Skip to main content

Therapeutic Strategies of Refractory Heart Failure

  • Chapter
  • First Online:
Therapeutic Strategies for Heart Failure

Abstract

Because of an increase in the aging society, heart failure is a social burden in modern society worldwide. The number of patients with refractory heart failure is also increasing. When patients show no improvement better than class III symptoms of heart failure, despite optimizing therapy including fluid removal, appropriate use of inotropes, and guideline-directed medical therapy, the indication of heart transplantation should be considered first. If there is no indication of heart transplantation, destination therapy may be an alternative for patients with refractory heart failure. Palliative care should be provided for all of the patients in this category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8(1):30–41. https://doi.org/10.1038/nrcardio.2010.165.

    Article  PubMed  Google Scholar 

  2. Okura Y, Ramadan MM, Ohno Y, Mitsuma W, Tanaka K, Ito M, et al. Impending epidemic: future projection of heart failure in Japan to the year 2055. Circ J. 2008;72(3):489–91.

    Article  PubMed  Google Scholar 

  3. Gheorghiade M, De Luca L, Fonarow GC, Filippatos G, Metra M, Francis GS. Pathophysiologic targets in the early phase of acute heart failure syndromes. Am J Cardiol. 2005;96(6a):11g–7g.

    Article  PubMed  Google Scholar 

  4. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810–52. https://doi.org/10.1161/CIR.0b013e31829e8807.

    Article  PubMed  Google Scholar 

  5. Metra M, Ponikowski P, Dickstein K, McMurray JJ, Gavazzi A, Bergh CH, et al. Advanced chronic heart failure: a position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2007;9(6–7):684–94. https://doi.org/10.1016/j.ejheart.2007.04.003.

    Article  PubMed  Google Scholar 

  6. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):e391–479. https://doi.org/10.1161/CIRCULATIONAHA.109.192065.

    Article  PubMed  Google Scholar 

  7. Ellison DH. Diuretic therapy and resistance in congestive heart failure. Cardiology. 2001;96(3–4):132–43.

    Article  CAS  PubMed  Google Scholar 

  8. Valente MA, Voors AA, Damman K, Van Veldhuisen DJ, Massie BM, O’Connor CM, et al. Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J. 2014;35(19):1284–93. https://doi.org/10.1093/eurheartj/ehu065.

    Article  CAS  PubMed  Google Scholar 

  9. Testani JM, Brisco MA, Turner JM, Spatz ES, Bellumkonda L, Parikh CR, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7(2):261–70. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000895.

    Article  CAS  PubMed  Google Scholar 

  10. Jaski BE, Ha J, Denys BG, Lamba S, Trupp RJ, Abraham WT. Peripherally inserted veno-venous ultrafiltration for rapid treatment of volume overloaded patients. J Card Fail. 2003;9(3):227–31. https://doi.org/10.1054/jcaf.2003.28.

    Article  PubMed  Google Scholar 

  11. Bart BA, Boyle A, Bank AJ, Anand I, Olivari MT, Kraemer M, et al. Ultrafiltration versus usual care for hospitalized patients with heart failure: the Relief for Acutely Fluid-Overloaded Patients With Decompensated Congestive Heart Failure (RAPID-CHF) trial. J Am Coll Cardiol. 2005;46(11):2043–6.

    Article  PubMed  Google Scholar 

  12. Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49(6):675–83.

    Article  CAS  PubMed  Google Scholar 

  13. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367(24):2296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Konstam MA, Gheorghiade M, Burnett JC, Grinfeld L, Maggioni AP, Swedberg K, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31.

    Article  CAS  PubMed  Google Scholar 

  15. Gheorghiade M, Konstam MA, Burnett JC, Grinfeld L, Maggioni AP, Swedberg K, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. JAMA. 2007;297(12):1332–43.

    Article  CAS  PubMed  Google Scholar 

  16. Matsue Y, Suzuki M, Torii S, Yamaguchi S, Fukamizu S, Ono Y, et al. Prognostic impact of early treatment with tolvaptan in patients with acute heart failure and renal dysfunction. Int J Cardiol. 2016;221:188–93. https://doi.org/10.1016/j.ijcard.2016.07.063.

    Article  PubMed  Google Scholar 

  17. Matsue Y, Suzuki M, Torii S, Yamaguchi S, Fukamizu S, Ono Y, et al. Clinical effectiveness of tolvaptan in patients with acute heart failure and renal dysfunction. J Card Fail. 2016;22(6):423–32. https://doi.org/10.1016/j.cardfail.2016.02.007.

    Article  CAS  PubMed  Google Scholar 

  18. Matsue Y, Suzuki M, Seya M, Iwatsuka R, Mizukami A, Nagahori W, et al. Tolvaptan reduces the risk of worsening renal function in patients with acute decompensated heart failure in high-risk population. J Cardiol. 2013;61(2):169–74. https://doi.org/10.1016/j.jjcc.2012.08.020.

    Article  PubMed  Google Scholar 

  19. Shirakabe A, Hata N, Yamamoto M, Kobayashi N, Shinada T, Tomita K, et al. Immediate administration of tolvaptan prevents the exacerbation of acute kidney injury and improves the mid-term prognosis of patients with severely decompensated acute heart failure. Circ J. 2014;78(4):911–21.

    Article  CAS  PubMed  Google Scholar 

  20. Hanatani A, Shibata A, Kitada R, Iwata S, Matsumura Y, Doi A, et al. Administration of tolvaptan with reduction of loop diuretics ameliorates congestion with improving renal dysfunction in patients with congestive heart failure and renal dysfunction. Heart Vessel. 2016. https://doi.org/10.1007/s00380-016-0872-4.

  21. Watanabe K, Dohi K, Sugimoto T, Yamada T, Sato Y, Ichikawa K, et al. Short-term effects of low-dose tolvaptan on hemodynamic parameters in patients with chronic heart failure. J Cardiol. 2012;60(6):462–9. https://doi.org/10.1016/j.jjcc.2012.09.002.

    Article  PubMed  Google Scholar 

  22. Jujo K, Saito K, Ishida I, Furuki Y, Kim A, Suzuki Y, et al. Randomized pilot trial comparing tolvaptan with furosemide on renal and neurohumoral effects in acute heart failure. ESC Heart Fail. 2016;3(3):177–88. https://doi.org/10.1002/ehf2.12088.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tada M, Toyofuku T. Cardiac sarcoplasmic reticulum Ca2+-ATPase. Compr Physiol. 2011;1(6 Suppl);301–4.

    Google Scholar 

  24. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med. 1991;325(21):1468–75. https://doi.org/10.1056/NEJM199111213252103.

    Article  CAS  PubMed  Google Scholar 

  25. Uretsky BF, Jessup M, Konstam MA, Dec GW, Leier CV, Benotti J, et al. Multicenter trial of oral enoximone in patients with moderate to moderately severe congestive heart failure. Lack of benefit compared with placebo. Enoximone Multicenter Trial Group. Circulation. 1990;82(3):774–80.

    Article  CAS  PubMed  Google Scholar 

  26. Kass DA, Solaro RJ. Mechanisms and use of calcium-sensitizing agents in the failing heart. Circulation. 2006;113(2):305–15. https://doi.org/10.1161/circulationaha.105.542407.

    Article  PubMed  Google Scholar 

  27. Kubo SH, Gollub S, Bourge R, Rahko P, Cobb F, Jessup M, et al. Beneficial effects of pimobendan on exercise tolerance and quality of life in patients with heart failure. Results of a multicenter trial. The Pimobendan Multicenter Research Group. Circulation. 1992;85(3):942–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lubsen J, Just H, Hjalmarsson AC, La Framboise D, Remme WJ, Heinrich-Nols J, et al. Effect of pimobendan on exercise capacity in patients with heart failure: main results from the Pimobendan in Congestive Heart Failure (PICO) trial. Heart. 1996;76(3):223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. group TEs. Effects of pimobendan on adverse cardiac events and physical activities in patients with mild to moderate chronic heart failure: the effects of pimobendan on chronic heart failure study (EPOCH study). Circ J. 2002;66(2):149–57.

    Article  Google Scholar 

  30. Macdonald PS, Keogh AM, Aboyoun CL, Lund M, Amor R, McCaffrey DJ. Tolerability and efficacy of carvedilol in patients with New York Heart Association class IV heart failure. J Am Coll Cardiol. 1999;33(4):924–31.

    Article  CAS  PubMed  Google Scholar 

  31. Metra M, Nodari S, D’Aloia A, Muneretto C, Robertson AD, Bristow MR, et al. Beta-blocker therapy influences the hemodynamic response to inotropic agents in patients with heart failure: a randomized comparison of dobutamine and enoximone before and after chronic treatment with metoprolol or carvedilol. J Am Coll Cardiol. 2002;40(7):1248–58.

    Article  CAS  PubMed  Google Scholar 

  32. Shakar SF, Abraham WT, Gilbert EM, Robertson AD, Lowes BD, Zisman LS, et al. Combined oral positive inotropic and beta-blocker therapy for treatment of refractory class IV heart failure. J Am Coll Cardiol. 1998;31(6):1336–40.

    Article  CAS  PubMed  Google Scholar 

  33. Yoshikawa T, Baba A, Suzuki M, Yokozuka H, Okada Y, Nagami K, et al. Effectiveness of carvedilol alone versus carvedilol + pimobendan for severe congestive heart failure. For the Keio Interhospital Cardiology Study (KICS) Group. Am J Cardiol. 2000;85(12):1495–7. A7

    Article  CAS  PubMed  Google Scholar 

  34. Cooper DKC, Cooley DA. Christiaan Neethling Barnard: 1922–2001. Circulation. 2001;104(23):2756–7. https://doi.org/10.1161/hc4801.100999.

    Article  Google Scholar 

  35. Caves PK, Stinson EB, Graham AF, Billingham ME, Grehl TM, Shumway NE. Percutaneous transvenous endomyocardial biopsy. JAMA. 1973;225(3):288–91.

    Article  CAS  PubMed  Google Scholar 

  36. Billingham ME, Caves PK, Dong E Jr, Shumway NE. The diagnosis of canine orthotopic cardiac allograft rejection by transvenous endomyocardial biopsy. Transplant Proc. 1973;5(1):741–3.

    CAS  PubMed  Google Scholar 

  37. Billingham ME, Cary NR, Hammond ME, Kemnitz J, Marboe C, McCallister HA, et al. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant. 1990;9(6):587–93.

    CAS  PubMed  Google Scholar 

  38. McGregor CG, Oyer PE, Shumway NE. Heart and heart-lung transplantation. Prog Allergy. 1986;38:346–65.

    CAS  PubMed  Google Scholar 

  39. Morgan JA, Edwards NM. Orthotopic cardiac transplantation: comparison of outcome using biatrial, bicaval, and total techniques. J Card Surg. 2005;20(1):102–6. https://doi.org/10.1111/j.0886-0440.2005.05011.x.

    Article  PubMed  Google Scholar 

  40. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Goldfarb S, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report—2015; focus theme: early graft failure. J Heart Lung Transplant. 2015;34(10):1244–54. https://doi.org/10.1016/j.healun.2015.08.003.

    Article  PubMed  Google Scholar 

  41. Matsuda H, Fukushima N, Sawa Y, Nishimura M, Matsumiya G, Shirakura R. First brain dead donor heart transplantation under new legislation in Japan. Jpn J Thorac Cardiovasc Surg. 1999;47(10):499–505.

    Article  CAS  PubMed  Google Scholar 

  42. Nakatani T, Fukushima N, Ono M, Saiki Y, Matsuda H, Nunoda S, et al. The registry report of heart transplantation in Japan (1999–2014). Circ J. 2016;80(1):44–50. https://doi.org/10.1253/circj.CJ-15-0975.

    Article  PubMed  Google Scholar 

  43. Krittayaphong R, Ariyachaipanich A. Heart transplant in Asia. Heart Fail Clin. 2015;11(4):563–72. https://doi.org/10.1016/j.hfc.2015.07.008.

    Article  PubMed  Google Scholar 

  44. Minasian SM, Galagudza MM, Dmitriev YV, Karpov AA, Vlasov TD. Preservation of the donor heart: from basic science to clinical studies. Interact Cardiovasc Thorac Surg. 2015;20(4):510–9. https://doi.org/10.1093/icvts/ivu432.

    Article  PubMed  Google Scholar 

  45. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-first official adult heart transplant report—2014; focus theme: retransplantation. J Heart Lung Transplant. 2014;33(10):996–1008. https://doi.org/10.1016/j.healun.2014.08.003.

    Article  PubMed  Google Scholar 

  46. Stehlik J, Edwards L, Kucheryavaya A, Benden C, Christie J, Dipchand A, et al. International Society of Heart and Lung Transplantation. The registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report—2012. J Heart Lung Transplant. 2012;31(10):1052–64.

    Article  PubMed  Google Scholar 

  47. Lund LH, Edwards LB, Kucheryavaya AY, Dipchand AI, Benden C, Christie JD, et al. The registry of the International Society for Heart and Lung Transplantation: thirtieth official adult heart transplant report—2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):951–64.

    Article  PubMed  Google Scholar 

  48. Schmauss D, Weis M. Cardiac allograft vasculopathy recent developments. Circulation. 2008;117(16):2131–41.

    Article  PubMed  Google Scholar 

  49. Lemström KB, Krebs R, Nykänen AI, Tikkanen JM, Sihvola RK, Aaltola EM, et al. Vascular endothelial growth factor enhances cardiac allograft arteriosclerosis. Circulation. 2002;105(21):2524–30.

    Article  PubMed  Google Scholar 

  50. Atkinson C, Southwood M, Pitman R, Phillpotts C, Wallwork J, Goddard M. Angiogenesis occurs within the intimal proliferation that characterizes transplant coronary artery vasculopathy. J Heart Lung Transplant. 2005;24(5):551–8.

    Article  PubMed  Google Scholar 

  51. Ichibori Y, Nakatani D, Sakata Y, Tachibana K, Akasaka T, Saito S, et al. Cardiac allograft vasculopathy progression associated with intraplaque neovascularization. J Am Coll Cardiol. 2013;61(9):e149. https://doi.org/10.1016/j.jacc.2012.08.1036.

    Article  PubMed  Google Scholar 

  52. Ichibori Y, Ohtani T, Nakatani D, Tachibana K, Yamaguchi O, Toda K, et al. Optical coherence tomography and intravascular ultrasound evaluation of cardiac allograft vasculopathy with and without intimal neovascularization. Eur Heart J Cardiovasc Imaging. 2016;17(1):51–8. https://doi.org/10.1093/ehjci/jev110.

    PubMed  Google Scholar 

  53. Stewart GC, Givertz MM. Mechanical circulatory support for advanced heart failure: patients and technology in evolution. Circulation. 2012;125(10):1304–15. https://doi.org/10.1161/CIRCULATIONAHA.111.060830.

    Article  PubMed  Google Scholar 

  54. Liotta D, Hall CW, Henly WS, Cooley DA, Crawford ES, DeBakey ME. Prolonged assisted circulation during and after cardiac or aortic surgery: prolonged partial left ventricular bypass by means of intracorporeal circulation. Am J Cardiol. 1963;12(3):399–405.

    Article  CAS  PubMed  Google Scholar 

  55. Portner PM, Oyer PE, Pennington DG, Baumgartner WA, Griffith BP, Frist WR, et al. Implantable electrical left ventricular assist systems: bridge to transplantation and future. Ann Thorac Surg. 1989;47(1):142–50.

    Article  CAS  PubMed  Google Scholar 

  56. Schumer EM, Black MC, Monreal G, Slaughter MS. Left ventricular assist devices: current controversies and future directions. Eur Heart J. 2015. https://doi.org/10.1093/eurheartj/ehv590.

  57. Lietz K, Miller LW. Patient selection for left-ventricular assist devices. Curr Opin Cardiol. 2009;24(3):246–51. https://doi.org/10.1097/HCO.0b013e32832a0743.

    Article  PubMed  Google Scholar 

  58. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33(6):555–64. https://doi.org/10.1016/j.healun.2014.04.010.

    Article  PubMed  Google Scholar 

  59. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495–504. https://doi.org/10.1016/j.healun.2015.10.003.

    Article  PubMed  Google Scholar 

  60. Frazier OH, Rose EA, Oz MC, Dembitsky W, McCarthy P, Radovancevic B, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2001;122(6):1186–95. https://doi.org/10.1067/mtc.2001.118274.

    Article  CAS  PubMed  Google Scholar 

  61. Navia JL, McCarthy PM, Hoercher KJ, Feng J, Jeevantham R, Smedira NG, et al. Do left ventricular assist device (LVAD) bridge-to-transplantation outcomes predict the results of permanent LVAD implantation? Ann Thorac Surg. 2002;74(6):2051–62. discussion 62–3

    Article  PubMed  Google Scholar 

  62. Jaski BE, Kim JC, Naftel DC, Jarcho J, Costanzo MR, Eisen HJ, et al. Cardiac transplant outcome of patients supported on left ventricular assist device vs. intravenous inotropic therapy. J Heart Lung Transplant. 2001;20(4):449–56.

    Article  CAS  PubMed  Google Scholar 

  63. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96. https://doi.org/10.1056/NEJMoa067758.

    Article  CAS  PubMed  Google Scholar 

  64. Klotz S, Barbone A, Reiken S, Holmes JW, Naka Y, Oz MC, et al. Left ventricular assist device support normalizes left and right ventricular beta-adrenergic pathway properties. J Am Coll Cardiol. 2005;45(5):668–76. https://doi.org/10.1016/j.jacc.2004.11.042.

    Article  PubMed  Google Scholar 

  65. Burkhoff D, Klotz S, Mancini DM. LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery. J Card Fail. 2006;12(3):227–39. https://doi.org/10.1016/j.cardfail.2005.10.012.

    Article  PubMed  Google Scholar 

  66. Klotz S, Foronjy RF, Dickstein ML, Gu A, Garrelds IM, Danser AH, et al. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation. 2005;112(3):364–74. https://doi.org/10.1161/circulationaha.104.515106.

    Article  CAS  PubMed  Google Scholar 

  67. Drakos SG, Wever-Pinzon O, Selzman CH, Gilbert EM, Alharethi R, Reid BB, et al. Magnitude and time course of changes induced by continuous-flow left ventricular assist device unloading in chronic heart failure: insights into cardiac recovery. J Am Coll Cardiol. 2013;61(19):1985–94. https://doi.org/10.1016/j.jacc.2013.01.072.

    Article  PubMed  Google Scholar 

  68. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355(18):1873–84. https://doi.org/10.1056/NEJMoa053063.

    Article  CAS  PubMed  Google Scholar 

  69. Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, et al. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation. 2011;123(4):381–90. https://doi.org/10.1161/circulationaha.109.933960.

    Article  CAS  PubMed  Google Scholar 

  70. Dandel M, Weng Y, Siniawski H, Potapov E, Lehmkuhl HB, Hetzer R. Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation. 2005;112(9 Suppl):I37–45. https://doi.org/10.1161/circulationaha.104.525352.

    PubMed  Google Scholar 

  71. Kanzaki M, Asano Y, Ishibashi-Ueda H, Oiki E, Nishida T, Asanuma H, et al. A development of nucleic chromatin measurements as a new prognostic marker for severe chronic heart failure. PLoS One. 2016;11(2):e0148209. https://doi.org/10.1371/journal.pone.0148209.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43. https://doi.org/10.1056/NEJMoa012175.

    Article  CAS  PubMed  Google Scholar 

  73. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51. https://doi.org/10.1056/NEJMoa0909938.

    Article  CAS  PubMed  Google Scholar 

  74. Kirklin JK, Naftel DC, Stevenson LW, Kormos RL, Pagani FD, Miller MA, et al. INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant. 2008;27(10):1065–72. https://doi.org/10.1016/j.healun.2008.07.021.

    Article  PubMed  Google Scholar 

  75. Grady KL, Naftel DC, Myers S, Dew MA, Weidner G, Spertus JA, et al. Change in health-related quality of life from before to after destination therapy mechanical circulatory support is similar for older and younger patients: analyses from INTERMACS. J Heart Lung Transplant. 2015;34(2):213–21. https://doi.org/10.1016/j.healun.2014.10.001.

    Article  PubMed  Google Scholar 

  76. Sharma V, Deo SV, Stulak JM, Durham LA 3rd, Daly RC, Park SJ, et al. Driveline infections in left ventricular assist devices: implications for destination therapy. Ann Thorac Surg. 2012;94(5):1381–6. https://doi.org/10.1016/j.athoracsur.2012.05.074.

    Article  PubMed  Google Scholar 

  77. Smedira NG, Hoercher KJ, Lima B, Mountis MM, Starling RC, Thuita L, et al. Unplanned hospital readmissions after HeartMate II implantation: frequency, risk factors, and impact on resource use and survival. JACC Heart Fail. 2013;1(1):31–9. https://doi.org/10.1016/j.jchf.2012.11.001.

    Article  PubMed  Google Scholar 

  78. Tsiouris A, Paone G, Nemeh HW, Brewer RJ, Morgan JA. Factors determining post-operative readmissions after left ventricular assist device implantation. J Heart Lung Transplant. 2014;33(10):1041–7. https://doi.org/10.1016/j.healun.2014.05.009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Sakata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakata, Y., Sera, F., Nakamoto, K. (2018). Therapeutic Strategies of Refractory Heart Failure. In: Sato, N. (eds) Therapeutic Strategies for Heart Failure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56065-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56065-4_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56063-0

  • Online ISBN: 978-4-431-56065-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics