Skip to main content

Gravitomagnetism and Its Measurement with Laser Ranging to the LAGEOS Satellites and GRACE Earth Gravity Models

  • Chapter
  • First Online:
General Relativity and John Archibald Wheeler

Abstract

Dragging of Inertial Frames and gravitomagnetism are predictions of Einstein’s theory of General Relativity. Here, after a brief introduction to these phenomena of Einstein’s gravitational theory, we describe the method we have used to measure the Earth’s gravitomagnetic field using the satellites LAGEOS (LAser GEOdynamics Satellite), LAGEOS 2 and the Earth’s gravity models obtained by the spacecraft GRACE. We then report the results of our analysis with LAGEOS and LAGEOS 2, and with a number of GRACE (Gravity Recovery and Climate Experiment) models, that have confirmed this prediction of Einstein General Relativity and measured the Earth’s gravitomagnetic field with an accuracy of approximately 10%. We finally discuss the error sources in our measurement of gravitomagnetism and, in particular, the error induced by the uncertainties in the GRACE Earth gravity models. Here we both analyze the errors due to the static and time-varying Earth gravity field, and in particular we discuss the accuracy of the GRACE-only gravity models used in our measurement. We also provide a detailed analysis of the errors due to atmospheric refraction mis-modelling and to the uncertainties in measuring the orbital inclination. In the appendix, we report the complete error analysis and the total error budget in the measurement of gravitomagnetism with the LAGEOS satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  2. Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  3. Ciufolini, I., and Wheeler, J.A., Gravitation and Inertia (Princeton University Press, Princeton, New Jersey, 1995).

    Google Scholar 

  4. Will, C.M., Theory and Experiment in Gravitational Physics, 2nd edn (Cambridge Univ. Press, Cambridge, UK, 1993).

    Google Scholar 

  5. Will, C.M., The confrontation between general relativity and experiment. Living Rev. Rel. 9, 3 (2006); http://www.livingreviews.org/lrr-20063.

    Google Scholar 

  6. Riess, A. et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  7. Perlmutter, S. et al., Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article  ADS  Google Scholar 

  8. Perlmutter, S., Supernovae, dark energy, and the accelerating universe. Phys. Today, 56, 53–59 (2003).

    Article  Google Scholar 

  9. Caldwell, R.R., Dark energy. Phys. World, 17, 37–42 (2004).

    Google Scholar 

  10. Adelberger, E., Heckel, B. and Hoyle, C.D., Testing the gravitational inverse-square law. Phys. World, 18, 41–45 (2005).

    Google Scholar 

  11. Amelino-Camelia, G., Ellis, J., Mavromatos, N.E., Nanopoulos, D.V. and Sarkar, S. Potential sensitivity of gamma-ray burster observations to wave dispersion in vacuo. Nature, 393, 763–765 (1998).

    Article  ADS  Google Scholar 

  12. Dvali, G., Filtering gravity: modification at large distances? Infrared Modification of Gravity. In Nobel Symp. on Cosmology and String Theory and Cosmology, Proc. of Nobel Symposium 127, Sigtuna, Sweden, 2003 (eds Danielsson, U., Goobar, A. and Nilsson, B.) (World Scientific, Singapore, 2005). (Sigtuna, Sweden, August 2003); preprint at http://arXiv.org/hep-th/0402130 (2004).

  13. Ciufolini, I. and Pavlis, E.C., A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature, 431, 958–960 (2004).

    Article  ADS  Google Scholar 

  14. Ciufolini, I., Dragging of inertial frames. Nature, 449, 41–47 (2007).

    Article  ADS  Google Scholar 

  15. Ries, J.C., Eanes, R.J. and Watkins. M.M., Confirming the frame-dragging effect with satellite laser ranging, 16th International Workshop on Laser Ranging, 13–17 October 2008, Poznan, Poland (2008).

    Google Scholar 

  16. Ciufolini, I. et al., The LARES space experiment: LARES orbit, error analysis and satellite structure. In this book: General Relativity and John Archibald Wheeler, eds. Ciufolini, I. and Matzner, R. (Springer Verlag, 2010).

    Google Scholar 

  17. Einstein, A., Letter to Ernst Mach. Zurich, 25 June 1913, in ref. [1] p. 544.

    Google Scholar 

  18. Mach, E., Die Mechanik in Ihrer Entwicklung Historisch Kritisch-Dargestellt (Brockhaus, Leipzig, 1912); transl. The Science of Mechanics (Open Court, La Salle, Illinois, 1960).

    Google Scholar 

  19. Barbour, J. and Pfister, H., eds., Mach’s Principle. From Newton’s Bucket to Quantum Gravity (Birkhauser, Boston, 1995).

    MATH  Google Scholar 

  20. For implications of Mach principle and frame-dragging in cosmology see, e.g., chapter 4 of ref. [3] and Schmid, C., Cosmological gravitomagnetism and Machs principle. Phys. Rev. D, 74, 044031–1–18 (2006).

    Google Scholar 

  21. Friedländer, B. and Friedländer, I., Absolute und Relative Bewegung? (Simion-Verlag, Berlin, 1896).

    Google Scholar 

  22. Föppl, A., Überreinen Kreiselversuch zur messung der Umdrehungsgeschwindigkeit der Erde. Sitzb. Bayer. Akad. Wiss. 34, 5–28 (1904) Phys. Z. 5, 416; see also Föppl, A. Über Absolute und Relative Bewegung. Sitzb. Bayer. Akad. Wiss. 34, 383–95 (1904).

    Google Scholar 

  23. de Sitter, W., On Einstein’s theory of gravitation and its astronomical consequences. Mon. Not. Roy. Astron. Soc. 76, 699–728 (1916)

    ADS  Google Scholar 

  24. Lense, J. and Thirring, H., Über den Einfluss der Eigenrotation der Zentralkorper auf die Bewegung der Planeten und Monde nach der Einsteinschen Phys. Z., 19, 156–163 (1918). See also English translation by Mashhoon, B., Hehl, F.W., Theiss, D.S. Gen. Relativ. Gravit., 16, 711–750 (1984).

    Google Scholar 

  25. Zeldovich, Ya.B. and Novikov, I.D., Relativistic Astrophysics, Vol. I, Stars and Relativity (Univ. Chicago Press, Chicago, 1971).

    Google Scholar 

  26. Landau, L.D. and Lifshitz, E.M., The Classical Theory of Fields, 3rd rev. English edn. (Pergamon, London, 1971).

    Google Scholar 

  27. Ciufolini, I. and Ricci, F., Time delay due to spin and gravitational lensing. Classical and Quantum Gravity, 19, 3863–3874 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Ciufolini, I. and Ricci, F., Time delay due to spin inside a rotating shell. Classical and Quantum Gravity, 19, 3875–3881 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Ciufolini, I., Ricci, F., Kopekin, S. and Mashhoon, B. On the gravitomagnetic time delay. Phys. Lett. A, 308, 101–109 (2003).

    Article  ADS  Google Scholar 

  30. Kerr, R.P., Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett., 11, 237–238 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Pugh, G.E., Proposal for a satellite test of the coriolis prediction of general relativity. Weapons Systems Evaluation Group Research Memorandum N. 11 (The Pentagon, Washington, 1959).

    Google Scholar 

  32. Schiff, L.I., Motion of a gyroscope according to Einstein’s theory of gravitation. Proc. Nat. Acad. Sci., 46, 871–82 (1960) and Possible new test of general relativity theory. Phys. Rev. Lett., 4, 215–7 (1960).

    Google Scholar 

  33. Bardeen, J.M. and Petterson, J.A., The Lense-Thirring effect and accretion disks around Kerr Black Holes. Astrophysical J., 195, L65–7 (1975).

    Article  ADS  Google Scholar 

  34. Thorne, K.S., Price, R.H. and Macdonald, D.A., The Membrane Paradigm (Yale Univ. Press, NewHaven, 1986).

    Google Scholar 

  35. Schäfer, G., Gravitomagnetic effects. J. Gen. Rel. Grav., 36, 2223–2235 (2004).

    Article  ADS  MATH  Google Scholar 

  36. de Sitter, W., On Einstein’s theory of gravitation and its astronomical consequences. Mon. Not. R. Astron. Soc., 76, 699728 (1916).

    Google Scholar 

  37. Ashby, N. and Shahid-Saless, B., Geodetic precession or dragging of inertial frames? Phys. Rev. D, 42, 1118–22 (1990).

    Article  ADS  Google Scholar 

  38. O’Connel, R.F., A Note on frame dragging. Class. Quant. Grav., 22, 3815–16 (2005).

    Article  ADS  Google Scholar 

  39. Ciufolini, I., Frame-dragging, gravitomagnetism and lunar laser ranging, New Astronomy, 15, 332–337 (2010); see also Pavlis, E. and Ciufolini, I., Proc. of 15th International Laser Ranging Workshop, Camberra, Australia, October 16–20 (2006).

    Google Scholar 

  40. Bertotti, B., Ciufolini, I. and Bender, P.L., New test of general relativity: measurement of de Sitter geodetic precession rate for lunar perigee. Phys. Rev. Lett., 58, 1062–1065 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  41. Williams, J.G., Turyshev, S.G. and Boggs, D.H., Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett., 93, 261101–1–4 (2004).

    Google Scholar 

  42. Barker, B.M. and O’Connel, R.F., The gravitational interaction: Spin, rotation, and quantum structured Williams, J.G., Newhall, X.X. and Dickey, J.O., Relativity parameters determined from lunar laser ranging. Phys. Rev. D, 53, 6730–6739 (1996).

    Article  ADS  Google Scholar 

  43. GRAVITY PROBE-B update at: http://einstein.stanford.edu/

  44. Weisberg, J.M. and Taylor, J.H., General relativistic geodetic spin precession in binary pulsar B1913 + 16: mapping the emission beam in two dimensions. Astrophys. J., 576, 942–949 (2002).

    Article  ADS  Google Scholar 

  45. Stairs, I.H., Thorsett, S.E. and Arzoumanian, Z., Measurement of gravitational spin-orbit coupling in a binary-pulsar system. Phys. Rev. Lett., 93, 141101–1–4 (2004).

    Google Scholar 

  46. Murphy, T.W. Jr., Nordtvedt, K. and Turyshev, S.G., Gravitomagnetic influence on gyroscopes and on the lunar orbit. Phys. Rev. Lett., 98, 071102–1–4 (2007).

    Google Scholar 

  47. Kopeikin, S.M., Comment on “Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit”. Phys. Rev. Lett., 98, 229001 (2007).

    Article  ADS  Google Scholar 

  48. Murphy, T.W. Jr., Nordtvedt, K. and Turyshev, S.G., Murphy, Nordtvedt, and Turyshev Reply. Phys. Rev. Lett., 98, 229002 (2007).

    Article  ADS  Google Scholar 

  49. Barker, B.M. and O’Connel, R.F., The gravitational interaction: Spin, rotation, and quantum effects. A review. Gen. Rel. Grav., 11, 149–175 (1979).

    Google Scholar 

  50. Khan, A.R. and O’Connell, R.F., Gravitational analogue of magnetic force. Nature 261, 480–481 (1976).

    Article  ADS  Google Scholar 

  51. Ciufolini, I., Gravitomagnetism and status of the LAGEOS III experiment. Class. Quantum Grav., 11, A73–A81 (1994).

    Article  ADS  Google Scholar 

  52. The curvature invariants have been calculated using MathTensor, a system for doing tensor analysys by computer, by Parker, L. and Christensen, S.M. (Addison-Wesley, Boston, 1994).

    Google Scholar 

  53. Nordtvedt, K., Lunar laser ranging: a comprehensive probe of post-Newtonian gravity. In: Gravitation: from the Hubble Length to the Planck Length, Proc. I SIGRAV School on General Relativity and Gravitation, Frascati, Rome, September 2002 (IOP, 2005) p 97–113.

    Google Scholar 

  54. Ciufolini, I., Measurement of the Lense-Thirring drag on high-altitude laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986).

    Article  ADS  Google Scholar 

  55. Ciufolini, I., A comprehensive introduction to the Lageos gravitomagnetic experiment: from the importance of the gravitomagnetic field in physics to preliminary error analysis and error budget. Int. J. Mod. Phys. A, 4, 3083–3145 (1989); see also: [56].

    Article  ADS  Google Scholar 

  56. Tapley, B., Ries, J.C., Eanes, R.J., and Watkins, M.M., NASA-ASI Study on LAGEOS III, CSR-UT publication n. CSR-89-3, Austin, Texas (1989), and Ciufolini, I., et al., ASI-NASA Study on LAGEOS III, CNR, Rome, Italy (1989). See also: I. Ciufolini et al., INFN study on LARES/WEBER-SAT (2004).

    Google Scholar 

  57. Ries, J.C., Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite, Ph.D. dissertation. The University of Texas, Austin (1989).

    Google Scholar 

  58. Ciufolini, I., On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cimento A, 109, 1709–1720 (1996).

    Article  ADS  Google Scholar 

  59. Ciufolini, I. et al., Measurement of dragging of inertial frames and gravitomagnetic field using laser-ranged satellites. Nuovo Cimento A, 109, 575–590 (1996).

    Article  ADS  Google Scholar 

  60. Ciufolini, I., Chieppa, F., Lucchesi, D. and Vespe, F., Test of Lense-Thirring orbital shift due to spin. Class. and Quantum Grav., 14, 2701–2726 (1997). See also: Ciufolini, I., Lucchesi, D., Vespe, F., and Chieppa, F., Measurement of gravitomagnetism. Europhys. Lett., 39, 359–364 (1997).

    Google Scholar 

  61. Ciufolini, I., Pavlis, E.C., Chieppa, F., Fernandes-Vieira, E. and Perez-Mercader, J., Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science, 279, 2100–2103 (1998).

    Article  ADS  Google Scholar 

  62. Cohen, S.C. and Dunn, P.J., eds., LAGEOS Scientific Results. J. Geophys. Res., 90 (B11), 9215 (1985).

    Article  ADS  Google Scholar 

  63. Bender P. and Goad, C.C., The use of satellites for geodesy and geodynamics, in: Veis, G., Livieratos, E. (Eds.), Proceedings of the Second International Symposium on the Use of Artificial Satellites for Geodesy and Geodynamics, Vol. II. National Technical University of Athens, p. 145 (1979).

    Google Scholar 

  64. Reigber, Ch., Schwintzer, P., Neumayer, K.-H., Barthelmes, F., König, R., Förste, Ch., Balmino, G., Biancale, R., Lemoine, J.-M., Loyer, S., Bruinsma, S., Perosanz, F. and Fayard, T., The CHAMP-only Earth Gravity Field Model EIGEN-2. Advan. Space Res., 31(8), 1883–1888 (2003), doi: 10.1016/S0273–1177(03)00162–5.

    Article  ADS  Google Scholar 

  65. Reigber, C., Schmidt, R., Flechtner, F., Koenig, R., Meyer, U., Neumayer, K.H., Schwintzer, P. and Zhu, S.Y., An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. Geodynamics, 39, 1–10 (2005). The EIGEN-GRACE02S gravity field coefficients and their calibrated errors are available at: http://op.gfz-potsdam.de/grace/index_GRACE.html

  66. Förste, C., Flechtner, F., Schmidt, R., Stubenvoll, R., Rothacher, M., Kusche, J., Neumayer, K.-H., Biancale, R., Lemoine, J.-M., Barthelmes, F., Bruinsma, J., Koenig, R., Meyer, U., EIGEN-GL05C – A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. General Assembly European Geosciences Union, Vienna, Austria, 2008, J. Geophys. Res. Abstracts, 10, No. EGU2008-A-06944 (2008).

    Google Scholar 

  67. Förste, C., Schmidt, R., Stubenvoll, R., Flechtner, F., Meyer, U., Konig, R., Neumayer, H., Biancale, R., Lemoine, J.-M., Bruinsma, S., Loyer, S., Barthelmes, F. and Esselborn, S., The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geodesy, 82, 6, 331–346 (2008).

    Article  ADS  Google Scholar 

  68. Förste, C., Flechtner, F., Schmidt, R., Meyer, U., Stubenvoll, R., Barthelmes, F., Köenig, R., Neumayer, H., Rothacher, M., Reigber, Ch. Biancale, R., Bruinsma, S., Lemoine, J.M., Raimondo, J.C., A New High Resolution Global Gravity Field Model Derived From Combination of GRACE and CHAMP Mission and Altimetry/Gravimetry Surface Gravity Data. EGU General Assembly 2005, Vienna, Austria, 24–29, April 2005.

    Google Scholar 

  69. Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter, B., Kang, Z., Nagel, P., Pastor, R., Pekker, T., Poole, S., and Wang, F., GGM02 An improved Earth gravity field model from GRACE. J. Geod., 79, 467–478 (2005). The GGM02 gravity model is available at: http://www.csr.utexas.edu/grace/gravity/

    Article  ADS  Google Scholar 

  70. Tapley, B., Ries, J., Bettadpur, S., Chambers D., Cheng, M., Condi, F., Poole, S., The GGM03 Mean Earth Gravity Model from GRACE. Eos Trans. AGU 88(52), Fall Meet.Suppl., Abstract G42A-03 (2007).

    Google Scholar 

  71. Mayer-Guerr, T., Eicker, A., Ilk, K.H., ITG-Grace02s: A GRACE Gravity Field Derived from Short Arcs of the Satellites Orbit. Proc. of the 1st International Symposium of the International Gravity Field Service “Gravity Field of the Earth”, Istanbul (2007).

    Google Scholar 

  72. Mayer-Guerr, T., ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn. presentation at GSTM + SPP, 15–17 Oct 2007, Potsdam.

    Google Scholar 

  73. The JEM models were provided by JPL-Caltech.

    Google Scholar 

  74. International Earth Rotation Service (IERS) Annual Report, 1996. Observatoire de Paris, Paris (July 1997).

    Google Scholar 

  75. Rubincam, D.P., Yarkovsky thermal drag on LAGEOS. J. Geophys. Res., 93 (B11), 13803–13810 (1988).

    Article  ADS  Google Scholar 

  76. Rubincam, D.P., Drag on the LAGEOS satellite. J. Geophys. Res., 95 (B11), 4881–4886 (1990).

    Article  ADS  Google Scholar 

  77. Rubincam, D.P., and Mallama, A. Terrestrial atmospheric effects on satellite eclipses with application to the acceleration of LAGEOS. J. Geophys. Res., 100 (B10), 20285–20990 (1995).

    Article  ADS  Google Scholar 

  78. Martin, C.F., and Rubincam, D.P., Effects of Earth albedo on the LAGEOS I satellite. J. Geophys. Res., 101 (B2), 3215–3226 (1996).

    Article  ADS  Google Scholar 

  79. Andrès, J.I. et al., Spin axis behavior of the LAGEOS satellites. J. Geophys. Res., 109, B06403–1–12 (2004).

    Google Scholar 

  80. Gross, R.S., Combinations of Earth orientation measurements: SPACE94, COMB94, and POLE94. J. Geophys. Res., 101 (B4), 8729–8740 (1996).

    Article  ADS  Google Scholar 

  81. Pavlis, D.E. et al., GEODYN operations manuals, contractor report, Raytheon, ITSS, Landover MD (1998).

    Google Scholar 

  82. Ries, J.C., Eanes R.J. and Tapley, B.D., Lense-Thirring precession determination from laser ranging to artificial satellites. In: Nonlinear Gravitodynamics, the Lense-Thirring Effect, Proc. III William Fairbank Meeting (World Scientific, Singapore, 2003) pp. 201–211.

    Google Scholar 

  83. Ciufolini, I., Frame-dragging and its measurement. In: Gravitation: from the Hubble Length to the Planck Length, Proc. I SIGRAV School on General Relativity and Gravitation, Frascati, Rome, September 2002 (IOP, 2005) pp. 27–69.

    Google Scholar 

  84. Ciufolini, I., Theory and experiments in general relativity and other metric theories, Ph.D. Dissertation, Univ. of Texas, Austin (Pub. Ann Arbor, Michigan, 1984).

    Google Scholar 

  85. Peterson, G.E., Estimation of the Lense-Thirring precession using laser-ranged satellites. Ph. Dissertation, Univ. of Texas, Austin, (1997).

    Google Scholar 

  86. Ries, J.C., Eanes, R.J., Tapley, B.D. and Peterson, G.E., Prospects for an improved Lense-Thirring test with SLR and the GRACE gravity mission. In: Toward Millimeter Accuracy Proc. 13th Int. Laser Ranging Workshop, Noomen, R., Klosko, S., Noll, C. and Pearlman, M. eds., (NASA CP 2003212248, NASA Goddard, Greenbelt, MD, 2003).

    Google Scholar 

  87. Pavlis, E.C., Geodetic contributions to gravitational experiments in space. In: Recent Developments in General Relativity, Genoa 2000, R. Cianci, et al., eds. (Springer-Verlag, Milan, 2002) pp. 217–233.

    Chapter  Google Scholar 

  88. Rubincam, D.P., General relativity and satellite orbits: the motion of a test particle in the Schwarzschild metric. Celest. Mech., 15, 21–33 (1977).

    Article  ADS  Google Scholar 

  89. Cugusi, L. and Proverbio, E., Relativistic effects on the motion of Earth’s artificial satellites. Astron. Astroph., 69, 321–325 (1978).

    ADS  Google Scholar 

  90. Yilmaz, H., Proposed test of the nature of gravitational interaction. Bull. Am. Phys. Soc., 4, 65 (1959).

    Google Scholar 

  91. Van Patten, R.A., Everitt, C.W.F., Possible Experiment with two counter–orbiting drag–free satellites to obtain a new test of Einstein’s general theory of relativity and improved measurements in geodesy. Phys. Rev. Lett., 36, 629–32 (1976).

    Article  ADS  Google Scholar 

  92. Ciufolini, I., Paolozzi, A., et al., LARES phase A study for ASI (1998).

    Google Scholar 

  93. Lucchesi, D.M., Reassessment of the error modelling of non–gravitational perturbations on LAGEOS 2 and their impact in the Lense–Thirring determination. Part I. Planet. Space Sci., 49, 447–463 (2001).

    Article  ADS  Google Scholar 

  94. Pavlis, E.C. and Iorio, L., The impact of tidal errors on the determination of the Lense-Thirring effect from satellite laser ranging. Int. J. Mod. Phys. D, 11, 599–618 (2002).

    Article  ADS  Google Scholar 

  95. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H. and Olson, T.R., The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt, Maryland (July 1998).

    Google Scholar 

  96. NRC, Satellite Gravity and the Geosphere: Contributions to the Study of the Solid Earth and Its Fluid Envelope (National Academy Press, Washington D.C., 1997).

    Google Scholar 

  97. Pavlis, E.C., Improvements to geodesy from gradiometers and drag-free satellites. In: Proc. 1st W. Fairbank Memorial Conference on Gravitational Relativistic Experiments in Space, M. Demianski and C.W.F. Everitt, eds., (World Scientific, 1993).

    Google Scholar 

  98. Reigber, Ch., Flechtner, F., Koenig, R., Meyer, U., Neumayer, K., Schmidt, R., Schwintzer, P., and Zhu, S., GRACE Orbit and Gravity Field Recovery at GFZ Potsdam – First Experiences and Perspectives. Eos. Trans. AGU, 83(47), Fall Meet. Suppl., Abstract G12B-03 (2002).

    Google Scholar 

  99. Perosanz, F., Loyer, S., Lemoine, J.M.L., Biancale, R., Bruinsma, S. and Vales, N., CHAMP accelerometer evaluation on two years mission. Geophys. Res. Abstracts, 5 (CD), Abstract EAE03-A-06989 (2003).

    Google Scholar 

  100. Tapley, B.D., The GRACE mission: status and performance assessment. Eos. Trans. AGU, 83(47), Fall Meet. Suppl., Abstract G12B-01 (2002).

    Google Scholar 

  101. Watkins, M.M., Yuan, D., Bertiger, W., Kruizinga, G., Romans, L. and Wu, S., GRACE gravity field results from JPL. Eos. Trans. AGU, 83(47), Fall Meet. Suppl., Abstract G12B-02 (2002).

    Google Scholar 

  102. Rummel, R., GOCE – its status and promise. Geophys. Res. Abstracts, Vol. 5 (CD), Abstract EAE03-A-09628 (2003).

    Google Scholar 

  103. Kaula, W.M., Theory of Satellite Geodesy, (Blaisdell, Waltham, 1966).

    Google Scholar 

  104. Lucchesi, D.M., Reassessment of the error modelling of non-gravitational perturbations on LAGEOS 2 and their impact in the Lense–Thirring determination. Part II. Planet. Space Sci., 50, 1067–1100 (2002).

    Article  ADS  Google Scholar 

  105. Yoder, C.F., Williams, J.G., Dickey, J.O., Schutz, B.E., Eanes, R.J. and Tapley, B.D., Secular variations of Earth’s gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation. Nature, 303, 757–62 (1983).

    Article  ADS  Google Scholar 

  106. Cheng, M.K., Shum, C.K. and Tapley, B., Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations. J. Geophys Res., 102 (B10), 22377–22390 (1997).

    Article  ADS  Google Scholar 

  107. Cheng, M.K. and Tapley, B.D., Temporal variations in J2 from analysis of SLR data. In: Proc. 12th International Workshop on Laser Ranging (2000).

    Google Scholar 

  108. Cheng M.K. and Tapley B.D., Variations in the Earth’s oblateness During the Past 28 years. J. Geophys. Res., 109, B09402 (2004) doi: 10,1029/2004JB003028.

    Article  ADS  Google Scholar 

  109. Cheng, M.K., Tapley, B.D., Secular variations in the low degree zonal harmonics from 28 years of SLR data. Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract G31C-0801.

    Google Scholar 

  110. Ciufolini, I. and Pavlis, E.C., On the Measurement of the Lense-Thirring effect using the nodes of the LAGEOS satellites, in reply to “On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites” by L. Iorio. New Astr., 10, (8), 636–651 (2005).

    Google Scholar 

  111. Cox, C.M., Klosko, S.M. and Chao, B.F., Changes in Ice-Mass Balance inferred from time variation of the geopotential observed through SLR and Doris tracking. In: Gravity, Geoid and Geodynamics 2000, International Association of Geodesy (IAG) Symposia Vol. 123, M.G. Sideris, ed. (Springer, 2000).

    Google Scholar 

  112. Devoti, R., Luceri, V., Rutigliano, P., Sciappreta, C. and Bianco, G., Time series of low degree zonals obtained analyzing different geodetic satellites. Bollettino di Geofisca Teorica ed Applicata, 40, 353–358, (1999).

    Google Scholar 

  113. Pavlis, E.C., Dynamical Determination of Origin and Scale in the Earth System from Satellite Laser Ranging. In: Vistas for Geodesy in the New Millennium, Proc. 2001 International Association of Geodesy Scientific Assembly, Budapest, Hungary, September 2–7, 2001, J. Adam and K.P. Schwarz, eds. (Springer-Verlag, New York, 2002) pp. 36–41.

    Google Scholar 

  114. Schmidt, R., Flechtner, F., Koenig, R., Meyer, U., Neumayer, K.H., Schwintzer, P., Zhu, S.Y., An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn., 39, 1–10 (2005).

    Article  Google Scholar 

  115. Tapley, B.D. et al., Lageos Laser Ranging Contributions to Geodynamics, Geodesy and Orbital Dynamics. In: Contributions of Space Geodesy to Geodynamics: Earth Dynamics. Geodyn. Ser., 24, 147–174, D.E. Smith and D.L. Turcotte, eds., AGU Washington, D.C. (1993).

    Google Scholar 

  116. Tapley, B.D., Chambers, D.P., Bettadpur, S., and Ries, J.C., Large scale ocean circulation from the GRACE GGM01 geoid. Geophys. Res. Lett., 30 (22), 2163 (2003)–1–4 doi: 10.1029/2003GL018622.

    Google Scholar 

  117. Cazenave, A., Geogut, P. and Ferhat, G., Secular variations of the gravity field from Lageos 1, Lageos2 and Ajisai. In: Global Gravity Fields and its temporal variations, Int. Assoc. of. Geod. Symp., Vol. 116 (Springer-Verlag, New York, 1996) p 141–151.

    Google Scholar 

  118. Cheng, M.K., Eanes, R.J., Shum, C.K., Schutz, B.E. and Tapley, B.D., Temporal variation in low degree zonal harmonics from starlette orbit analysis. Geophys. Res. Lett., 16, 393–396, (1989)

    Article  ADS  Google Scholar 

  119. Cheng, M.K., Eanes, R.J., Shum, C.K., Time-varying gravitational effects from analysis off measurements from geodetic satellite. EoS Trans. AGU, 74(43), Fall Meet., Suppl., 196 (1993)

    Google Scholar 

  120. Eanes, R.J. and Battadpur, S., Temporal variability of Earth’s gravitational field from satellite laser ranging observations. In: Global Gravity Field and its Temporal Variations, Int. Assoc. of Geod. Symp., Vol. 116, 30–41 (Springer-Verlag, New York, 1996).

    Google Scholar 

  121. Gegout, P., and Cazenave, A., Geodynamic parameters derived from 7 years of laser data on Lageos. Geophys. Res. Lett., 18, 1729–1742 (1991).

    Article  ADS  Google Scholar 

  122. Ivins, E.R., Sammis, C.G. and Yoder, C.F., Deep mantle viscous structure with prior estimate and satellite constraint. J. Geophys. Res., 98, 4579–4609 (1993).

    Article  ADS  Google Scholar 

  123. Mitrovica, J.X. and Peltier, W.R., Present-day secular variations in the zonal harmonics of Earth’s geopotential. J. Geophys. Res., 98, 4509–4526 (1993).

    Article  ADS  Google Scholar 

  124. Nerem, R.S., and Klosko, S.M., Secular variations of the zonal harmonics and polar motion as geophysical constraints. In: Global Gravity Field and its Temporal Variations, Int. Assoc. of Geod. Symp. Vol. 116, 152–163 (Springer-Verlag, New York, 1996).

    Google Scholar 

  125. Nerem, R.S., Chao, A.Y., Chan, J.C., Klosko, S.M., Pavlis, N.K. and Williamson, R.G., Temporal variations of the Earth’s gravitational field from satellite laser ranging to Lageos. J. Geophys. Res. Lett., 20, 595–598 (1993).

    Article  ADS  Google Scholar 

  126. Rubincam, D.P., Postglacial rebound observed by Lageos and the effective viscosity of the Lower mantle. J. Geophys. Res., 89, 1077–1087 (1984).

    Article  ADS  Google Scholar 

  127. Trupin, A., Meier, M.F. and Wahr, J., Effects of the melting glaciers on the Earth’s rotation and gravity field: 1965–1984. Geophys. J. Int., 108, 1–15 (1992).

    Article  ADS  Google Scholar 

  128. Cox, C.M. and Chao, B., Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science, 297, 831 (2002).

    Article  ADS  Google Scholar 

  129. Ciufolini, I., Pavlis, E.C. and Peron, R., Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron., 11, 527–550 (2006).

    Article  ADS  Google Scholar 

  130. Eanes, R.J., A study of temporal variations in Earth’s gravitational field using Lageos-1 laser ranging observations. Ph. D. dissertation, Univ. of Texas at Austin (1995)

    Google Scholar 

  131. Iorio, L., On the impact of the atmospheric drag on the LARES mission, arXiv:0809.3564v2, see also: arXiv:0809.3564v1 (2008).

    Google Scholar 

  132. Iorio, L., Will the recently approved LARES mission be able to measure the Lense-Thirring effect at 1 %? Gen. Relativ. Gravit. 41, 1717–1724 (2009) doi: 10.1007/s10714-008-0742-1; see also: arXiv:0803.3278v5 [gr-qc] (2008).

    Article  ADS  MATH  Google Scholar 

  133. Iorio, L., An assessment of the systematic uncertainty in present and future tests of the Lense-Thirring effect with satellite laser ranging. Space Sci. Rev. 148, 363–381 (2009); see also: arXiv:0809.1373v2 [gr-qc] (2008).

    Article  ADS  Google Scholar 

  134. Iorio, L., On some critical issues of the LAGEOS/LAGEOS II Lense-Thirring experiment. arXiv:0710.1022v1 [gr-qc].

    Google Scholar 

  135. Ciufolini, I., Paolozzi, A., Pavlis, E.C., Ries, J.C., Koenig, R., Matzner, R.A., Sindoni G., and Neumayer, H. Towards a one percent measurement of frame-dragging by spin with satellite laser ranging to LAGEOS, LAGEOS 2 and LARES and GRACE gravity models. Space Sci. Rev., 148, 71–104 (2009).

    Article  ADS  Google Scholar 

  136. Lucchesi, D.M., The impact of the even zonal harmonics secular variations on the Lense-Thirring effect measurement with the two Lageos satellites. Int. J. of Mod. Phys. D, 14, 1989–2023 (2005).

    Article  ADS  MATH  Google Scholar 

  137. Ciddor, P.E., Refractive index of air: New equations for the visible and near infrared. Applied Optics, 35, 1566–1573 (1996).

    Article  ADS  Google Scholar 

  138. Hulley, G.C. and Pavlis, E.C., A ray-tracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal refractivity gradients. J. Geophys. Res., 112, B06417–1-19 (2007), doi:10.1029/2006JB004834.

    Google Scholar 

  139. Mendes, V.B., Prates, G., Pavlis, E.C., Pavlis, D.E. and Langley, R.B., Improved mapping functions for atmospheric refraction correction in SLR. Geophysical Res. Lett., 29, 1414–1-4 (2002), doi:10.1029/2001GL014394.

    Google Scholar 

  140. Mendes, V.B. and Pavlis, E.C., High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett., 31, L14602–1-5 (2004), doi:10.1029/2004GL020308.

    Google Scholar 

  141. Tapley, B.D., Bettadpur, S., Watkins, M., and Reigber, C., The gravity recovery and climate experiment: Mission overview and early results. Geophysical Res. Lett., 31, L09607 (2004) doi: 10.1029/2004GL019920.

    Article  ADS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support of ASI, the Italian Space Agency, grants I/043/08/0 and I/016/07/0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Ciufolini .

Editor information

Editors and Affiliations

Additional information

Dedicated to John Archibald Wheeler, one of the masters of physics of the XX century and father of the renaissance of General Relativity.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ciufolini, I. et al. (2010). Gravitomagnetism and Its Measurement with Laser Ranging to the LAGEOS Satellites and GRACE Earth Gravity Models. In: Ciufolini, I., Matzner, R. (eds) General Relativity and John Archibald Wheeler. Astrophysics and Space Science Library, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3735-0_17

Download citation

Publish with us

Policies and ethics