Skip to main content

Circadian Waveform and Its Significance for Clock Organization and Plasticity

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

The daily rotation of the earth creates a strong selection pressure for the evolution of endogenous circadian clocks that, at least in mammals, are generally phase shifted slowly and incrementally by light. Because the earth’s axis of rotation is tilted relative to the revolution around the sun, there is an additional selection pressure for clocks to adjust their waveform (i.e., shape of the daily oscillation) to match seasonal variation in daylength. With a focus on rodents, this chapter reviews protocols demonstrating circadian waveform plasticity and its relationship to the functional organization of the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Manipulation of waveform uncovers additional novel and unanticipated effects on the lability of circadian timing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties SCN: suprachiasmatic nucleus. Annu Rev Physiol 72:551–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35(1):445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mistlberger RE (2011) Neurobiology of food anticipatory circadian rhythms. Physiol Behav 104(4):535–545

    Article  CAS  PubMed  Google Scholar 

  4. Achermann P, BorbÕly AA (2010) Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 5th edn. Elsevier, St. Louis, pp 431–444

    Google Scholar 

  5. Goldman BD (2001) Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms 16(4):283–301

    Article  CAS  PubMed  Google Scholar 

  6. Nelson RJ, Denlinger DL, Somers DE (eds) (2010) Photoperiodism: the biological calendar. Oxford University Press, Oxford/New York, pp 1–596

    Google Scholar 

  7. Schwartz WJ, de La Iglesia HO, Zlomanczuk P, Illnerova H (2001) Encoding Le Quattro stagioni within the mammalian brain: photoperiodic orchestration through the suprachiasmatic nucleus. J Biol Rhythms 16(4):302–311

    Article  CAS  PubMed  Google Scholar 

  8. Pittendrigh CS, Elliott J, Takamura T (1984) The circadian component in photoperiodic induction. Ciba Found Symp [Internet] 104:26–41, Available from: <Go to ISI>://A1984SK52800005

    Google Scholar 

  9. Wehr TA (2001) Photoperiodism in humans and other primates: evidence and implications. J Biol Rhythms 16(4):348–364

    Article  CAS  PubMed  Google Scholar 

  10. Elliott J, Tamarkin L (1994) Complex circadian regulation of pineal melatonin and wheel-running in Syrian hamsters. J Comp Physiol A 174(4):469–484

    Article  CAS  PubMed  Google Scholar 

  11. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents – V. Pacemaker structure: a clock for all seasons. J Comp Physiol A 106(3):333–355

    Article  Google Scholar 

  12. Evans JA, Gorman MR (2016) In synch but not in step: circadian clock circuits regulating plasticity in daily rhythms. Neuroscience [internet]. IBRO 320:259–280, Available from: http://linkinghub.elsevier.com/retrieve/pii/S0306452216001159

    CAS  Google Scholar 

  13. Travnickova Z, Sumova A, Peters R, Schwartz WJ, Illnerova H, Peters R et al (1996) Photoperiod-dependent correlation between light-induced SCN c-fos expression and resetting of circadian phase Photoperiod-dependent SCN c-fos expression correlation and resetting between light-induced of circadian phase. Am J Physiol 271(4):R825–R831

    CAS  PubMed  Google Scholar 

  14. Coomans CP, Ramkisoensing A, Meijer JH (2015) The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol 37:29–42

    Article  PubMed  Google Scholar 

  15. Sumova A, Travnickova Z, Peters R, Schwartz WJ, Illnerova H (1995) The rat suprachiasmatic nucleus is a clock for all seasons. Proc Natl Acad Sci U S A 92(17):7754–7758, Available from: http://www.ncbi.nlm.nih.gov/pubmed/7644490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de la Iglesia HO, Meyer J, Carpino A, Schwartz WJ (2000) Antiphase oscillation of the left and right suprachiasmatic nuclei. Science 290(5492):799–801

    Article  PubMed  Google Scholar 

  17. Yan L, Foley NC, Bobula JM, Kriegsfeld LJ, Silver R (2005) Two antiphase oscillations occur in each suprachiasmatic nucleus of behaviorally split hamsters. J Neurosci 25(39):9017–9026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puchalski W, Lynch GR (1986) Evidence for differences in the circadian organization of hamsters exposed to short day photoperiod. J Comp Physiol A 159(1):7–11

    Article  CAS  PubMed  Google Scholar 

  19. Kliman RM, Lynch GR (1992) Evidence for genetic variation in the occurrence of the photoresponse of the Djungarian hamster, Phodopus sungorus. J Biol Rhythms 7(2):161–173, Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1611131

    Article  CAS  PubMed  Google Scholar 

  20. Goldman SL, Dhandapani K, Goldman BD (2000) Genetic and environmental influences on short-day responsiveness in Siberian hamsters (Phodopus sungorus). J Biol Rhythms 15(5):417–428

    Article  CAS  PubMed  Google Scholar 

  21. Ruby NF, Saran A, Kang T, Franken P, Heller HC (1996) Siberian hamsters free run or become arrhythmic after a phase delay of the photocycle. Am J Physiol 271(4 Pt 2):R881–R890, Available from: http://www.ncbi.nlm.nih.gov/pubmed/8897977

  22. Schöttner K, Schmidt M, Hering A, Schatz J, Weinert D (2012) Short-day response in djungarian hamsters of different circadian phenotypes. Chronobiol Int 29(4):430–442

    Article  PubMed  Google Scholar 

  23. Grone B, Chang D, Bourgin P, Cao V, Fernald R, Heller H et al (2011) Acute light exposure suppresses circadian rhythms in clock gene expression. J Biol Rhythms 26(1):78–81

    Article  PubMed  Google Scholar 

  24. Illnerova H, Vanecek J (1987) Dynamics of discrete entrainment of the circadian rhythm in the rat pineal N-acetyltransferase activity during transient cycles. J Biol Rhythms 2(2):95–108, Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2979657

    Article  CAS  PubMed  Google Scholar 

  25. Evans JA, Elliott JA, Gorman MR (2005) Circadian entrainment and phase resetting differ markedly under dimly illuminated versus completely dark nights. Behav Brain Res 162(1):116–126

    Article  PubMed  Google Scholar 

  26. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents - IV. Entrainment: pacemaker as clock. J Comp Physiol A 106(3):291–331

    Article  Google Scholar 

  27. Mrosovsky N, Janik D (1993) Behavioral decoupling of circadian rhythms. J Biol Rhythms 8(1):57–65, Available from: http://jbr.sagepub.com/cgi/doi/ 10.1177/074873049300800105

    Article  CAS  PubMed  Google Scholar 

  28. Gorman MR, Lee TM (2001) Daily novel wheel running reorganizes and splits hamster circadian activity rhythms. J Biol Rhythms 16(6):541–551, Available from: http://jbr.sagepub.com/cgi/doi/ 10.1177/074873001129002231

    Article  CAS  PubMed  Google Scholar 

  29. Gorman MR, Elliott JA (2003) Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species. J Biol Rhythms 18(6):502–512, Available from: http://www.ncbi.nlm.nih.gov/pubmed/14667151

    Article  PubMed  Google Scholar 

  30. Harrison EM, Gorman MR (2012). Changing the waveform of circadian rhythms: considerations for shift-work. Front Neurol 3:72

    Google Scholar 

  31. Edelstein K, De La Iglesia HO, Mrosovsky N (2003) Period gene expression in the suprachiasmatic nucleus of behaviorally decoupled hamsters. Mol Brain Res 114(1):40–45

    Article  CAS  PubMed  Google Scholar 

  32. Gorman MR, Yellon SM, Lee TM (2001) Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms. J Biol Rhythms 16(6):552–563, Available from: http://www.ncbi.nlm.nih.gov/pubmed/11760013

    Article  CAS  PubMed  Google Scholar 

  33. Yan L, Silver R, Gorman M (2010) Reorganization of suprachiasmatic nucleus networks under 24-h LDLD conditions. J Biol Rhythms 25(1):19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Watanabe T, Naito E, Nakao N, Tei H, Yoshimura T, Ebihara S (2007) Bimodal clock gene expression in mouse. J Biol Rhythms 22(1):58–68

    Article  CAS  PubMed  Google Scholar 

  35. Gorman MR, Elliott JA, Evans JA (2003) Plasticity of hamster circadian entrainment patterns depends on light intensity. Chronobiol Int 20(2):233–248, Available from: http://informahealthcare.com/doi/abs/ 10.1081/CBI-120018576

    Article  PubMed  Google Scholar 

  36. Evans JA, Elliott JA, Gorman MR (2012) Individual differences in circadian waveform of Siberian hamsters under multiple lighting conditions. J Biol Rhythms 27(5):410–419

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gorman MR, Elliott JA (2004) Dim nocturnal illumination alters coupling of circadian pacemakers in Siberian hamsters, Phodopus sungorus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190(8):631–639

    Article  CAS  PubMed  Google Scholar 

  38. Fonken LK, Nelson RJ (2011) Illuminating the deleterious effects of light at night. F1000 Med Rep 3:18

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fonken LK, Aubrecht TG, MelĂ©ndez-FernĂ¡ndez OH, Weil ZM, Nelson RJ (2013) Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms 28(4):262–271

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A et al (2010) Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A 107(43):18664–18669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fonken LK, Nelson RJ (2014) The effects of light at night on circadian clocks and metabolism. Endocr Rev 35:648–670

    Article  CAS  PubMed  Google Scholar 

  42. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME (2013) Adverse health effects of nighttime lighting. Am J Prev Med 45(3):343–346

    Article  PubMed  Google Scholar 

  43. Smolensky MH, Sackett-Lundeen LL, Portaluppi F (2015) Nocturnal light pollution and underexposure to daytime sunlight: complementary mechanisms of circadian disruption and related diseases. Chronobiol Int 0528:1–20

    Google Scholar 

  44. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14(4):697–706

    Article  CAS  PubMed  Google Scholar 

  45. Herzog ED, Geusz ME, Khalsa SBS, Straume M, Block GD (1997) Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res 757(2):285–290

    Article  CAS  PubMed  Google Scholar 

  46. Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14(24):2289–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ (2011) Intrinsic regulation of spatiotemporal organization within the suprachiasmatic nucleus. PLoS One 6(1):e15869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M et al (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408–1412

    Article  CAS  PubMed  Google Scholar 

  49. Schaap J, Albus H, VanderLeest HT, Eilers PHC, DĂ©tĂ¡ri L, Meijer JH (2003) Heterogeneity of rhythmic suprachiasmatic nucleus neurons: implications for circadian waveform and photoperiodic encoding. Proc Natl Acad Sci U S A 100(26):15994–15999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brown TM, Piggins HD (2009) Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod. J Biol Rhythms 24(1):44–54

    Article  CAS  PubMed  Google Scholar 

  51. Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K (2007) Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A 104(18):7664–7669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ (2013) Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. Neuron 80(4):973–983, Elsevier Inc

    Article  CAS  PubMed  Google Scholar 

  53. Jagota A, de la Iglesia HO, Schwartz WJ (2000) Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat Neurosci 3(4):372–376

    Article  CAS  PubMed  Google Scholar 

  54. Davidson AJ, Castanon-Cervantes O, Leise TL, Molyneux PC, Harrington ME (2009) Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. Eur J Neurosci 29(1):171–180

    Article  PubMed  Google Scholar 

  55. Ciarleglio CM, Axley JC, Strauss BR, Gamble KL, McMahon DG (2011) Perinatal photoperiod imprints the circadian clock. Nat Neurosci 14(1):25–27

    Article  CAS  PubMed  Google Scholar 

  56. An S, Harang R, Meeker K, Granados-Fuentes D, Tsai CA, Mazuski C et al (2013) A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci U S A 110(46):E4355–E4361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Freeman GM, Krock RM, Aton SJ, Thaben P, Herzog ED (2013) GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron 78(5):799–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Evans J, Elliott J, Gorman M (2004) Photoperiod differentially modulates photic and nonphotic phase response curves of hamsters. Am J Physiol Regul Integr Comp Physiol 286(3):R539–R546

    Article  CAS  PubMed  Google Scholar 

  59. Glickman G, Webb IC, Elliott JA, Baltazar RM, Reale ME, Lehman MN et al (2012) Photic sensitivity for circadian response to light varies with photoperiod. J Biol Rhythms 27(4):308–318

    Article  PubMed  Google Scholar 

  60. Glickman GL, Harrison EM, Elliott JA, Gorman MR (2014) Increased photic sensitivity for phase resetting but not melatonin suppression in Siberian hamsters under short photoperiods. Horm Behav 65(3):301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y et al (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342(6154):85–90

    Article  CAS  PubMed  Google Scholar 

  62. Evans JA, Elliott JA, Gorman MR (2007) Circadian effects of light no brighter than moonlight. J Biol Rhythms 22(4):356–367

    Article  PubMed  Google Scholar 

  63. Harrison EM, Gorman MR (2015) Rapid adjustment of circadian clocks to simulated travel to time zones across the globe. J Biol Rhythms 30(6):557–562

    Article  CAS  PubMed  Google Scholar 

  64. Illnerova H, Hoffmann K, Vanecek J (1984) Adjustment of pineal melatonin and N-acetyltransferase rhythms to change from long to short photoperiod in the Djungarian hamster Phodopus sungorus. Neuroendocrinology 38(3):226–231

    Article  CAS  PubMed  Google Scholar 

  65. Gibson EM, Humber SA, Jain S, Williams WP, Zhao S, Bentley GE et al (2008) Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology 149(10):4958–4969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

JAE acknowledges support from NIH grant R01NS091234 and Whitehall Foundation grant 2014-12-65. MRG acknowledges support from NSF grant IBN-0346391, NIH grant NICHD-36460, and ONR grant N00014-13-1-0285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Gorman .

Editor information

Editors and Affiliations

Key Questions of Interest and Suggested Readings

Key Questions of Interest and Suggested Readings

  • How do taxonomically diverse organisms adapt to photoperiodic change? [6]

  • How might circadian waveform manipulations be relevant to human shift workers? [30]

  • What are the emergent properties of SCN networks? [12, 14]

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Gorman, M.R., Harrison, E.M., Evans, J.A. (2017). Circadian Waveform and Its Significance for Clock Organization and Plasticity. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_4

Download citation

Publish with us

Policies and ethics