Skip to main content

Conodonts

  • Chapter
  • First Online:
Fundamentals of Invertebrate Palaeontology

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Conodonts (=cone -tooth in Greek) are usually microscopic (0.2–2 mm in length) organisms, although, rare larger specimens up to 25 mm have been recorded (Gabbott et al. 1995; Purnell 1995). Conodonts are elongate , armorless, eel-shaped, and large-eyed marine animals (Briggs et al. 1983; Purnell 1995) (Fig. 1). They are soft-bodied, except for their apparatus of tooth-like phosphatic (bioapatite with a francolite-like structure) elements situated in the mouth and/or the pharynx (Fig. 2(1)).

Modified from Briggs et al. (1983)

Line drawing of the Early Carboniferous (Dinantian, Mississippian) Clydagnathus cf. cavusiformis Rhodes et al. (1969) from the Granton Shrimp Bed (Edinburgh, Scotland).

The conodont animal. 1: Line drawing of the conodont animal showing its major morphological features. 2: A natural assemblage of conodont elements of Scottognathus typicus (Rhodes) from Pennsylvanian rocks in Illinois (Scottognathus is a junior synonym of Idiognathodus) (after Sweet and Donoghue 2001). 3: The postero-ventral view of the head of the conodont animal showing the position of elements (apparatus) of the Lochkovian (earliest Devonian) Pandorinellina rernscheidensis (Ziegler) (modified after Dzik 1991). 4: Illustration of conodont’s M, S and P elements in relationship to one another within the animal’s exposed oral cavity . 5: Enlarged view of the two sets of P elements (P1 and P2) (modified from Purnell and Jones 2012)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agematsu, S., Uesugi, K., Sano, H., & Sashida, K. (2017). Reconstruction of the multielement apparatus of the earliest Triassic conodont, Hindeodus parvus, using synchrotron radiation X-ray micro-tomography. Journal of Paleontology, 91, 1220–1227.

    Article  Google Scholar 

  • Aldridge, R. J., Briggs, D. E. G., Clarkson, E. N. K., & Smith, M. P. (1986). The affinities of conodonts—New evidence from the Carboniferous of Edinburgh, Scotland. Lethaia, 19, 279–291.

    Article  Google Scholar 

  • Aldridge, R. J., Briggs, D. E. G., Smith, M. P., Clarkson, E. N. K., & Clark, N. D. L. (1993). The anatomy of conodonts. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 340, 405–421.

    Article  Google Scholar 

  • Aldridge, R. J., Murdock, J. E., Gabbott, S. E., & Theron, J. N. (2013). A 17-element conodont apparatus from the Soom Shale Lagerstätte (Upper Ordovician). South Africa: Palaeontology, 56, 261–276.

    Google Scholar 

  • Aldridge, R. J., Smith, M. P., Norby, R. D., & Briggs, D. E. G. (1987). The architecture and function of Carboniferous polygnathacean conodont apparatuses. In R. J. Aldridge (Ed.), Palaeobiology of conodonts (pp. 63–76). Chichester: Ellis Horwood.

    Google Scholar 

  • Aldridge, R. J., & Theron, J. N. (1993). Conodonts with preserved soft tissue from a new Upper Ordovician Konservat-Lagetstätte. Journal of Micropalaeontology, 12, 113–117.

    Google Scholar 

  • Armstrong, H. A., & Smith, C. J. (2001). Growth patterns in euconodont crown enamel: Implications for life history and mode of life reconstruction in the earliest vertebrates. Proceedings of the Royal Society, Series B, 268, 815–820.

    Article  Google Scholar 

  • Briggs, D. E. G., Clarkson, E. N. K., & Aldridge, R. J. (1983). The conodont animal. Lethaia, 16, 1–14.

    Article  Google Scholar 

  • Donoghue, P. C. J., Forey, P. L., & Aldridge, R. J. (2000). Conodont affinity and chordate phylogeny. Biological Reviews, 75, 191–251.

    Article  Google Scholar 

  • Donoghue, P. C. J., Purnell, M. A., Aldridge, R. J., & Zhang, S. (2008). The interrelationships of ‘complex’ conodonts (vertebrata). Journal of Systematic Palaeontology, 6(2), 119–153.

    Google Scholar 

  • Donoghue, P. C. J., & Sansom, I. J. (2002). Origin and early evolution of vertebrate skeletonization. Microscopy Research and Technique, 59, 352–372.

    Article  Google Scholar 

  • Dzik, J. (1991). Evolution of oral apparatuses in the conodont chordates. Acta Palaeontologica Polonica, 36(3), 265–323.

    Google Scholar 

  • Epstein, A. G., Epstein, J. B., & Harris, L. D. (1977). Conodont color alteration-an index to organic metamorphism. Geological survey professional paper 995, 1–27.

    Google Scholar 

  • Gabbott, S. E., Aldridge, R. J., & Theron, J. N. (1995). A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa. Nature, 374, 800–803.

    Article  Google Scholar 

  • Goudemand, N., Orchard, M. J., Tafforeau, P., Urdy, S., Brühwiler, T., Brayard, A., et al. (2012). Early Triassic conodont clusters from South China: Revision of the architecture of the 15 element apparatuses of the superfamily Gondolelloidea. Palaeontology, 55, 1021–1034.

    Article  Google Scholar 

  • Goudemand, N., Orchard, M. J., Urdy, S., Bucher, H., & Tafforeau, P. (2011). Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proceedings of the National Academy of Sciences, USA, 108, 8720–8724.

    Article  Google Scholar 

  • Holmden, C., Creaser, R. A., Muehlenbachs, K., Bergström, S. M., & Leslie, S. A. (1996). Isotopic and elemental systematics of Sr and Nd in 454 Ma biogenic apatites: Implications for paleoseawater studies. Earth and Planetary Science Letters, 142, 425–437.

    Article  Google Scholar 

  • Huang, J.-Y., Martínez-Pérez, C., Hu, S.-X., Donoghue, P. C.J., Zhang, Q.-Y., Zhou, C.-Y., Wen, W., Benton, M. J., Luo, M., Yao, H.-Z., & Zhang, K.-X. (2018). Middle Triassic conodont apparatus architecture revealed by synchrotron X-ray microtomography. Palaeoworld. https://doi.org/10.1016/j.palwor.2018.08.003.

    Article  Google Scholar 

  • Jones, D. O., Evans, A. R., Rayfield, E. J., Siu, K. K., & Donoghue, P. C. J. (2012a). Testing micro structural adaptation in the earliest dental tools. Biology Letters, 8, 952–955.

    Article  Google Scholar 

  • Jones, D. O., Evans, A. R., Rayfield, E. J., Siu, K. K., & Donoghue, P. C. J. (2012b). The sharpest tools in the box? Quantitative analysis of conodont element functional morphology. Proceedings of the Royal Society B: Biological Sciences, 279, 2849–2854.

    Article  Google Scholar 

  • Liu, H. P., Bergström, S. M., Witzke, B. J., Briggs, D. E. G., McKay, R. M., & Ferretti, A. (2017). Exceptionally preserved conodont apparatuses with giant elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA. Journal of Paleontology, 91(3), 493–511.

    Article  Google Scholar 

  • Marshall, C. P., Mar, G. L., Nicoll, R. S., & Wilson, M. A. (2001). Organic geochemistry of artificially matured conodonts. Organic Geochemistry, 32, 1055–1071.

    Article  Google Scholar 

  • Martínez-Pérez, C., Plasencia, P., Jones, D., Kolar-Jurkovšek, T., Sha, J., Botella, H., et al. (2014). There is no general model for occlusal kinematics in conodonts. Lethaia, 47, 547–555.

    Article  Google Scholar 

  • Martínez-Pérez, C., Rayfield, E. J., Botella, H., & Donoghue, P. C. J. (2016). Translating taxonomy into the evolution of conodont feeding ecology. Geology, 44, 247–250.

    Article  Google Scholar 

  • Martínez-Pérez, C., Rayfield, E. J., Purnell, M. A., & Donoghue, P. C. J. (2014). Finite element, occlusal, microwear and microstructural analyses indicate that conodont microstructure is adapted to dental function. Palaeontology, 57(5), 1059–1066.

    Article  Google Scholar 

  • Müller, K. J., & Nogami, Y. (1971). Über den Feinbau der Conodonten. Memoirs of the Faculty of Sciences of the Kyoto University, Series of Geology and Mineralogy ,38, 1–88.

    Google Scholar 

  • Mikulic, D. G., Briggs, D. E. G., & Kluessendorf, J. (1985). A Silurian soft-bodied biota. Science, 228, 715–717.

    Article  Google Scholar 

  • Murdock, D. J. E., Rayfield, E. J., & Donoghue, P. C. J. (2014). Functional adaptation underpinned the evolutionary assembly of the earliest vertebrate skeleton. Evolution and Development, 16, 354–361.

    Article  Google Scholar 

  • Murdock, D. J. E., Sansom, I. J., & Donoghue, P. C. J. (2013). Cutting the first ‘teeth’—A new approach to functional analysis of conodont elements. Proceedings of the Royal Society B: Biological Sciences, 280, 20131524.

    Article  Google Scholar 

  • Orchard, M. J. (2005). Multielement conodont apparatuses of Triassic Gondolelloidea. Special Papers in Palaeontology Series, 73, 73–101.

    Google Scholar 

  • Pell, J., Russell, J. K., & Zhang, S. (2015). Kimberlite emplacement temperatures from conodont geothermometry. Earth and Planetary Science Letters, 411, 131–141.

    Article  Google Scholar 

  • Purnell, M. A. (1993). The Kladognathus apparatus (Conodonta, Carboniferous): Homologies with ozarkodinids and the prioniodinid Bauplan. Journal of Paleontology, 67, 875–882.

    Article  Google Scholar 

  • Purnell, M. A. (1994). Skeletal ontogeny and feeding mechanisms in conodonts. Lethaia, 27, 129–138.

    Article  Google Scholar 

  • Purnell, M. A. (1995). Large eyes and vision in conodonts. Lethaia, 28, 187–188.

    Article  Google Scholar 

  • Purnell, M. A., & Donoghue, P. C. J. (1997). Architecture and functional morphology of the skeletal apparatus of ozarkodinid conodonts. Philosophical Transactions of the Royal Society of London. Series B, 352, 1545–1564.

    Article  Google Scholar 

  • Purnell, M. A., & Donoghue, P. C. J. (1998). Skeletal architecture, homologies and taphonomy of ozarkodinid conodonts. Palaeontology, 41, 57–102.

    Google Scholar 

  • Purnell, M. A., Donoghue, P. C. J., & Aldridge, R. J. (2000). Orientation and anatomical notation in conodonts. Journal of Paleontology, 74, 113–122.

    Article  Google Scholar 

  • Purnell, M. A., & Jones, D. (2012). Quantitative analysis of conodont tooth wear and damage as a test of ecological and functional hypotheses. Paleobiology, 38(4), 605–626.

    Article  Google Scholar 

  • Purnell, M. A., & von Bitter, P. H. (1992). Blade-shaped conodont elements functioned as cutting teeth. Nature, 359, 629–631.

    Google Scholar 

  • Rejebian, V. A., Harris, A. G., & Huebner, J. S. (1987). Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geological Society of America Bulletin, 99, 471–479.

    Article  Google Scholar 

  • Rhodes, F. H. T., Austin, R. L., & Druce, E. C. (1969). British Avonian Carboniferous conodont faunas, and their value in local and intercontinental correlation. Bulletin of the British Museum (Natural History) Geology, (Suppl, 5), 1–313.

    Google Scholar 

  • Sansom, I. J., Smith, M. P., Armstrong, H. A., & Smith, M. M. (1992). Presence of the earliest vertebrate hard tissues in conodonts. Science, 256, 1308–1311.

    Article  Google Scholar 

  • Smith, M. P., Briggs, D. E. G., & Aldridge, R. J. (1987). A conodont animal from the lower Silurian of Wisconsin, U.S.A., and the apparatus architecture of panderodontid conodonts. In R. J. Aldridge (Ed.), Palaeobiology of conodonts (pp. 91–104). Chichester: Ellis Horwood.

    Google Scholar 

  • Suttner, T. J., Kido, E., & Briguglio, A. (2017). A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus motion model for Icriodontidae. Journal of Systematic Palaeontology, 16, 909–926.

    Article  Google Scholar 

  • Sweet, W. C. (1988). The conodonta: Morphology, taxonomy, paleoecology, and evolutionary history of a long-extinct animal phylum. Oxford: Clarendon Press.

    Google Scholar 

  • Sweet, W. C., & Donoghue, P. C. J. (2001). Conodonts: Past, present, future. Journal of Paleontology, 75(6), 1174–1184.

    Article  Google Scholar 

  • Trotter, J. A., Fitz, J. D., Kokkonen, G. H., & Barnes, C. R. (2007). New insights into the ultrastructure, permeability, and integrity of conodont apatite determined by transmission electron microscopy. Lethaia, 40, 97–110.

    Article  Google Scholar 

  • Trotter, J. A., Korsch, M. J., Nicoll, R. S., & Whitford, D. J. (1999). Sr isotopic variation in single conodont elements: Implications for defining the Sr seawater curve. Bollettino della Societa Paleontologica Italiana, 37(2–3), 507–514.

    Google Scholar 

  • Voldman, G. G., Albanesi, G. L., & Ramos, V. A. (2009). Ordovician metamorphic event in the carbonate platform of the Argentine Precordillera: Implications for the geotectonic evolution of the proto-Andean margin of Gondwana. Geology, 37, 311–314.

    Article  Google Scholar 

  • Voldman, G. G., Bustos-Marún, R. A., & Albanesi, G. L. (2010). Calculation of the conodont Color Alteration Index (CAI) for complex thermal histories. International Journal of Coal Geology, 82(1–2), 45–50.

    Article  Google Scholar 

  • Wenzel, B., Lécuyer, C., & Joachimski, M. M. (2000). Comparing oxygen isotope records of Silurian calcite and phosphate–δ18O compositions of brachiopods and conodonts. Geochimica et Cosmochimica Acta, 64(11), 1859–1872.

    Article  Google Scholar 

  • Wiederer, U., Königschof, P., Feist, R., Franke, W., & Doublier, M. P. (2002). Low grade metamorphism in the Montagne Noire (S–France): Conodont Alteration Index (CAI) in Paleozoic carbonates and implications for the exhumation of hot metamorphic core complex. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 393–407.

    Google Scholar 

  • Zhang, S., & Barnes, C. R. (2007). Late Ordovician-early Silurian conodont biostratigraphy and thermal maturity, Hudson Bay Basin. Bulletin of Canadian Petroleum Geology, 55, 179–216.

    Article  Google Scholar 

  • Zhang, M., Jiang, H., Purnell, M. A., & Lai, X. (2017). Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: Articulated skeletons of Hindeodus. Palaeontology, 60, 595–608.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreepat Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature India Private Limited

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, S. (2020). Conodonts. In: Fundamentals of Invertebrate Palaeontology. Springer Geology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3962-8_5

Download citation

Publish with us

Policies and ethics