz LW, Hessler RR, Johnson CR, Kennicut MC II, Lutz RA, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988b) Variation in the hydrothermal vent clam, Calyptogena magnifica, at the Rose Garden vent on the Galapagos spreading center. Deep Sea Res A 35:1811–1831

    Google Scholar 

  • Fisher CR, Childress JJ, Macko SA, Brooks JM (1994) Nutritional interactions in Galapagos Rift hydrothermal vent communities: inferences from stable carbon and nitrogen isotope analyses. Mar Ecol Prog Ser 103:45–55

    Google Scholar 

  • Fornari DJ, Shank TM, Von Damm KL, Gregg TKP, Lilley M, Levai G, Bray A, Haymon RM, Perfit MR, Lutz RA (1998) Time-series temperature measurements at high-temperature hydrothermal vents, East Pacific Rise (9°49-51’N): evidence for monitoring a crustal cracking event. Earth Planet Sci Lett 160(3–4):419–431

    Google Scholar 

  • Gebruk AV, Chevaldonné P, Shank TM, Lutz RA, Vrijenhoek RC (2000) Deep-sea hydrothermal vent communities of the Logatchev area (14°45’N, Mid-Atlantic Ridge): diverse biotopes and high biomass. J Mar Biol Assoc UK 80(3):383–393

    Google Scholar 

  • Girguis PR, Lee RW (2006) Thermal preference and tolerance of alvinellids. Science 312:231

    Google Scholar 

  • Govenar B, Fisher CR (2007) Experimental evidence of habitat provision by aggregations of Riftia pachyptila at hydrothermal vents on the East Pacific Rise. Mar Ecol 28:3–14

    Google Scholar 

  • Govenar B, Bergquist DC, Urcuyo IA, Eckner JT, Fisher CR (2002) Three Ridgeia piscesae assemblages from a single Juan de Fuca Ridge sulphide edifice: structurally different and functionally similar. Cah Mar Biol 43(3–4):247–252

    Google Scholar 

  • Govenar B, Freeman M, Bergquist DC, Johnson GA, Fisher CR (2004) Composition of a one-year-old Riftia pachyptila community following a clearance experiment: Insight to succession patterns at deep-sea hydrothermal vents. Biol Bull 207(3):177–182

    Google Scholar 

  • Govenar B, Le Bris N, Gollner S, Glanville J, Aperghis AB, Hourdez S, Fisher CR (2005) Epifaunal community structure associated with Riftia pachyptila in chemically different hydrothermal vent habitats. Mar Ecol Prog Ser 305:67–77

    Google Scholar 

  • Grassle JF, Maciolek NJ (1992) Deep-sea species richness-regional and local diversity estimates from quantitative bottom samples. Am Nat 139(2):313–341

    Google Scholar 

  • Grieshaber MK, Volkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60:33–53

    Google Scholar 

  • Hacker SD, Gaines SD (1997) Some implications of direct positive interactions for community diversity. Ecology 78(7):1990–2003

    Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Google Scholar 

  • Haymon RM, Fornari DJ, Edwards MH, Carbotte S, Wright D, Macdonald KC (1991) Hydrothermal vent distribution along the East Pacific Rise crest (9°09’-54’N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planet Sci Lett 104:513–534

    Google Scholar 

  • Haymon RM, Fornari DJ, Von Damm KL, Lilley MD, Perfit MR, Edmond JM, Shanks WC, Lutz RA, Grebmeier JM, Carbotte S, Wright D, McLaughlin E, Smith M, Beedle N, Olson E (1993) Volcanic eruption of the midocean ridge along the East Pacific Rise crest at 9°45-52’N: Direct submersible observations of sea-floor phenomena associated with an eruption event in April, 1991. Earth Planet Sci Lett 119(1–2):85–101

    Google Scholar 

  • Hessler RR, Smithey WM Jr (1983) The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In: Rona PA, Bostrom K, Laubier L, Smith KL Jr (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York

    Google Scholar 

  • Hessler RR, Smithey WM, Boudrias MA, Keller CH, Lutz RA, Childress JJ (1988) Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift; eastern tropical Pacific). Deep Sea Res A 35:1681–1710

    Google Scholar 

  • Hunt HL, Metaxas A, Jennings RM, Halanych KM, Mullineaux LS (2004) Testing biological control of colonization by vestimentiferan tubeworms at deep-sea hydrothermal vents (East Pacific Rise, 9°50’N). Deep Sea Res I 51(2):225–234

    Google Scholar 

  • Jannasch HW, Wirsen CO (1979) Chemosynthetic primary production at East Pacific Rise seafloor spreading centers. Biosci 29(10):592–598

    Google Scholar 

  • Johnson KS, Childress JJ, Beehler CL (1988) Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment. Deep Sea Res A 35:1711–1721

    Google Scholar 

  • Johnson KS, Childress JJ, Beehler CL, Sakamoto CM (1994) Biogeochemistry of hydrothermal vent mussel communities: the deep-sea analogue to the intertidal zone. Deep Sea Res I 41:993–1011

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78(7):1946–1957

    Google Scholar 

  • Julian D, Gaill F, Wood E, Arp AJ, Fisher CR (1999) Roots as a site of hydrogen sulphide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia sp. J Exp Biol 202:2245–2257

    Google Scholar 

  • Juniper SK, Tunnicliffe V (1997) Crustal accretion and the hot vent ecosystem. Phil Soc Roy Soc Lond A 355:459–474

    Google Scholar 

  • Juniper SK, Johnasson IR, Tunnicliffe V, Southward AJ (1992) Influence of a tube-building polychaete on hydrothermal chimney mineralization. Geology 20(10):895–898

    Google Scholar 

  • Kadar E, Costa V, Martins I, Serrao-Santos R, Powell JJ (2005a) Enrichment in trace metals (Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb, and Hg) of macro-invertebrate habitats at hydrothermal vents along the Mid-Atlantic Ridge. Hydrobiologia 548:191–205

    Google Scholar 

  • Kadar E, Costa V, Segonzac M (2005b) Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Sci Tot Environ 373:464–472

    Google Scholar 

  • Kadar E, Costa V, Santos RS (2006) Distribution of micro-essential (Fe, Cu, Zn) and toxic (Hg) metals in tissues of two nutritionally distinct hydrothermal shrimps. Sci Tot Environ 358:143–150

    Google Scholar 

  • Karl DM (1995) Ecology of free-living, hydrothermal vent microbial communities. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kelly N, Metaxas A (2007) Diversity of invertebrate colonists on simple and complex substrates at hydrothermal vents on the Juan de Fuca Ridge. Aquat Biol 3:271–281

    Google Scholar 

  • Le Bris N, Sarradin PM, Caprias JC (2003) Contrasted sulphide chemistries in the environment of 13° N EPR vent fauna. Deep Sea Res I 50:737–747

    Google Scholar 

  • Le Bris N, Zbinden M, Gaill F (2005) Processes controlling the physico-chemcial micro-environments associated with Pompeii worms. Deep-Sea Res I 52:1071–1083

    Google Scholar 

  • Le Bris N, Govenar B, Le Gall C, Fisher CR (2006a) Variability of physico-chemical conditions in 9°50’N EPR diffuse flow vent habitats. Mar Chem 98:167–182

    Google Scholar 

  • Le Bris N, Rodier P, Sarradin P-M, Le Gall C (2006b) Is temperature a good proxy for sulfide in hydrothermal vent habitats? Cah Biol Mar 47(4):465–470

    Google Scholar 

  • Levesque C, Juniper SK, Marcus J (2003) Food resource partitioning and competition among alvinellid polychaetes of Juan de Fuca Ridge hydrothermal vents. Mar Ecol Prog Ser 246:173–182

    Google Scholar 

  • Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry, and microbes. Oceanogr Mar Biol 43:1–46

    Google Scholar 

  • Levin LA, Mendoza GF (2007) Community structure and nutrition of deep methane-seep macrobenthos from the North Pacific (Aleutian) Margin and the Gulf of Mexico (Florida Escarpment). Mar Ecol 28:131–151

    Google Scholar 

  • Levin LA, James DW, Martin CM, Rathburn AE, Harris LH, Michener RH (2000) Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf. Mar Ecol Prog Ser 208:21–39

    Google Scholar 

  • Levin LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D (2001) Environmental influences on regional deep-sea species diversity. Annu Rev Ecol Syst 32:51–93

    Google Scholar 

  • Levin LA, Mendoza GF, Konotchick T, Lee R (2009) Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep Sea Res II 56:1632–1648

    Google Scholar 

  • Luther GW III, Rozan TF, Talliefert M, Nuzzio DB, Di Meo CA, Shank TM, Lutz RA, Cary SC (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816

    Google Scholar 

  • MacAvoy SE, Carney RS, Fisher CR, Macko SA (2002) Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico. Mar Ecol Prog Ser 225:65–78

    Google Scholar 

  • MacAvoy SE, Morgan E, Carney RS, Macko SA (2008) Chemoautotrophic production incorporated by heterotrophs in Gulf of Mexico hydrocarbon seeps: An examination of mobile benthic predators and seep residents. J Shell Res 27(1):153–161

    Google Scholar 

  • MacDonald IR, Boland GS, Baker JS, Brooks JM, Kennicutt MC, Bidigare RR (1989) Gulf of Mexico hydrocarbon seep communities, 2: Spatial distribution of seep organisms and hydrocarbons at Bush Hill. Mar Biol 101(2):235–247

    Google Scholar 

  • Machicote M, Branch LC, Villarreal D (2004) Burrowing owls and burrowing mammals: are ecosystem engineers interchangeable as facilitators? Oikos 106:527–535

    Google Scholar 

  • Matabos M, Le Bris N, Pendlebury S, Thiébaut E (2008) Role of physico-chemical environment on gastropod assemblages at hydrothermal vents on the East Pacific Rise (13°N/ EPR). J Mar Biol Assoc UK 88(5):995–1008

    Google Scholar 

  • McArthur RA, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochem Cosmochim Acta 61:4375–4391

    Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185

    Google Scholar 

  • McKinness ZP, McMullin ER, Fisher CR, Cavanaugh CM (2005) A new bathymodioline mussel symbiosis at the Juan de Fuca hydrothermal vents. Mar Biol 348:109–116

    Google Scholar 

  • McMullin ER, Hourdez S, Schaeffer SW, Fisher CR (2003) Phylogeny and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis 34(1):1–41

    Google Scholar 

  • Menge BA, Sutherland JP (1976) Species diversity gradients, synthesis of the roles of predation, competition, and temporal heterogeneity. Am Nat 110:351–369

    Google Scholar 

  • Micheli F, Peterson CH, Mullineaux LS, Fisher CR, Mills SW, Sancho G, Johnson GA, Lenihan HS (2002) Predation structures communities at deep-sea hydrothermal vents. Ecol Mongr 72:365–382

    Google Scholar 

  • Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conversation. Bioscience 43(4):219–224

    Google Scholar 

  • Mills SW, Mullineaux LS, Tyler PA (2007) Habitat associations in gastropod species at East Pacific Rise hydrothermal vents. Biol Bull 212:185–194

    Google Scholar 

  • Mullineaux LS, Fisher CR, Peterson CH, Schaeffer SW (2000) Tubeworm succession at hydrothermal vents: use of biogenic cues to reduce habitat selection error? Oecologia 123:275–284

    Google Scholar 

  • Mullineaux LS, Peterson CH, Micheli F, Mills SW (2003) Successional mechanism varies along a gradient in hydrothermal fluid flux at deep-sea vents. Ecol Mongr 73:523–542

    Google Scholar 

  • Nees HA, Moore TS, Mullaugh KM, Holyoke RR, Janzen CP, Ma S, Metzger E, Waite TJ, Yucel M, Lutz RA, Shank TM, Vetriani C, Nuzzio DB, Luther GW III (2008) Hydrothermal vent mussel habitat chemistry, pre- and post-eruption at 9°50’N on the East Pacific Rise. J Shell Res 27(1):169–175

    Google Scholar 

  • Nix ER, Fisher CR, Vodenichar J, Scott KM (1995) Physiological ecology of a mussel with methanotrophic endosymbionts a three hydrocarbon seep sites in the Gulf of Mexico. Mar Biol 122(4):605–617

    Google Scholar 

  • Olu-le Roy K, Sibuet M, Fiala-Médioni A, Gofas S, Salas C, Mariotti A, Foucher J-P, Woodside J (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res I 51:1915–1936

    Google Scholar 

  • Olu-le Roy K, Caprais J-C, Fifis A, Fabri M-C, Galéron J, Budzinsky H, Le Ménach K, Khripounoff A, Ondréas H, Sibuet M (2007) Cold-seep assemblages on a giant pockmark off West Africa: spatial patterns and environmental control. Mar Ecol 28:115–130

    Google Scholar 

  • Ott J, Bright M, Bulgheresi S (2005) Marine microbial thiotrophic ectosymbioses. Ocean Mar Biol 42:95–118

    Google Scholar 

  • Paine RT (1974) Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principle competitor. Oecologia 15:93–120

    Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46(8):609–620

    Google Scholar 

  • Renninger GH, Kass L, Gleeson RA, Van Dover CL, Battelle B-A, Jinks RN, Herzog ED, Chamberlain SC (1995) Sulfide as a chemical stimulus for deep-sea hydrothermal vent shrimp. Biol Bull 189:69–76

    Google Scholar 

  • Rex MA, Stuart CT, Hessler RR, Allen JA, Sanders HL, Wilson GDF (1993) Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636–639

    Google Scholar 

  • Ricklefs RE (1987) Community diversity: Relative roles of local and regional processes. Science 235:167–171

    Google Scholar 

  • Robigou V, Delaney JR, Stakes DS (1993) Large massive sulphide deposits in a newly discovered active hydrothermal system, the High Rise Field, Endeavour Segment, Juan de Fuca Ridge. Geophys Res Lett 20(17):1887–1890

    Google Scholar 

  • Robinson CA, Bernhard JM, Levin LA, Mendoza GF, Blanks JK (2004) Surficial hydrocarbon seep infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and the Gulf of Mexico (690–2240 m). PSZN Mar Ecol 25(4):313–336

    Google Scholar 

  • Rona PA, Thompson G, Mottl MJ, Karson JA, Jenkins WJ, Graham D, Mallette M, Von Damm K, Edmond JM (1984) Hydrothermal activity at the Trans-Atlantic Geotraverse Hydrothermal Field, Mid-Atlantic Ridge crest at 26°N. J Geophys Res 89:1365–1377

    Google Scholar 

  • Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138

    Google Scholar 

  • Sancho G, Fisher CR, Mills SW, Micheli F, Johnson GA, Lenihan HS, Peterson CH, Mullineaux LS (2005) Selective predation by the zoarcid fish Thermarces cerberus at hydrothermal vents. Deep Sea Res I 52:837–844

    Google Scholar 

  • Sarradin P-M, Lannuzel D, Waeles M, Crassous P, Le Bris N, Caprais JC, Fouqet Y, Fabri MC, Riso R (2007) Dissolved and particulate metals (Fe, Zn, Cu, Cd, Pb) in two habitats from an active hydrothermal field on the EPR at 13°N. Sci Tot Environ 392:119–129

    Google Scholar 

  • Sarrazin J, Robigou V, Juniper SK, Delaney JR (1997) Biological and geological dynamics over four years on a high-temperature sulfide structure at the Juan de Fuca Ridge hydrothermal observatory. Mar Ecol Prog Ser 153:5–24

    Google Scholar 

  • Sarrazin J, Juniper SK, Massoth G, Legendre P (1999) Physical and chemical factors influencing species distributions on hydrothermal sulfide edifices of the Juan de Fuca Ridge, northeast Pacific. Mar Ecol Prog Ser 190:89–112

    Google Scholar 

  • Scheirer DS, Shank TM, Fornari DJ (2006) Temperature variations at diffuse and focused flow hydrothermal vent sites along the northern East Pacific Rise. Geochem Geophys Geosyst 7:Q03002

    Google Scholar 

  • Schmidt C, Vuillemin R, Le Gall C, Gaill F, Le Bris N (2008) Geochemical energy sources for microbial primary production in the environment of hydrothermal vent shrimps. Mar Chem 108:18–31

    Google Scholar 

  • Shank TM, Fornari DJ, Von Damm KL, Lilley MD, Haymon RM, Lutz RA (1998) Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50’ N, East Pacific Rise). Deep Sea Res II 45:465–515

    Google Scholar 

  • Shank TM, Govenar B, Buckman K, Fornari DJ, Soule SA, Luther GW III, Lutz RA, Vetriani C, Tolstoy M, Cowen JP, Von Damm KL (2006) Initial biological, chemical, and geological observations after the 2005-6 volcanic eruption on the East Pacific Rise. Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract V13C–04

    Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II 45(1–3):517–567

    Google Scholar 

  • Smith EB, Scott KM, Nix ER, Korte C, Fisher CR (2000) Growth and condition of seep mussels (Bathymodiolus childressi) at a Gulf of Mexico Brine Pool. Ecology 81(9):2392–2403

    Google Scholar 

  • Sommer S, Linke P, Pfannkuche O, Schleicher T, Schneider von Deimling J, Reitz A, Haeckle M, Flogel S, Hensen C (2009) Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Mar Ecol Prog Ser 382:69–86

    Google Scholar 

  • Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosynthetic endosymbioses: adaptations to oxic–anoxic interfaces. Trends Microbiol 13(9):439–448

    Google Scholar 

  • Tolstoy M, Cowen JP, Baker ET, Fornari DJ, Rubin KH, Shank TM, Waldhauser F, Bohnenstiehl DR, Forsyth DW, Holmes RC, Love B, Perfit MR, Weekly RT, Soule SA, Glazer B (2006) A sea-floor spreading event captured by seismometers. Science 314:1920–1922

    Google Scholar 

  • Tsurumi M, Tunniclffe V (2001) Characteristics of a hydrothermal vent assemblage on a volcanically active segment of Juan de Fuca Ridge, northeast Pacific. Can J Fish Aquat Sci 58(3):530–542

    Google Scholar 

  • Tsurumi M, Tunniclffe V (2003) Tubeworm-associated communities at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific. Deep Sea Res I 50(5):611–629

    Google Scholar 

  • Tunnicliffe V (1988) Biogeography and evolution of hydrothermal-vent fauna in the eastern Pacific Ocean. Proc R Soc Lond B 233:347–366

    Google Scholar 

  • Tunnicliffe V (1991) The biology of hydrothermal vents – ecology and evolution. Oceanogr Mar Biol 29:319–407

    Google Scholar 

  • Tunnicliffe V (1992) The nature and origin of the modern hydrothermal vent fauna. Palaios 7:338–350

    Google Scholar 

  • Tunnicliffe V, Fowler CMR, McArthur AG (1996) Plate tectonic history and hot vent biogeography. In: Rona PA, MacLeod CJ, Tyler PA, Walker CL (eds) Tectonic, magmatic, hydrothermal and biological segmentation of Mid-Ocean Ridges. Geological Society Special Publication No. 118. Geological Society of London

    Google Scholar 

  • Tunnicliffe V, Embley RW, Holden JF, Butterfield DA, Massoth GJ, Juniper SK (1997) Biological colonization of new hydrothermal vents following an eruption on Juan de Fuca Ridge. Deep Sea Res I 44(9–10):1627–1644

    Google Scholar 

  • Tunnicliffe V, McArthur AG, McHugh D (1998) A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv Mar Biol 34:353–442

    Google Scholar 

  • Turnipseed M, Knick KI, Lipcius RN, Dreyer J, Van Dover CL (2003) Diversity in mussel beds at deep-sea hydrothermal vents and cold seeps. Ecol Lett 6:518–523

    Google Scholar 

  • Turnipseed M, Jenkins CD, Van Dover CL (2004) Community structure in Florida Escarpment seep and Snake Pit (Mid-Atlantic Ridge) vent mussel bed. Mar Biol 145:121–132

    Google Scholar 

  • Underwood AJ, Chapman MG, Connell SD (2000) Observations in ecology: you can’t make progress on processes without understanding the patterns. J Exp Mar Biol Ecol250 (1-2):97–115

    Google Scholar 

  • Urcuyo IA, Massoth GJ, Julian D, Fisher CR (2003) Habitat, growth, and physiological ecology of a basaltic community of Ridgeia piscesae from the Juan de Fuca Ridge.Deep Sea Res I50 (6):763–780

    Google Scholar 

  • Urcuyo IA, Bergquist DC, MacDonald IR, Van Horn MJ, Fisher CR (2007) Growth and longevity of the tubeworm Ridgeia piscesae in the variable diffuse flow habitats of the Juan de Fuca Ridge. Mar Ecol Prog Ser 344:143–157

    Google Scholar 

  • van de Koppel J, Altieri AH, Silliman BR, Bruno JF, Bertness MD (2006) Scale-dependent interactions and community structure on cobble beaches. Ecol Lett 9:45–50

    Google Scholar 

  • Van Dover CL (2002) Community structure of mussel beds at deep-sea hydrothermal vents. Mar Ecol Prog Ser 230:137–158

    Google Scholar 

  • Van Dover CL (2003) Variation in community structure within hydrothermal vent mussel beds of the East Pacific Rise. Mar Ecol Prog Ser 253:55–66

    Google Scholar 

  • Van Dover CL, Doerries MB (2005) Community structure in mussel beds at Logatchev hydrothermal vents and a comparison of macrofaunal species richness on slow- and fast-spreading mid-ocean ridges. Mar Ecol 26:110–120

    Google Scholar 

  • Van Dover CL, Lutz RA (2004) Experimental ecology at deep-sea hydrothermal vents: a perspective. J Exp Mar Biol Ecol 300:273–307

    Google Scholar 

  • Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257

    Google Scholar 

  • Van Dover CL, Aharon P, Bernhard JM, Caylor E, Doerries M, Flickinger W, Gilhooly W, Goffredi SK, Knick KE, Macko SA, Rapoport S, Raulfs EC, Ruppel C, Salerno JL, Seitz RD, Sen Gupta BK, Shank T, Turnipseed M, Vrijenhoek R (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep Sea Res I 50(2):281–300

    Google Scholar 

  • Vismann B (1991) Sulfide tolerance: Physiological mechanisms and ecological implications. Ophelia 34(1):1–27

    Google Scholar 

  • Voight JR (2005) Hydrothermal vent octopuses of Vulcanoctopus hydrothermalis, feed on bathypelagic amphipods of Halice hesmonectes. J Mar Biol Assoc UK 85(4):985–988

    Google Scholar 

  • Voight JR, Sigwart JD (2007) Scarred limpets at hydrothermal vents: evidence of predation by deep-sea whelks. Mar Biol 152(1):129–133

    Google Scholar 

  • Von Damm KL, Lilley MD (2004) Diffuse flow hydrothermal fluids from 9°50’N East Pacific Rise: origin, evolution and biogeochemical controls. AGU Monogr 144:245–268

    Google Scholar 

  • Wright JP, Jones CG (2004) Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85(8):2071–2081

    Google Scholar 

  • Wright JP, Jones CG (2006) The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56(3):203–236

    Google Scholar 

  • Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness and the landscape scale. Oecologia 132(1):96–101

    Google Scholar 

  • Wright JP, Gurney WSC, Jones CG (2004) Patch dynamics in a landscape modified by ecosystem engineers. Oikos 105:336–348

    Google Scholar 

  • You CF, Bickle MJ (1998) Evolution of an active sea-floor massive sulphide deposit. Nature 394:668–671

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breea Govenar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Govenar, B. (2010). Shaping Vent and Seep Communities: Habitat Provision and Modification by Foundation Species. In: Kiel, S. (eds) The Vent and Seep Biota. Topics in Geobiology, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9572-5_13

Download citation

Publish with us

Policies and ethics