Skip to main content

Strategies of Natural Killer (NK) Cell Recognition and Their Roles in Tumor Immunosurveillance

  • Chapter
How the Immune System Recognizes Self and Nonself

Abstract

Natural Killer cells (NK cells) represent an interesting epistemological example in Immunology. First considered as “background noise” in T-cell cytolytic assays, Natural Killer (NK) cells were characterized more than 30 years ago as cytotoxic effectors of the innate immune system (Kiessling et al. 1975). Later, NK cells were recognized as a peculiar type of large granular lymphocytes that are widespread throughout the body (Lanier et al. 1986), being present in both lymphoid organs and non-lymphoid peripheral tissues (Cooper et al. 2004; Ferlazzo and Munz 2004). Their specificity for a variety of tumor cells, virus-infected cells or allogeneic cells along with their lack of antigen-specific receptors, have puzzled immunologists for many years. Since this time, a series of discoveries have shed light on the mechanisms of NK cell effector function and have simultaneously broadened our views on immune detection strategies (Carayannopoulos and Yokoyama 2004; Lanier 2005; Moretta et al. 2002; Stewart et al. 2006; Vivier and Biron 2002). Such discoveries include “missing-self recognition” (via major histocompatibility complex [MHC] class I) (Kärre et al. 1986), the identification of inhibitory cell surface receptors that modulate NK cell activation (via Immunoreceptor Tyrosine-based Inhibition Motifs: ITIM) (Vély and Vivier 1997) or the “stress-induced self recognition” (via NKG2D) (Raulet 2003) (Fig. 1). The involvement of NK cells in the control of viral and parasitic infections, in auto-immunity, in reproduction as well as in the clinical outcome of hematopoietic transplants has been reviewed recently (Carayannopoulos and Yokoyama 2004; Johansson et al. 2005; Korbel et al. 2004; Lodoen and Lanier 2005; Orange and Ballas 2006; Parham 2005; Ruggeri et al. 2005; Zhang et al. 2005).

Natural killer cell recognition strategies. Schematic representation of the mode of NK cell interaction with partner cells (see text for details)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abi-Rached L, Parham P (2005) Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J Exp Med 201:1319–1332

    PubMed  CAS  Google Scholar 

  • Anderson SK (2006) Transcriptional regulation of NK cell receptors. Curr Top Microbiol Immunol 298:59–75

    PubMed  CAS  Google Scholar 

  • Andre P, Castriconi R, Espeli M, Anfossi N, Juarez T, Hue S, Conway H, Romagne F, Dondero A, Nanni M, et al (2004) Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol 34:961–971

    PubMed  CAS  Google Scholar 

  • Andrew DP, Rott LS, Kilshaw PJ, Butcher EC (1996) Distribution of alpha 4 beta 7 and alpha E beta 7 integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes. Eur J Immunol 26:897–905

    PubMed  CAS  Google Scholar 

  • Anfossi N, André P, Guia S, Falk C, Stewart CA, Breso V, Roetynck S, Frassati C, Reviron D, Middleton D, et al (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342

    PubMed  CAS  Google Scholar 

  • Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326

    PubMed  CAS  Google Scholar 

  • Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31:2680–2689

    PubMed  CAS  Google Scholar 

  • Arnon TI, Achdout H, Lieberman N, Gazit R, Gonen-Gross T, Katz G, Bar-Ilan A, Bloushtain N, Lev M, Joseph A, et al (2004) The mechanisms controlling the recognition of tumor-and virus-infected cells by NKp46. Blood 103:664–672

    PubMed  CAS  Google Scholar 

  • Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G, Gazit R, Gonen-Gross T, Hanna J, Nahari E, et al (2005) Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol 6:515–523

    PubMed  CAS  Google Scholar 

  • Assarsson E, Kambayashi T, Schatzle JD, Cramer SO, von Bonin A, Jensen PE, Ljunggren HG, Chambers BJ (2004) NK cells stimulate proliferation of T and NK cells through 2B4/CD48 interactions. J Immunol 173:174–180

    PubMed  CAS  Google Scholar 

  • Bacon L, Eagle RA, Meyer M, Easom N, Young NT, Trowsdale J (2004) Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol 173:1078–1084

    PubMed  CAS  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    PubMed  CAS  Google Scholar 

  • Barao I, Hanash AM, Hallett W, Welniak LA, Sun K, Redelman D, Blazar BR, Levy RB, Murphy WJ (2006) Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+CD25+ regulatory T cells. Proc Natl Acad Sci USA 103:5460–5465

    PubMed  CAS  Google Scholar 

  • Barber DF, Long EO (2003) Coexpression of CD58 or CD48 with intercellular adhesion molecule 1 on target cells enhances adhesion of resting NK cells. J Immunol 170:294–299

    PubMed  CAS  Google Scholar 

  • Barber DF, Faure M, Long EO (2004) LFA-1 contributes an early signal for NK cell cytotoxicity. J Immunol 173:3653–3659

    PubMed  CAS  Google Scholar 

  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    PubMed  CAS  Google Scholar 

  • Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signaling. Nature 430:257–263

    PubMed  CAS  Google Scholar 

  • Biassoni R, Pessino A, Malaspina A, Cantoni C, Bottino C, Sivori S, Moretta L, Moretta A (1997) Role of amino acid position 70 in the binding affinity of p50.1 and p58.1 receptors for HLA-Cw4 molecules. Eur J Immunol 27:3095–3099

    PubMed  CAS  Google Scholar 

  • Blaser C, Kaufmann M, Pircher H (1998) Virus-activated CD8 T cells and lymphokine-activated NK cells express the mast cell function-associated antigen, an inhibitory C-type lectin. J Immunol 161:6451–6454

    PubMed  CAS  Google Scholar 

  • Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E, Korc M, Vlodavsky I, Bovin NV, Porgador A (2004) Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol 173:2392–2401

    PubMed  CAS  Google Scholar 

  • Boles KS, Barchet W, Diacovo T, Cella M, Colonna M (2005) The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood 106:779–786

    PubMed  CAS  Google Scholar 

  • Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG (1998) Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med 187:813–818

    PubMed  CAS  Google Scholar 

  • Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, et al (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567

    PubMed  CAS  Google Scholar 

  • Bottino C, Castriconi R, Moretta L, Moretta A (2005) Cellular ligands of activating NK receptors. Trends Immunol 26:221–226

    PubMed  CAS  Google Scholar 

  • Boyington JC, Sun PD (2002) A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Mol Immunol 38:1007–1021

    PubMed  CAS  Google Scholar 

  • Braud V, Jones EY, McMichael M (1997) The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur J Immunol 27:1164–1169

    PubMed  CAS  Google Scholar 

  • Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A B and C. Nature 391:795–79

    PubMed  CAS  Google Scholar 

  • Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL, Blattenberger EA, Dubbelde CE, Stone LR, Scalzo AA, Yokoyama WM (2001) Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292:934–937

    PubMed  CAS  Google Scholar 

  • Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO (2005a) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:1001–1012

    PubMed  CAS  Google Scholar 

  • Bryceson YT, March ME, Ljunggren HG, Long EO (2005b) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107: 159–66

    PubMed  Google Scholar 

  • Burshtyn DN, Scharenberg AM, Wagtmann N, Rajagopalan S, Berrada K, Yi T, Kinet J-P, Long EO (1996) Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity 4:77–85

    PubMed  CAS  Google Scholar 

  • Carayannopoulos LN, Yokoyama WM (2004) Recognition of infected cells by natural killer cells. Curr Opin Immunol 16:26–33

    PubMed  CAS  Google Scholar 

  • Carr WH, Pando MJ, Parham P (2005) KIR3DL1 polymorphisms that affect NK cell inhibition by HLA-Bw4 ligand. J Immunol 175:5222–5229

    PubMed  CAS  Google Scholar 

  • Carrington M, Martin MP (2006) The impact of variation at the KIR gene cluster on human disease. Curr Top Microbiol Immunol 298:225–257

    PubMed  CAS  Google Scholar 

  • Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125

    PubMed  CAS  Google Scholar 

  • Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, Bottino C, Moretta A (2004) Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 64:9180–9184

    PubMed  CAS  Google Scholar 

  • Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    PubMed  CAS  Google Scholar 

  • Cerwenka A, Bakker ABH, McClanahan T, Wagner J, Wu J, Phillips JH, Lanier LL (2000) Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12:721–727

    PubMed  CAS  Google Scholar 

  • Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521–11526

    PubMed  CAS  Google Scholar 

  • Chan CW, Crafton E, Fan HN, Flook J, Yoshimura K, Skarica M, Brockstedt D, Dubensky TW, Stins MF, Lanier LL, et al (2006) Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med 12:207–213

    PubMed  CAS  Google Scholar 

  • Chang C, Dietrich J, Harpur AG, Lindquist JA, Haude A, Loke YW, King A, Colonna M, Trowsdale J, Wilson MJ (1999) Cutting edge: KAP10, a novel transmembrane adapter protein genetically linked to DAP12 but with unique signaling properties. J Immunol 163:4651–4654

    PubMed  CAS  Google Scholar 

  • Chapman TL, Heikeman AP, Bjorkman PJ (1999) The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11:603–613

    PubMed  CAS  Google Scholar 

  • Chiesa S, Mingueneau M, Fuseri N, Malissen B, Raulet DH, Malissen M, Vivier E, Tomasello E (2006) Multiplicity and plasticity of natural killer cell signaling pathways. Blood 107: 2364–2372

    PubMed  CAS  Google Scholar 

  • Colonna M, Navarro F, Bellon T, Liano M, Garcia P, Samaridis J, Angman L, Cella M, Lopez-Botet M (1997) A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 186:1809–1818

    PubMed  CAS  Google Scholar 

  • Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    PubMed  CAS  Google Scholar 

  • Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA (2004) NK cell and DC interactions. Trends Immunol 25:47–52

    PubMed  CAS  Google Scholar 

  • Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133

    PubMed  CAS  Google Scholar 

  • Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E, Held W (2005) Altered NKG2D function in NK cells induced by chronic exposure to NKG2D-ligand expressing tumor cells. Blood 106:1711–1717

    PubMed  CAS  Google Scholar 

  • Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168:1356–1361

    PubMed  CAS  Google Scholar 

  • Crocker PR (2005) Siglecs in innate immunity. Curr Opin Pharmacol 5:431–437

    PubMed  CAS  Google Scholar 

  • Daeron M, Vivier E (1999) Biology of immunoreceptor tyrosine-based inhibition motif-bearing molecules. Curr Top Microbiol Immunol 244:1–12

    PubMed  CAS  Google Scholar 

  • Dall’Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, Bardos P, Watier H, Thibault G (2004) Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 64:4664–4669

    PubMed  CAS  Google Scholar 

  • Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF (2001) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15:83–93

    PubMed  CAS  Google Scholar 

  • de Haas M, Koene HR, Kleijer M, de Vries E, Simsek S, van Tol MJ, Roos D, von dem Borne AE (1996) A triallelic Fc gamma receptor type IIIA polymorphism influences the binding of human IgG by NK cell Fc gamma RIIIa. J Immunol 156:3948–3955

    PubMed  Google Scholar 

  • de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    PubMed  Google Scholar 

  • de Vries E, Koene HR, Vossen JM, Gratama JW, von dem Borne AE, Waaijer JL, Haraldsson A, de Haas M, van Tol MJ (1996) Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood 88:3022–3027

    PubMed  Google Scholar 

  • Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124

    PubMed  CAS  Google Scholar 

  • Desrosiers MP, Kielczewska A, Loredo-Osti JC, Adam SG, Makrigiannis AP, Lemieux S, Pham T, Lodoen MB, Morgan K, Lanier LL, Vidal SM (2005) Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat Genet 37:593–599

    PubMed  CAS  Google Scholar 

  • Di Santo JP (2006) Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24:257–286

    PubMed  Google Scholar 

  • Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH (2000) Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1:119–126

    PubMed  CAS  Google Scholar 

  • Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171

    PubMed  CAS  Google Scholar 

  • Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E, Raulet DH (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3:1142–1149

    PubMed  CAS  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004a) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004b) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    PubMed  CAS  Google Scholar 

  • Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, Diamond MS, Koebel CM, Arthur C, White JM, Schreiber RD (2005) A critical function for type I interferons in cancer immunoediting. Nat Immunol 6:722–729

    PubMed  CAS  Google Scholar 

  • Ebert LM, Meuter S, Moser B (2006) Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J Immunol 176:4331–4336

    PubMed  CAS  Google Scholar 

  • Falco M, Biassoni R, Bottino C, Vitale M, Sivori S, Augugliaro R, Moretta L, Moretta A (1999) Identification and molecular cloning of p75/AIRM1 a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med 190:793–802

    PubMed  CAS  Google Scholar 

  • Farrar MA, Schreiber RD (1993) The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 11:571–611

    PubMed  CAS  Google Scholar 

  • Ferlazzo G, Munz C (2004) NK cell compartments and their activation by dendritic cells. J Immunol 172:1333–1339

    PubMed  CAS  Google Scholar 

  • Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Munz C (2004) The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172:1455–1462

    PubMed  CAS  Google Scholar 

  • Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH (2005) A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105:4416–4423

    PubMed  CAS  Google Scholar 

  • Franksson L, Sundback J, Achour A, Bernlind J, Glas R, Kärre K (1999) Peptide dependency and selectivity of the NK cell inhibitory receptor Ly-49C. Eur J Immunol 29:2748–2758

    PubMed  CAS  Google Scholar 

  • Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172:3994–3998

    PubMed  CAS  Google Scholar 

  • Fuchs A, Cella M, Kondo T, Colonna M (2005) Paradoxic inhibition of human natural interferonproducing cells by the activating receptor NKp44. Blood 106:2076–2082

    PubMed  CAS  Google Scholar 

  • Furukawa H, Yabe T, Watanabe K, Miyamoto R, Miki A, Akaza T, Tadokoro K, Tohma S, Inoue T, Yamamoto K, Juji T (1999) Tolerance of NK and LAK activity for HLA class I-deficient targets in a TAP1-deficient patient (bare lymphocyte syndrome type I). Hum Immunol 60:32–40

    PubMed  CAS  Google Scholar 

  • Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13:114–119

    PubMed  CAS  Google Scholar 

  • Gardiner CM, Guethlein LA, Shilling HG, Pando M, Carr WH, Rajalingam R, Vilches C, Parham P (2001) Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J Immunol 166:2992–3001

    PubMed  CAS  Google Scholar 

  • Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190

    PubMed  CAS  Google Scholar 

  • Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523

    PubMed  CAS  Google Scholar 

  • George TC, Mason LH, Ortaldo JR, Kumar V, Bennett M (1999) Positive recognition of MHC class I molecules by the Ly49D receptor of murine NK cells. J Immunol 162:2035–2043

    PubMed  CAS  Google Scholar 

  • Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, et al (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085

    PubMed  CAS  Google Scholar 

  • Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M (2002) NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 3:1150–1155

    PubMed  CAS  Google Scholar 

  • Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605–609

    PubMed  CAS  Google Scholar 

  • Gonzalez S, Groh V, Spies T (2006) Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol 298:121–138

    PubMed  CAS  Google Scholar 

  • Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gammadelta T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884

    PubMed  CAS  Google Scholar 

  • Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260

    PubMed  CAS  Google Scholar 

  • Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    PubMed  CAS  Google Scholar 

  • Grundemann C, Bauer M, Schweier O, von Oppen N, Lassing U, Saudan P, Becker KF, Karp K, Hanke T, Bachmann MF, Pircher H (2006) Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J Immunol 176:1311–1315

    PubMed  Google Scholar 

  • Guthmann MD, Tal M, Pecht I (1995) A secretion inhibitory signal transduction molecule on mast cells is another C-type lectin. Proc Natl Acad Sci USA 92:9397–9401

    PubMed  CAS  Google Scholar 

  • Hahn WC, Weinberg RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2:331–341

    PubMed  CAS  Google Scholar 

  • Haliotis T, Ball JK, Dexter D, Roder JC (1985) Spontaneous and induced primary oncogenesis in natural killer (NK)-cell-deficient beige mutant mice. Int J Cancer 35:505–513

    PubMed  CAS  Google Scholar 

  • Hamerman JA, Lanier LL (2006) Inhibition of immune responses by ITAM-bearing receptors. Sci STKE 2006:re1

    Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hanke T, Corral L, Vance RE, Raulet DH (1998) 2F1 antigen, the mouse homolog of the rat “mast cell function-associated antigen”, is a lectin-like type II transmembrane receptor expressed by natural killer cells. Eur J Immunol 28:4409–4417

    PubMed  CAS  Google Scholar 

  • Hanke T, Takizawa H, McMahon CW, Busch DH, Pamer EG, Miller JD, Altman JD, Liu Y, Cado D, Lemonnier FA, et al (1999) Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity 11:67–77

    PubMed  CAS  Google Scholar 

  • Hansasuta P, Dong T, Thananchai H, Weekes M, Willberg C, Aldemir H, Rowland-Jones S, Braud VM (2004) Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur J Immunol 34:1673–1679

    PubMed  CAS  Google Scholar 

  • Hayakawa Y, Takeda K, Yagita H, Kakuta S, Iwakura Y, Van Kaer L, Saiki I, Okumura K (2001) Critical contribution of IFN-gamma and NK cells but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide. Eur J Immunol 31:1720–1727

    PubMed  CAS  Google Scholar 

  • Hazenbos WL, Gessner JE, Hofhuis FM, Kuipers H, Meyer D, Heijnen IA, Schmidt RE, Sandor M, Capel PJ, Daeron M, et al (1996) Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity 5:181–188

    PubMed  CAS  Google Scholar 

  • Helander TS, Timonen T (1998) Adhesion in NK cell function. Curr Top Microbiol Immunol 230:89–99

    PubMed  CAS  Google Scholar 

  • Herberman RB, Nunn ME, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors I. Distribution of reactivity and specificity. Int J Cancer 16:216–229

    PubMed  CAS  Google Scholar 

  • Hollyoake M, Campbell RD, Aguado B (2005) NKp30 (NCR3) is a pseudogene in 12 inbred and wild mouse strains, but an expressed gene in Mus caroli. Mol Biol Evol 22:1661–1672

    PubMed  CAS  Google Scholar 

  • Holmes MA, Li P, Petersdorf EW, Strong RK (2002) Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D. J Immunol 16:1395–1400

    Google Scholar 

  • Hsu KC, Chida S, Geraghty DE, Dupont B (2002) The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunol Rev 190:40–52

    PubMed  CAS  Google Scholar 

  • Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356:1795–1799

    PubMed  CAS  Google Scholar 

  • Ishiyama K, Ohdan H, Ohira M, Mitsuta H, Arihiro K, Asahara T (2006) Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 43:362–372

    PubMed  CAS  Google Scholar 

  • Ito A, Handa K, Withers DA, Satoh M, Hakomori S (2001a) Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: possible role of disialogangliosides in tumor progression. FEBS Lett 504:82–86

    PubMed  CAS  Google Scholar 

  • Ito A, Handa K, Withers DA, Satoh M, Hakomori S (2001b) Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: possible role of disialogangliosides in tumor progression. FEBS Lett 498:116–120

    PubMed  CAS  Google Scholar 

  • Ito M, Maruyama T, Saito N, Koganei S, Yamamoto K, Matsumoto N (2006) Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med 203:289–295

    PubMed  Google Scholar 

  • Jabri B, De Serre NP, Cellier C, Evans K, Gache C, Carvalho C, Mougenot JF, Allez M, Jian R, Desreumaux P, et al (2000) Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118:867–879

    PubMed  CAS  Google Scholar 

  • Jakobisiak M, Lasek W, Golab J (2003) Natural mechanisms protecting against cancer. Immunol Lett 90:103–122

    PubMed  CAS  Google Scholar 

  • Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH (2002) The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17:19–29

    PubMed  CAS  Google Scholar 

  • Janeway CA, Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    PubMed  CAS  Google Scholar 

  • Jawahar S, Moody C, Chan M, Finberg R, Geha R, Chatila T (1996) Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II). Clin Exp Immunol 103:408–413

    PubMed  CAS  Google Scholar 

  • Johansson MH, Bieberich C, Jay G, Kärre K, Hoglund P (1997) Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J Exp Med 186:353–364

    PubMed  CAS  Google Scholar 

  • Johansson S, Berg L, Hall H, Hoglund P (2005) NK cells: elusive players in autoimmunity. Trends Immunol 26:613–618

    PubMed  CAS  Google Scholar 

  • Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561

    PubMed  CAS  Google Scholar 

  • Kärre K (1997) How to recognize a foreign submarine. Immunol Rev 155:5–9

    PubMed  Google Scholar 

  • Kärre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    PubMed  Google Scholar 

  • Katz G, Gazit R, Arnon TI, Gonen-Gross T, Tarcic G, Markel G, Gruda R, Achdout H, Drize O, Merims S, Mandelboim O (2004) MHC class I-independent recognition of NK-activating receptor KIR2DS4. J Immunol 173:1819–1825

    PubMed  CAS  Google Scholar 

  • Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163:1906–1913

    PubMed  CAS  Google Scholar 

  • Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, Smyth MJ (2002a) Induction of tumor-specific T-cell memory by NK cell-mediated tumor rejection. Nat Immunol 3:83–90

    PubMed  CAS  Google Scholar 

  • Kelly JM, Takeda K, Darcy PK, Yagita H, Smyth MJ (2002b) A role for IFN-gamma in primary and secondary immunity generated by NK cell-sensitive tumor-expressing CD80 in vivo. J Immunol 168:4472–4479

    PubMed  CAS  Google Scholar 

  • Kiessling R, Klein E, Wigzell H (1975a) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117

    PubMed  CAS  Google Scholar 

  • Kilshaw PJ, Higgins JM (2002) Alpha E: no more rejection? J Exp Med 196:873–875

    PubMed  CAS  Google Scholar 

  • Kim DD, Song WC (2006) Membrane complement regulatory proteins. Clin Immunol 118:127–136

    PubMed  CAS  Google Scholar 

  • Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci USA 97: 2731–2736

    PubMed  CAS  Google Scholar 

  • Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH, Yokoyama WM (2005b) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436:709–713

    PubMed  CAS  Google Scholar 

  • Kim S, Song YJ, Higuchi DA, Kang HP, Pratt JR, Yang L, Hong CM, Poursine-Laurent J, Iizuka K, French AR, et al (2005a) Arrested natural killer cell development associated with transgene insertion into the Atf2 locus. Blood 107:1024–1030

    PubMed  Google Scholar 

  • King A, Loke YW, Chaouat G (1997) NK cells and reproduction. Immunol Today 18:64–66

    PubMed  CAS  Google Scholar 

  • Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M (1997) Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 90:1109–1114

    PubMed  CAS  Google Scholar 

  • Kojima H, Kanada H, Shimizu S, Kasama E, Shibuya K, Nakauchi H, Nagasawa T, Shibuya A (2003) CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem 278:36748–36753

    PubMed  CAS  Google Scholar 

  • Korbel DS, Finney OC, Riley EM (2004) Natural killer cells and innate immunity to protozoan pathogens. Int J Parasitol 34:1517–1528

    PubMed  CAS  Google Scholar 

  • Kraft JR, Vance RE, Pohl J, Martin AM, Raulet DH, Jensen PE (2000) Analysis of Qa-1(b) peptide binding specificity and the capacity of CD94/NKG2A to discriminate between Qa-1-peptide complexes. J Exp Med 192:613–624

    PubMed  CAS  Google Scholar 

  • Kriegeskorte AK, Gebhardt FE, Porcellini S, Schiemann M, Stemberger C, Franz TJ, Huster KM, Carayannopoulos LN, Yokoyama WM, Colonna M, et al (2005) NKG2D-independent suppression of T-cell proliferation by H60 and MICA. Proc Natl Acad Sci USA 102:11805–11810

    PubMed  CAS  Google Scholar 

  • Kumar V, McNerney ME (2005) A new self: MHC-class-I-independent natural-killer-cell selftolerance. Nat Rev Immunol 5:363–374

    PubMed  CAS  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    PubMed  CAS  Google Scholar 

  • Lanier LL, Phillips JH, Hackett J Jr, Tutt M, Kumar V (1986) Natural killer cells: Definition of a cell type rather than a function. J Immunol 137:2735–2739

    PubMed  CAS  Google Scholar 

  • Lanier LL, Corliss B, Phillips JH (1997) Arousal and inhibition of human NK cells. Immunol Rev 155:145–154

    PubMed  CAS  Google Scholar 

  • Laouar Y, Sutterwala FS, Gorelik L, Flavell RA (2005) Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6:600–607

    PubMed  CAS  Google Scholar 

  • Lee U, Santa K, Habu S, Nishimura T (1996) Murine asialo GM1+CD8+ T cells as novel interleukin-12-responsive killer T-cell precursors. Jpn J Cancer Res 87:429–432

    PubMed  CAS  Google Scholar 

  • Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE (1998) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 95:5199–5204

    PubMed  CAS  Google Scholar 

  • Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–45

    PubMed  CAS  Google Scholar 

  • Lee KM, Bhawan S, Majima T, Wei H, Nishimura MI, Yagita H, Kumar V (2003a) Cutting edge: the NK cell receptor 2B4 augments antigen-specific T-cell cytotoxicity through CD48 ligation on neighboring T cells. J Immunol 170:4881–4885

    PubMed  CAS  Google Scholar 

  • Lee SH, Zafer A, de Repentigny Y, Kothary R, Tremblay ML, Gros P, Duplay P, Webb JR, Vidal SM (2003b) Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J Exp Med 197:515–526

    PubMed  CAS  Google Scholar 

  • Lee JC, Lee KM, Kim DW, Heo DS (2004a) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340

    PubMed  CAS  Google Scholar 

  • Lee KM, McNerney ME, Stepp SE, Mathew PA, Schatzle JD, Bennett M, Kumar V (2004b) 2B4 acts as a non-major histocompatibility complex binding inhibitory receptor on mouse natural killer cells. J Exp Med 199:1245–1254

    PubMed  CAS  Google Scholar 

  • Lee KM, Forman JP, McNerney ME, Stepp S, Kuppireddi S, Guzior D, Latchman YE, Sayegh MH, Yagita H, Park CK, et al (2006) Requirement of homotypic NK-cell interactions through 2B4(CD244)/CD48 in the generation of NK effector functions. Blood 107:3181–3188

    PubMed  CAS  Google Scholar 

  • Lehmann J, Huehn J, de la Rosa M, Maszyna F, Kretschmer U, Krenn V, Brunner M, Scheffold A, Hamann A (2002) Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25− regulatory T cells. Proc Natl Acad Sci USA 99:13031–13036

    PubMed  CAS  Google Scholar 

  • Li P, Willie ST, Bauer S, Morris DL, Spies T, Strong RK (1999) Crystal structure of the MHC class I homolog MIC-A, a gammadelta T-cell ligand. Immunity 10:577–584

    PubMed  CAS  Google Scholar 

  • Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK (2001) Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat Immunol 2:443–451

    PubMed  CAS  Google Scholar 

  • Li P, McDermott G, Strong RK (2002) Crystal structures of RAE-1beta and its complex with the activating immunoreceptor NKG2D. Immunity 16:77–86

    PubMed  CAS  Google Scholar 

  • Liao NS, Bix M, Zijlstra M, Jaenisch R, Raulet D (1991) MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253:199–202

    PubMed  CAS  Google Scholar 

  • Lodoen MB, Lanier LL (2005) Viral modulation of NK cell immunity. Nat Rev Microbiol 3:59–69

    PubMed  CAS  Google Scholar 

  • Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904

    PubMed  CAS  Google Scholar 

  • Lopez-Botet M, Carretero M, Bellon T, Perez-Villar JJ, Llano M, Navarro F (1998) The CD94/NKG2 C-type lectin receptor complex. Curr Top Microbiol Immunol 230:41–52

    PubMed  CAS  Google Scholar 

  • MacFarlane AW IV, Campbell KS (2005) Signal transduction in Natural Killer cells. Curr Top Microbiol Immunol 298:23–57

    Google Scholar 

  • Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060

    PubMed  CAS  Google Scholar 

  • Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, Trowsdale J, et al (2002a) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31:429–434

    PubMed  CAS  Google Scholar 

  • Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J, Wilson MJ, Trowsdale J, Gladman D, Carrington M (2002b) Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 169: 2818–2822

    PubMed  CAS  Google Scholar 

  • McNerney ME, Kumar V (2006) The CD2 family of natural killer cell receptors. Curr Top Microbiol Immunol 298:91–120

    PubMed  CAS  Google Scholar 

  • Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, et al (2004) Coordinated induction by IL-15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–366

    PubMed  CAS  Google Scholar 

  • Messmer B, Eissmann P, Stark S, Watzl C (2006) CD48 Stimulation by 2B4 (CD244)-Expressing Targets Activates Human NK Cells. J Immunol 176:4646–4650

    PubMed  CAS  Google Scholar 

  • Middleton D, Williams F, Halfpenny IA (2005) KIR genes. Transpl Immunol 14:135–142

    PubMed  CAS  Google Scholar 

  • Momot T, Koch S, Hunzelmann N, Krieg T, Ulbricht K, Schmidt RE, Witte T (2004) Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum 50:1561–1565

    PubMed  CAS  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    PubMed  CAS  Google Scholar 

  • Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L (2002) What is a natural killer cell? Nat Immunol 3:6–8

    PubMed  CAS  Google Scholar 

  • Moretta A, Marcenaro E, Sivori S, Della Chiesa M, Vitale M, Moretta L (2005) Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends Immunol 26:668–675

    PubMed  CAS  Google Scholar 

  • Natarajan K, Dimasi N, Wang J, Mariuzza RA, Margulies DH (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol 20:853–885

    PubMed  CAS  Google Scholar 

  • Nelson GW, Martin MP, Gladman D, Wade J, Trowsdale J, Carrington M (2004) Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 173:4273–4276

    PubMed  CAS  Google Scholar 

  • Nichols KE, Ma CS, Cannons JL, Schwartzberg PL, Tangye SG (2005) Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 203:180–199

    PubMed  CAS  Google Scholar 

  • Nicoll G, Ni J, Liu D, Klenerman P, Munday J, Dubock S, Mattei MG, Crocker PR (1999) Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem 274:34089–34095

    PubMed  CAS  Google Scholar 

  • Nicoll G, Avril T, Lock K, Furukawa K, Bovin N, Crocker PR (2003) Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and-independent mechanisms. Eur J Immunol 33:1642–1648

    PubMed  CAS  Google Scholar 

  • O’Byrne KJ, Dalgleish AG (2001) Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 85:473–483

    PubMed  CAS  Google Scholar 

  • Olcese L, Lang P, Vély F, Cambiaggi A, Marguet D, Blery M, Hippen KL, Biassoni R, Moretta A, Moretta L, et al (1996) Human and mouse killer-cell inhibitory receptors recruit PTP1C, PTP1D protein tyrosine phosphatases. J Immunol 156:4531–4534

    PubMed  CAS  Google Scholar 

  • Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, Girardi M, Hayday AC (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937

    PubMed  CAS  Google Scholar 

  • Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4:1545–1558

    PubMed  CAS  Google Scholar 

  • Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118:1–10

    PubMed  CAS  Google Scholar 

  • Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24:497–518

    PubMed  CAS  Google Scholar 

  • Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214

    PubMed  CAS  Google Scholar 

  • Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, et al (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190:1505–1516

    PubMed  CAS  Google Scholar 

  • Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, et al (2005) Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105:2066–2073

    PubMed  CAS  Google Scholar 

  • Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, Lasagni L, Martini S, Rivera P, et al (2006) Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107:2030–2036

    PubMed  CAS  Google Scholar 

  • Perez OD, Mitchell D, Jager GC, Nolan GP (2004) LFA-1 signaling through p44/42 is coupled to perforin degranulation in CD56+CD8+ natural killer cells. Blood 104:1083–1093

    PubMed  CAS  Google Scholar 

  • Peruzzi M, Parker KC, Long EO, Malnati MS (1996) Peptide sequence requirements for the recognition of HLA-B.2705 specific natural killer cells. J Immunol 157:3350–3356

    PubMed  CAS  Google Scholar 

  • Plougastel BF, Yokoyama WM (2006) Extending missing-self? Functional interactions between lectin-like NKrp1 receptors on NK cells with lectin-like ligands. Curr Top Microbiol Immunol 298:77–89

    PubMed  CAS  Google Scholar 

  • Radaev S, Rostro B, Brooks AG, Colonna M, Sun PD (2001) Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15:1039–1049

    PubMed  CAS  Google Scholar 

  • Radosavljevic M, Cuillerier B, Wilson MJ, Clement O, Wicker S, Gilfillan S, Beck S, Trowsdale J, Bahram S (2002) A cluster of ten novel MHC class I related genes on human chromosome 6q24.2-q25.3. Genomics 79:114–123

    PubMed  CAS  Google Scholar 

  • Rajagopalan S, Long EO (1997) The direct binding of a p58 killer cell inhibitory receptor to human histocompatibility leukocyte antigen (HLA)-Cw4 exhibits peptide selectivity. J ExpMed 185:1523–1528

    CAS  Google Scholar 

  • Rajagopalan S, Long EO (2005) Understanding how combinations of HLA and KIR genes influence disease. J Exp Med 201:1025–1029

    PubMed  CAS  Google Scholar 

  • Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    PubMed  CAS  Google Scholar 

  • Raulet DH, Vance RE, McMahon CW (2001) Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 19:291–330

    PubMed  CAS  Google Scholar 

  • Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    PubMed  CAS  Google Scholar 

  • Robbins SH, Nguyen KB, Takahashi N, Mikayama T, Biron CA, Brossay L (2002) Cutting edge: inhibitory functions of the killer cell lectin-like receptor G1 molecule during the activation of mouse NK cells. J Immunol 168:2585–2589

    PubMed  CAS  Google Scholar 

  • Robbins SH, Tessmer MS, Mikayama T, Brossay L (2004) Expansion and contraction of the NK cell compartment in response to murine cytomegalovirus infection. J Immunol 173:259–266

    PubMed  CAS  Google Scholar 

  • Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC, Jabri B (2001) Cutting edge: NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167:5527–5530

    PubMed  CAS  Google Scholar 

  • Rosen DB, Araki M, Hamerman JA, Chen T, Yamamura T, Lanier LL (2004) A Structural basis for the association of DAP12 with mouse but not human NKG2D. J Immunol 173:2470–2478

    PubMed  CAS  Google Scholar 

  • Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    PubMed  CAS  Google Scholar 

  • Ruggeri L, Capanni M, Mancusi A, Perruccio K, Burchielli E, Martelli MF, Velardi A (2005) Natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Int J Hematol 81:13–17

    PubMed  CAS  Google Scholar 

  • Russell JH, Ley TJ (2002) Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20:323–370

    PubMed  CAS  Google Scholar 

  • Sakisaka T, Takai Y (2004) Biology and pathology of nectins and nectin-like molecules. Curr Opin Cell Biol 16:513–521

    PubMed  CAS  Google Scholar 

  • Salcedo M, Andersson M, Lemieux S, Van Kaer L, Chambers BJ, Ljunggren HG (1998) Fine tuning of natural killer cell specificity and maintenance of self tolerance in MHC class Ideficient mice. Eur J Immunol 28:1315–1321

    PubMed  CAS  Google Scholar 

  • Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukaemia. Blood 102:1389–1396

    PubMed  CAS  Google Scholar 

  • Sayos J, Nguyen KB, Wu C, Stepp SE, Howie D, Schatzle JD, Kumar V, Biron CA, Terhorst C (2000) Potential pathways for regulation of NK and T-cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4. Int Immunol 12:1749–1757

    PubMed  CAS  Google Scholar 

  • Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals mechanisms and functions. J Leukoc Biol 75:163–189

    PubMed  CAS  Google Scholar 

  • Screpanti V, Wallin RP, Ljunggren HG, Grandien A (2001) A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol 167:2068–2073

    PubMed  CAS  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    PubMed  CAS  Google Scholar 

  • Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH (1996) DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4:573–581

    PubMed  CAS  Google Scholar 

  • Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A (1997) p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129–1136

    PubMed  CAS  Google Scholar 

  • Sivori S, Pende D, Bottino C, Marcenaro E, Pessino A, Biassoni R, Moretta L, Moretta A (1999) NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol 29:1656–1666

    PubMed  CAS  Google Scholar 

  • Slifka MK, Pagarigan RR, Whitton JL (2000) NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J Immunol 164:2009–2015

    PubMed  CAS  Google Scholar 

  • Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, et al (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99:8826–8831

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawano T, Pelikan SB, Crowe NY, Godfrey DI (2000a) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000b) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Crowe NY, Godfrey DI (2001a) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459–463

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Godfrey DI, Trapani JA (2001b) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Street SE, Trapani JA (2003a) Cutting edge: granzymes A and B are not essential for perforin-mediated tumor rejection. J Immunol 171:515–518

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR, Yagita H (2003b) Nature’s TRAIL—on a path to cancer immunotherapy. Immunity 18:1–6

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A, Sayers TJ, Hayakawa Y (2004) NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200:1325–1335

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y (2005) NKG2D function protects the host from tumor initiation. J Exp Med 202:583–588

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176:1582–1587

    PubMed  CAS  Google Scholar 

  • Stark S, Watzl C (2006) 2B4 (CD244) NTB-A and CRACC (CS1) stimulate cytotoxicity but no proliferation in human NK cells. Int Immunol 18:241–247

    PubMed  CAS  Google Scholar 

  • Stewart CA, Laugier-Anfossi F, Vely F, Saulquin X, Riedmuller J, Tisserant A, Gauthier L, Romagne F, Ferracci G, Arosa FA, et al (2005) Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc Natl Acad Sci USA 102:13224–13229

    PubMed  CAS  Google Scholar 

  • Stewart CA, Vivier E, Colonna M (2006) Strategies of natural killer cell recognition and signaling. Curr Top Microbiol Immunol 298:1–21

    PubMed  CAS  Google Scholar 

  • Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197

    PubMed  CAS  Google Scholar 

  • Street SE, Trapani JA, MacGregor D, Smyth MJ (2002) Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196:129–134

    PubMed  CAS  Google Scholar 

  • Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ (2004) Innate immune surveillance of spontaneous B-cell lymphomas by natural killer cells and {gamma}{delta} T cells. J Exp Med 199:879–884

    PubMed  CAS  Google Scholar 

  • Sutherland CL, Chalupny NJ, Cosman D (2001) The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions. Immunol Rev 181:185–192

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Hamamoto Y, Ogasawara Y, Ishikawa K, Yoshikawa Y, Sasazuki T, Muto M (2004) Genetic polymorphisms of killer cell immunoglobulin-like receptors are associated with susceptibility to psoriasis vulgaris. J Invest Dermatol 122:1133–1136

    PubMed  CAS  Google Scholar 

  • Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda S, Lanier LL, Shibuya A (2004) Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 16:533–538

    PubMed  CAS  Google Scholar 

  • Tahara-Hanaoka S, Shibuya K, Kai H, Miyamoto A, Morikawa Y, Ohkochi N, Honda S, Shibuya A (2006) Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 107:1491–1496

    PubMed  CAS  Google Scholar 

  • Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M, Pequignot M, Casares N, Terme M, Flament C, et al (2006) A novel dendritic cell subset involved in tumor immunosurveil-lance. Nat Med 12:214–219

    PubMed  CAS  Google Scholar 

  • Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195:161–169

    PubMed  CAS  Google Scholar 

  • Talmadge JE, Meyers KM, Prieur DJ, Starkey JR (1980) Role of NK cells in tumour growth and metastasis in beige mice. Nature 284:622–624

    PubMed  CAS  Google Scholar 

  • Tanaka N, Taniguchi T (2000) The interferon regulatory factors and oncogenesis. Semin Cancer Biol 10:73–81

    PubMed  CAS  Google Scholar 

  • Tay CH, Welsh RM, Brutkiewicz RR (1995) NK cell response to viral infections in beta 2-microglobulin-deficient mice. J Immunol 154:780–789

    PubMed  CAS  Google Scholar 

  • Teng MW, Kershaw MH, Hayakawa Y, Cerutti L, Jane SM, Darcy PK, Smyth MJ (2005) T cells gene-engineered with DAP12 mediate effector function in an NKG2D-dependent and major histocompatibility complex-independent manner. J Biol Chem 280:38235–38241

    PubMed  CAS  Google Scholar 

  • Tomasello E, Vivier E (2005) KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. Eur J Immunol 35:1670–1677

    PubMed  CAS  Google Scholar 

  • Tomasello E, Blery M, Vély E, Vivier E (2000) Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells. Semin Immunol 12:139–147

    PubMed  CAS  Google Scholar 

  • Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    PubMed  CAS  Google Scholar 

  • Trowsdale J, Barten R, Haude A, Stewart CA, Beck S, Wilson MJ (2001) The genomic context of natural killer receptor extended gene families. Immunol Rev 181:20–38

    PubMed  CAS  Google Scholar 

  • Urmacher C, Cordon-Cardo C, Houghton AN (1989) Tissue distribution of GD3 ganglioside detected by mouse monoclonal antibody R24. Am J Dermatopathol 11:577–581

    PubMed  CAS  Google Scholar 

  • Vales-Gomez M, Reyburn H, Strominger J (2000) Interaction between the human NK receptors and their ligands. Crit Rev Immunol 20:223–244

    PubMed  CAS  Google Scholar 

  • Vales-Gomez M, Reyburn HT, Erskine RA, Strominger J (1998) Differential binding to HLA-C of p50-activating and p58-inhibitory natural killer cell receptors. Proc Natl Acad Sci USA 95:14326–14331

    PubMed  CAS  Google Scholar 

  • Vales-Gomez M, Reyburn HT, Erskine RA, Lopez-Botet M, Strominger JL (1999) Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 18:4250–4260

    PubMed  CAS  Google Scholar 

  • Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D’Andrea A, Phillips JH, Lanier LL, Parham P (1997) Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7:739–751

    PubMed  CAS  Google Scholar 

  • van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781–1790

    PubMed  Google Scholar 

  • van der Slik AR, Koeleman BP, Verduijn W, Bruining GJ, Roep BO, Giphart MJ (2003) KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes 52:2639–2642

    PubMed  Google Scholar 

  • Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH (1998) Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 188:1841–1848

    PubMed  CAS  Google Scholar 

  • Veillette A, Latour S (2003) The SLAM family of immune-cell receptors. Curr Opin Immunol 15:277–285

    PubMed  CAS  Google Scholar 

  • Vely F, Vivier E (2005a) Natural killer cell receptor signaling pathway. Sci STKE 2005:cm6

    Google Scholar 

  • Vely F, Vivier E (2005b) Natural killer cell receptor signaling pathway in mammals. Sci STKE 2005:cm7

    Google Scholar 

  • Vély F, Vivier E (1997) Commentary: conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and non-inhibitory/activatory counterparts. J Immunol 159:2075–2077

    PubMed  Google Scholar 

  • Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, Augugliaro R, Moretta L, Moretta A (1998) NKp44 a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187:2065–2072

    PubMed  CAS  Google Scholar 

  • Vitale M, Zimmer J, Castriconi R, Hanau D, Donato L, Bottino C, Moretta L, de la Salle H, Moretta A (2002) Analysis of natural killer cells in TAP2-deficient patients: expression of functional triggering receptors and evidence for the existence of inhibitory receptor(s) that prevent lysis of normal autologous cells. Blood 99:1723–1729

    PubMed  CAS  Google Scholar 

  • Vivier E, Biron CA (2002) A pathogen receptor on natural killer cells. Science 296:1248–1249

    PubMed  CAS  Google Scholar 

  • Vivier E, Daëron M (1997) Immunoreceptor tyrosine-based inhibition motifs (ITIMs). Immunol Today 18:286–291

    PubMed  CAS  Google Scholar 

  • Vivier E, Malissen B (2005) Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat Immunol 6:17–21

    PubMed  CAS  Google Scholar 

  • Vivier E, Tomasello E, Paul P (2002) Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol 14:306–311

    PubMed  CAS  Google Scholar 

  • Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science 306: 1517–1519

    PubMed  CAS  Google Scholar 

  • Voehringer D, Blaser C, Brawand P, Raulet DH, Hanke T, Pircher H (2001) Viral infections induce abundant numbers of senescent CD8 T cells. J Immunol 167:4838–4843

    PubMed  CAS  Google Scholar 

  • Voehringer D, Koschella M, Pircher H (2002) Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood 100:3698–3702

    PubMed  CAS  Google Scholar 

  • Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E (2005) Natural killer cells and dendritic cells: “l’union fait la force”. Blood 106:2252–2258

    PubMed  CAS  Google Scholar 

  • Walzer T, Bléry M, Chaix J, Fuseri N, Chasson C, Robbins SH, Jaeger S, André P, Gauthier L, Daniel L, Chemin K, Morel Y. Dalod M, Imbert J, Pierres M, Moretta A, Romagné F, Vivier E (2007) Identification, activation and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl Acad Sci 104:3384–3389

    PubMed  CAS  Google Scholar 

  • Warren HS, Jones AL, Freeman C, Bettadapura J, Parish CR (2005) Evidence that the cellular ligand for the human NK cell activation receptor NKp30 is not a heparan sulfate glycosaminoglycan. J Immunol 175:207–212

    PubMed  CAS  Google Scholar 

  • Westwood JA, Kelly JM, Tanner JE, Kershaw MH, Smyth MJ, Hayakawa Y (2004) Cutting edge: novel priming of tumor-specific immunity by NKG2D-triggered NK cell-mediated tumor rejection and Th1-independent CD4(+) T-cell pathway. J Immunol 172:757–761

    PubMed  CAS  Google Scholar 

  • Williams F, Meenagh A, Sleator C, Cook D, Fernandez-Vina M, Bowcock AM, Middleton D (2005) Activating killer cell immunoglobulin-like receptor gene KIR2DS1 is associated with psoriatic arthritis. Hum Immunol 66:836–841

    PubMed  CAS  Google Scholar 

  • Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146

    PubMed  CAS  Google Scholar 

  • Wilson JL, Charo J, Martin-Fontecha A, Dellabona P, Casorati G, Chambers BJ, Kiessling R, Bejarano MT, Ljunggren HG (1999) NK cell triggering by the human costimulatory molecules CD80 and CD86. J Immunol 163:4207–4212

    PubMed  CAS  Google Scholar 

  • Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732

    PubMed  CAS  Google Scholar 

  • Yamaji T, Teranishi T, Alphey MS, Crocker PR, Hashimoto Y (2002) A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to alpha 2,8-disialyl and branched alpha 2,6-sialyl residues. A comparison with Siglec-9. J Biol Chem 277:6324–6332

    PubMed  CAS  Google Scholar 

  • Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P (2006) Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med 203:633–645

    PubMed  CAS  Google Scholar 

  • Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM, Goronzy JJ (2001) Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 193:1159–1167

    PubMed  CAS  Google Scholar 

  • Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    PubMed  CAS  Google Scholar 

  • Zappacosta F, Borrego F, Brooks AG, Parker KC, Coligan JE (1997) Peptides isolated from HLA-CW 0304 confer different degrees of protection from natural killer cell-mediated lysis. Proc Natl Acad Sci USA 94:6313–6318

    PubMed  CAS  Google Scholar 

  • Zhang J, Croy BA, Tian Z (2005) Uterine natural killer cells: their choices, their missions. Cell Mol Immunol 2:123–129

    PubMed  CAS  Google Scholar 

  • Zilka A, Landau G, Hershkovitz O, Bloushtain N, Bar-Ilan A, Benchetrit F, Fima E, van Kuppevelt TH, Gallagher JT, Elgavish S, Porgador A (2005) Characterization of the heparin/heparin sulfate binding site of the natural cytotoxicity receptor NKp46. iochemistry 44:14477–14485

    CAS  Google Scholar 

  • Zimmer J, Donato L, Hanau D, Cazenave JP, Tongio MM, Moretta A, de la Salle H (1998) Activity and phenotype of natural killer cells in peptide transporter (TAP)-deficient patients (type I bare lymphocyte syndrome). J Exp Med 187:117–122

    PubMed  CAS  Google Scholar 

  • Zimmer J, Donato L, Hanau D, Cazenave JP, Moretta A, Tongio MM, de la Salle H (1999) Inefficient protection of human TAP-deficient fibroblasts from autologous NK cell-mediated lysis by cytokines inducing HLA class I expression. Eur J Immunol 29:1286–1291

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Stewart, C.A., Vivier, E. (2008). Strategies of Natural Killer (NK) Cell Recognition and Their Roles in Tumor Immunosurveillance. In: Kitamura, D. (eds) How the Immune System Recognizes Self and Nonself. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73884-8_2

Download citation

Publish with us

Policies and ethics