Skip to main content

Polyamine Interactions with Plant Hormones: Crosstalk at Several Levels

  • Chapter
  • First Online:
Polyamines

Abstract

Polyamines play important roles in diverse plant growth and development processes, including seed germination, tissue lignification, organogenesis, flowering, pollination, embryogenesis, fruit development, ripening, abscission, senescence, and stress responses. In all these processes, synergistic and antagonistic interactions among various plant hormones have been shown. Although significant progress has been made in understanding the regulation of biosynthesis and signal transduction mechanisms for most of the plant hormones, inroads into the molecular mechanisms underlying polyamine (PA) action have just begun. Little is known or understood about the signal transduction pathways regulating a myriad of PA effects. We, therefore, embarked on evaluating and collating the information on changes in the transcriptome based on metabolic engineering of the PA pathway as well as mutants of PA biosynthesis. Also taken into consideration are the studies using exogenous application of PAs. Our analysis has revealed complex and differential relationships among the three main PAs—putrescine, spermidine and spermine—in regard to regulation of plant hormone biosynthesis and signaling. Putrescine was positively linked to the expression of genes regulating ABA biosynthesis but downregulated those of ethylene, jasmonates, and gibberellin biosynthesis, and the action of spermidine was found to be exactly opposite. Spermine, on the other hand, enhanced genes for ethylene and jasmonates biosynthesis but downregulated those for gibberellins and abscisic acid biosynthesis. In regard to hormone signaling pathways, spermidine positively regulated salicylic acid signaling genes, and those of auxin and cytokinins signaling genes were linked to spermine action. Putrescine was neutral to positive in regulating jasmonates signaling. PAs seem to be neutral in regard to brassinosteroids biosynthesis or signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit MEJ (1992) Ethylene in plant biology, IIth edn. Academic, San Diego

    Google Scholar 

  • Agudelo-Romero P, Ali K, Choi YH, Sousa L, Verpoorte R, Tiburcio AF, Fortes AM (2014) Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. Plant Physiol Biochem 74:141–155

    CAS  PubMed  Google Scholar 

  • Alba R, Payton P, Fei ZJ, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alcazar R, Garcia-Martinez JL, Cuevas JC, Tiburcio AF, Altabella T (2005) Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant J 43:425–436

    CAS  PubMed  Google Scholar 

  • Alcazar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF (2006a) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455

    CAS  Google Scholar 

  • Alcazar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006b) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    CAS  PubMed  Google Scholar 

  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta (Berl) 231:1237–1249

    CAS  Google Scholar 

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    CAS  PubMed  Google Scholar 

  • Antolín MC, Santesteban H, Santa María E, Aguirreolea J, Sánchez-DÍaz M (2008) Involvement of abscisic acid and polyamines in berry ripening of Vitis vinifera (L.) subjected to water deficit irrigation. Aust J Grape Wine Res 14:123–133

    Google Scholar 

  • Apelbaum A, Burgoon AC, Anderson JD, Lieberman M, Benarie R, Mattoo AK (1981) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol 68:453–456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Argueso CT, Raines T, Kieber JJ (2010) Cytokinin signaling and transcriptional networks. Curr Opin Plant Biol 13:533–539

    CAS  PubMed  Google Scholar 

  • Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M (2012) Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol 53:659–672

    CAS  PubMed  Google Scholar 

  • Bachrach U (2010) The early history of polyamine research. Plant Physiol Biochem 48:490–495

    CAS  PubMed  Google Scholar 

  • Bagni N, Malucelli B, Torrigiani P (1980) Polyamines, storage substances and abscisic acid-like inhibitors during dormancy and very early activation of Helianthus tuberosus tuber tissues. Physiol Plant 49:341–345

    CAS  Google Scholar 

  • Bajguz A (2012) Origin of brassinosteroids and their role in oxidative stress in plants. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin Heidelberg, pp 169–183

    Google Scholar 

  • Barry CS, Giovannoni JJ (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA 103:7923–7928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Binder BM (2008) The ethylene receptors: complex perception for a simple gas. Plant Sci 175:8–17

    CAS  Google Scholar 

  • Biondi S, Scaramagli S, Capitani F, Altamura MM, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J Exp Bot 52:231–242

    CAS  PubMed  Google Scholar 

  • Bitrián M, Zarza X, Altabella T, Tiburcio AF, Alcázar R (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2:516–528

    PubMed Central  PubMed  Google Scholar 

  • Bogre L, Ligterink W, Meskiene I, Barker PJ, Heberle-Bors E, Huskisson NS, Hirt H (1997) Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell 9:75–83

    PubMed Central  PubMed  Google Scholar 

  • Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem 275:36734–36740

    CAS  PubMed  Google Scholar 

  • Cassol T, Mattoo AK (2003) Do polyamines and ethylene interact to regulate plant growth, development and senescence? In: Nath P, Mattoo AK, Panade SR, Weil JH (eds) Molecular insights in plant biology. Science Publishers, Enfield, pp 121–132

    Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    CAS  PubMed  Google Scholar 

  • Chen SL, Wang SS, Huttermann A, Altman A (2002) Xylem abscisic acid accelerates leaf abscission by modulating polyamine and ethylene synthesis in water-stressed intact poplar. Trees Struct Funct 16:16–22

    CAS  Google Scholar 

  • Chen H, Jones AD, Howe GA (2006) Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett 580:2540–2546

    CAS  PubMed  Google Scholar 

  • Chen Y-F, Gao Z, Kerris RJ III, Wang W, Binder BM, Schaller GE (2010) Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis. PLoS One 5:e8640

    PubMed Central  PubMed  Google Scholar 

  • Cheng L, Sun R-R, Wang FY, Peng Z, Wu J, Kong FL, Wu J, Cao JS, Lu G (2012) Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. J Zhejiang Univ Sci B 13:283–297

    Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Google Scholar 

  • Chini A, Fonseca S, Chico JM, Fernández-Calvo P, Solano R (2009) The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J 59:77–87

    CAS  PubMed  Google Scholar 

  • Cho SC (1983) Effects of cytokinin and several inorganic cations on the polyamine content of lettuce cotyledons. Plant Cell Physiol 24:27–32

    CAS  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Gupta BD, Gupta RK (2011) Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600

    CAS  PubMed  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LSP (2012a) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 7(3)e33210

    Google Scholar 

  • Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran L-SP (2012b) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675

    Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012c) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    CAS  PubMed  Google Scholar 

  • Choudhuri MM, Ghosh B (1982) Purification and partial characterization of arginine decarboxylase from rice embryos (Oryza sativa L.). Agric Biol Chem 46:739–743

    CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    CAS  PubMed  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    CAS  PubMed  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2009) Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav 4:219–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui X, Ge C, Wang R, Wang H, Chen W, Fu Z, Jiang X, Li J, Wang Y (2010) The BUD2 mutation affects plant architecture through altering cytokinin and auxin responses in Arabidopsis. Cell Res 20:576–586

    CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    CAS  PubMed  Google Scholar 

  • Cvikrová M, Malá J, Eder J, Hrubcová M, Vágner M (1998) Abscisic acid, polyamines and phenolic acids in sessile oak somatic embryos in relation to their conversion potential. Plant Physiol Biochem 36:247–255

    Google Scholar 

  • Danin M, Upfold SJ, Levin N, Nadel BL, Altman A, Staden J (1993) Polyamines and cytokinins in celery embryogenic cell cultures. Plant Growth Regul 12:245–254

    CAS  Google Scholar 

  • Das K, Misra H (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133

    CAS  PubMed  Google Scholar 

  • de Agostini EAT, Machado-Neto NB, Custodio CC (2013) Induction of water deficit tolerance by cold shock and salicylic acid during germination in the common bean. Acta Sci Agron 35:209–219

    Google Scholar 

  • Dempsey DMA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156

    PubMed Central  PubMed  Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Droillard M-J, Thibivilliers S, Cazalé A-C, Barbier-Brygoo H, Laurière C (2000) Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett 474:217–222

    CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich K-U, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314

    CAS  PubMed  Google Scholar 

  • Espartero J, Pintor-Toro JA, Pardo JM (1994) Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol 25:217–227

    CAS  PubMed  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    CAS  Google Scholar 

  • Expósito-Rodríguez M, Borges A, Borges-Pérez A, Hernández M, Pérez J (2007) Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J Plant Growth Regul 26:329–340

    Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farooq M, Wahid A, Lee DJ, Cheema SA, Aziz T (2010) Drought stress: comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agron Crop Sci 196:336–345

    CAS  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547

    CAS  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fromm J (1997) Hormonal physiology of wood growth in willow (Salix viminalis L.): effects of spermine and abscisic acid. Wood Sci Technol 31:119–130

    CAS  Google Scholar 

  • Fu ZQ, Yan SP, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong XN (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature (Lond) 486:228

    CAS  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    CAS  PubMed  Google Scholar 

  • Galston AW (1983) Polyamines as modulators of plant development. BioScience 33:382–388

    CAS  Google Scholar 

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garay-Arroyo A, De La Paz SM, García-Ponce B, Azpeitia E, Álvarez-Buylla ER (2012) Hormone symphony during root growth and development. Dev Dyn 241:1867–1885

    CAS  PubMed  Google Scholar 

  • Garcion C, Métraux J-P (2007) Salicylic acid. In: Hedden P, Thomas SG (eds) Annual Plant Reviews, vol 24. Plant Hormone Signaling. Blackwell, Oxford, pp 229–255

    Google Scholar 

  • Garufi A, Visconti S, Camoni L, Aducci P (2007) Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+-ATPase. Plant Cell Physiol 48:434–440

    CAS  PubMed  Google Scholar 

  • Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z, Li J (2006) BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 16:446–456

    CAS  PubMed  Google Scholar 

  • Gil P, Green PJ (1996) Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance: The 3′ untranslated region functions as an mRNA instability determinant. EMBO J 15:1678–1686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    CAS  PubMed  Google Scholar 

  • Gomez-Jimenez MD, Garcia-Olivares E, Matilla AJ (2001) 1-Aminocyclopropane-1-carboxylate oxidase from embryonic axes of germinating chick pea (Cicer arietinum L.) seeds: cellular immunolocalization and alterations in its expression by indole-3-acetic acid, abscisic acid and spermine. Seed Sci Res 11:243–253

    CAS  Google Scholar 

  • Gomez-Jimenez M, Paredes M, Gallardo M, Fernandez-Garcia N, Olmos E, Sanchez-Calle I (2010) Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. Planta (Berl) 232:629–647

    CAS  Google Scholar 

  • Gonzalez ME, Marco F, Minguet EG, Carrasco-Sorli P, Blázquez MA, Carbonell J, Ruiz OA, Pieckenstain FL (2011) Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiol 156:2266–2277

    CAS  PubMed Central  PubMed  Google Scholar 

  • González-Aguilar GA, Fortiz J, Cruz R, Baez R, Wang CY (2000) Methyl jasmonate reduces chilling injury and maintains postharvest quality of mango fruit. J Agric Food Chem 48:515–519

    PubMed  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    CAS  PubMed  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    CAS  PubMed  Google Scholar 

  • Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    CAS  PubMed  Google Scholar 

  • Hall BP, Shakeel SN, Schaller GE (2007) Ethylene receptors: ethylene perception and signal transduction. J Plant Growth Regul 26:118–130

    CAS  Google Scholar 

  • Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546

    CAS  PubMed  Google Scholar 

  • Handa AK, Anwar R, Mattoo AK (2014) Biotechnology of fruit quality. In: Nath P, Bouzayen M, Peck JC, Mattoo AK (eds) Fruit ripening: Physiology, Signalling And Genomics. CAB International, Oxfordshire, pp 259–290

    Google Scholar 

  • Hanzawa Y, Imai A, Michael AJ, Komeda Y, Takahashi T (2002) Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett 527:176–180

    CAS  PubMed  Google Scholar 

  • Harpaz-Saad S, Yoon GM, Mattoo AK, Kieber JJ (2012) The formation of ACC and competition between polyamines and ethylene for SAM. Annu Plant Rev 44:53–81

    Google Scholar 

  • He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    CAS  PubMed  Google Scholar 

  • Hiraga S, Ito H, Yamakawa H, Ohtsubo N, Seo S, Mitsuhara I, Matsui H, Honma M, Ohashi Y (2000) An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate, methyl jasmonate, and ethephon. Mol Plant Microbe Interact 13:210–216

    CAS  PubMed  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) Responsive-to-antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383–393

    CAS  PubMed  Google Scholar 

  • Hoyos ME, Zhang S (2000) Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol 122:1355–1364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurng WP, Lur HS, Liao C-K, Kao CH (1994) Role of abscisic acid, ethylene and polyamines in flooding-promoted senescence of tobacco leaves. J Plant Physiol 143:102–105

    Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353

    CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    CAS  PubMed  Google Scholar 

  • Idrees M, Naeem M, Aftab T, Khan MMA, Moinuddin (2013) Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.). J Hazard Mater 252:367–374

    Google Scholar 

  • Ikeda Y, Men SZ, Fischer U, Stepanova AN, Alonso JM, Ljung K, Grebe M (2009) Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat Cell Biol 11:731–U770

    CAS  PubMed  Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Matsuoka M (2008) Molecular biology of gibberellins signaling in higher plants. In: Kwang WJ (ed) International Review of Cell and Molecular Biology, vol 268. Academic, New York, pp 191–221

    Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K loss via a GORK channel. J Exp Bot 64:2255–2268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ji Y, Guo H (2013) From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling. Mol Plant 6:11–14

    CAS  PubMed  Google Scholar 

  • Jiang W, Bai J, Yang X, Yu H, Liu Y (2012) Exogenous application of abscisic acid, putrescine, or 2,4-epibrassinolide at appropriate concentrations effectively alleviate damage to tomato seedlings from suboptimal temperature stress. HortTechnol 22:137–144

    CAS  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ju CL, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang JH, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109:19486–19491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kakehi J-I, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349

    CAS  PubMed  Google Scholar 

  • Kaltdorf M, Naseem M (2013) How many salicylic acid receptors does a plant cell need? Sci Signaling 6(279):jc3

    Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    CAS  PubMed  Google Scholar 

  • Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I (2010) R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152:1731–1747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kausch KD, Sobolev AP, Goyal RK, Fatima T, Laila-Beevi R, Saftner RA, Handa AK, Mattoo AK (2012) Methyl jasmonate deficiency alters cellular metabolome, including the aminome of tomato (Solanum lycopersicum L.) fruit. Amino Acids 42:843–856

    Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keinänen M, Oldham NJ, Baldwin IT (2001) Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in nicotiana attenuata. J Agric Food Chem 49:3553–3558

    PubMed  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61(61):681–704

    CAS  PubMed  Google Scholar 

  • Kim K, Ryu H, Cho YH, Scacchi E, Sabatini S, Hwang I (2012) Cytokinin-facilitated proteolysis of ARABIDOPSIS RESPONSE REGULATOR2 attenuates signaling output in two-component circuitry. Plant J 69:934–945

    Google Scholar 

  • Kim HJ, Chiang YH, Kieber JJ, Schaller GE (2013) SCFKMD controls cytokinin signaling by regulating the degradation of type-B response regulators. Proc Natl Acad Sci USA 110:10028–10033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klee HJ (1993) Ripening physiology of fruit from transgenic tomato (Lycopersicon esculentum) plants with reduced ethylene synthesis. Plant Physiol 102:911–916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klee H, Tieman D (2002) The tomato ethylene receptor gene family: form and function. Physiol Plant 115:336–341

    CAS  PubMed  Google Scholar 

  • Knauss S, Rohrmeier T, Lehle L (2003) The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J Biol Chem 278:23936–23943

    CAS  PubMed  Google Scholar 

  • Kolotilin I, Koltai H, Bar-Or C, Chen L, Nahon S, Shlomo H, Levin I, Reuveni M (2011) Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit. Physiol Plant 142:211–223

    CAS  PubMed  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kovacs Z, Simon-Sarkadi L, Szucs A, Kocsy G (2010) Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38:623–631

    CAS  PubMed  Google Scholar 

  • Kumar R, Tyagi AK, Sharma AK (2011) Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics 285:245–260

    CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta (Berl) 228:367–381

    CAS  Google Scholar 

  • Lackman P, Gonzalez-Guzman M, Tilleman S, Carqueijeiro I, Perez AC, Moses T, Seo M, Kanno Y, Hakkinen ST, Van Montagu MCE, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci USA 108:5891–5896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lasanajak Y, Minocha R, Minocha SC, Goyal R, Fatima T, Handa AK, Mattoo AK (2014) Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene. Amino Acids 46:729–742

    Google Scholar 

  • Lazzarato L, Trebbi G, Pagnucco C, Franchin C, Torrigiani P, Betti L (2009) Exogenous spermidine, arsenic and β-aminobutyric acid modulate tobacco resistance to tobacco mosaic virus, and affect local and systemic glucosylsalicylic acid levels and arginine decarboxylase gene expression in tobacco leaves. J Plant Physiol 166:90–100

    CAS  PubMed  Google Scholar 

  • Lee HI, León J, Raskin I (1995a) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92:4076–4079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee T-M, Lur H-S, Chu C (1995b) Abscisic acid and putrescine accumulation in chilling-tolerant rice cultivars. Crop Sci 35:502–508

    CAS  Google Scholar 

  • Lee TM, Lur HS, Chu C (1997) Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. II. Modulation of free polyamine levels. Plant Sci 126:1–10

    CAS  Google Scholar 

  • Legocka J, Zarnowska A (2002) Role of polyamines in cytokinin-dependent physiological processes. III. Changes in polyamine levels during cytokinin-induced formation of gametophore buds in Ceratodon purpureus. Acta Physiol Plant 24:303–309

    CAS  Google Scholar 

  • Lei T, Feng H, Sun X, Dai QL, Zhang F, Liang HG, Lin HH (2010) The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regul 60:35–42

    CAS  Google Scholar 

  • Li N, Parsons BL, Liu D, Mattoo AK (1992) Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol Biol 18:477–487

    CAS  PubMed  Google Scholar 

  • Li L, Hou X, Tsuge T, Ding M, Aoyama T, Oka A, Gu H, Zhao Y, Qu L-J (2008) The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Rep 27:575–584

    CAS  PubMed  Google Scholar 

  • Ligterink W, Kroj T, Uz N, Hirt H, Scheel D (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276:2054–2057

    CAS  PubMed  Google Scholar 

  • Løvaas E (1996) Antioxidative and metal-chelating effects of polyamines. In: Helmut S (ed) Advances in Pharmacology, vol 38. Academic, New York, pp 119–149

    Google Scholar 

  • Luo ZS, Wu X, Xie Y, Chen C (2012) Alleviation of chilling injury and browning of postharvest bamboo shoot by salicylic acid treatment. Food Chem 131:456–461

    CAS  Google Scholar 

  • Mader JC, Hanke DE (1997) Polyamine sparing may be involved in the prolongation of cell division due to inhibition of phenylpropanoid synthesis in cytokinin-starved soybean cells. J Plant Growth Regul 16:89–93

    CAS  Google Scholar 

  • Mähönen AP, Higuchi M, Törmäkangas K, Miyawaki K, Pischke MS, Sussman MR, Helariutta Y, Kakimoto T (2006) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16:1116–1122

    PubMed  Google Scholar 

  • Marcinska I, Czyczylo-Mysza I, Skrzypek E, Grzesiak MT, Janowiak F, Filek M, Dziurka M, Dziurka K, Waligorski P, Juzon K, Cyganek K, Grzesiak S (2013) Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci 14:13171–13193

    PubMed Central  PubMed  Google Scholar 

  • Marco F, Alcázar R, Tiburcio AF, Carrasco P (2011a) Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS 15:775–781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marco F, Altabella T, Alcazar R, Cuevas J, Bortolotti C, Gonzalez ME, Ruiz OA, Tiburcio AF, Carrasco P (2011b) Transcriptome analysis of polyamine overproducers reveals activation of plant stress responses and related signalling pathways tolerance in plants. In: Tuteja N, Gill SS, Tuteja R (eds) Omics and plant abiotic stress tolerance. Bentham Science, Sharjah, pp 82–90

    Google Scholar 

  • Martinez-Madrid MC, Serrano M, Riquelme F, Romojaro F (1996) Polyamines, abscisic acid and ethylene production in tomato fruit. Phytochemistry 43:323–326

    CAS  Google Scholar 

  • Martinez-Madrid MC, Flores F, Romojaro F (2002) Behaviour of abscisic acid and polyamines in antisense ACC oxidase melon (Cucumis melo) during ripening. Funct Plant Biol 29:865–872

    CAS  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    CAS  Google Scholar 

  • Matthews HR (1993) Polyamines, chromatin structure and transcription. Bioessays 15:561–566

    CAS  PubMed  Google Scholar 

  • Mattoo AK, Handa AK (2008) Higher polyamines restore and enhance metabolic memory in ripening fruit. Plant Sci 174:386–393

    CAS  Google Scholar 

  • Mattoo AK, White WB (1991) Regulation of ethylene biosynthesis. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC, Boca Raton, pp 21–42

    Google Scholar 

  • Mattoo AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL (2006) Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol 142:1759–1770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mattoo AK, Chung SH, Goyal RK, Fatima T, Solomos T, Srivastava A, Handa AK (2007) Overaccumulation of higher polyamines in ripening transgenic tomato fruit revives metabolic memory, upregulates anabolism-related genes, and positively impacts nutritional quality. J AOAC Int 90:1456–1464

    CAS  PubMed  Google Scholar 

  • Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413

    CAS  PubMed  Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    CAS  PubMed  Google Scholar 

  • Mikołajczyk M, Awotunde OS, Muszyńska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165–178

    PubMed Central  PubMed  Google Scholar 

  • Milhinhos A, Miguel C (2013) Hormone interactions in xylem development: a matter of signals. Plant Cell Rep 32:867–883

    CAS  PubMed  Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:1–17

    Google Scholar 

  • Mitsuya Y, Takahashi Y, Uehara Y, Berberich T, Miyazaki A, Takahashi H, Kusano T (2007) Identification of a novel Cys2/His2-type zinc-finger protein as a component of a spermine-signaling pathway in tobacco. J Plant Physiol 164:785–793

    CAS  PubMed  Google Scholar 

  • Mitsuya Y, Takahashi Y, Berberich T, Miyazaki A, Matsumura H, Takahashi H, Terauchi R, Kusano T (2009) Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus. J Plant Physiol 166:626–643

    CAS  PubMed  Google Scholar 

  • Mohapatra S, Minocha R, Long S, Minocha SC (2010) Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids. Amino Acids 38:1117–1129

    Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants – where do we stand? Physiol Plant 138:372–383

    CAS  PubMed  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973

    CAS  PubMed  Google Scholar 

  • Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muñiz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blázquez MA, Tuominen H (2008) ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development (Camb) 135:2573–2582

    Google Scholar 

  • Mutlu S, Atici O (2013) Alleviation of high salt toxicity-induced oxidative damage by salicylic acid pretreatment in two wheat cultivars. Toxicol Ind Health 29:89–96

    CAS  PubMed  Google Scholar 

  • Nambeesan S, Handa AK, Mattoo AK (2008) Polyamines and regulation of ripening and senescence. In: Paliyath G, Murr DP, Handa AK, Lurie S (eds) Postharvest biology and technology of fruits, vegetables and flowers. Wiley-Blackwell, Hoboken, pp 319–340

    Google Scholar 

  • Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847

    CAS  PubMed  Google Scholar 

  • Nayyar H, Kaur S, Singh KJ, Dhir KK, Bains T (2005) Water stress-induced injury to reproductive phase in chickpea: evaluation of stress sensitivity in wild and cultivated species in relation to abscisic acid and polyamines. J Agron Crop Sci 191:450–457

    CAS  Google Scholar 

  • Newman TC, Ohme-Takagi M, Taylor CB, Green PJ (1993) DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell Online 5:701–714

    CAS  Google Scholar 

  • Nühse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275:7521–7526

    PubMed  Google Scholar 

  • Onkokesung N, Gaquerel E, Kotkar H, Kaur H, Baldwin IT, Galis I (2012) MYB8 controls inducible phenolamide levels by activating three novel hydroxycinnamoyl-coenzyme a:polyamine transferases in Nicotiana attenuata. Plant Physiol 158:389–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palavan N, Goren R, Galston AW (1984) Effects of some growth regulators on polyamine biosynthetic enzymes in etiolated pea seedlings. Plant Cell Physiol 25:541–546

    CAS  Google Scholar 

  • Pandey P, Srivastava RK, Dubey RS (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22:656–670

    CAS  PubMed  Google Scholar 

  • Parra-Lobato MC, Gomez-Jimenez MC (2011) Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. J Exp Bot 62:4447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2007) Co(i)-ordinating defenses: NaCOI1 mediates herbivore-induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51:79–91

    CAS  PubMed  Google Scholar 

  • Pattison RJ, Catala C (2012) Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J 70:585–598

    CAS  PubMed  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peret B, Swarup K, Ferguson A, Seth M, Yang YD, Dhondt S, James N, Casimiro I, Perry P, Syed A, Yang HB, Reemmer J, Venison E, Howells C, Perez-Amador MA, Yun JG, Alonso J, Beemster GTS, Laplaze L, Murphy A, Bennett MJ, Nielsen E, Swarup R (2012) AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24:2874–2885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130:1454–1463

    PubMed Central  PubMed  Google Scholar 

  • Pirinen E, Kuulasmaa T, Pietila M, Heikkinen S, Tusa M, Itkonen P, Boman S, Skommer J, Virkamaki A, Hohtola E, Kettunen M, Fatrai S, Kansanen E, Koota S, Niiranen K, Parkkinen J, Levonen AL, Yla-Herttuala S, Hiltunen JK, Alhonen L, Smith U, Janne J, Laakso M (2007) Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol Cell Biol 27:4953–4967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puga-Hermida MI, Gallardo M, Matilla AJ (2003) The zygotic embryogenesis and ripening of Brassica rapa seeds provokes important alterations in the levels of free and conjugated abscisic acid and polyamines. Physiol Plant 117:279–288

    CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013a) Ameliorative effects of spermine against osmotic stress through antioxidants and abscisic acid changes in soybean pods and seeds. Acta Physiol Plant 35:263–269

    CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013b) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul 32:22–30

    CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    CAS  PubMed  Google Scholar 

  • Raju S, Jayalakshmi SK, Sreeramulu K (2009) Differential elicitation of proteases and protease inhibitors in two different genotypes of chickpea (Cicer arietinum) by salicylic acid and spermine. J Plant Physiol 166:1015–1022

    CAS  PubMed  Google Scholar 

  • Rakitin VY, Prudnikova ON, Karyagin VV, Rakitina TY, Vlasov PV, Borisova TA, Novikova GV, Moshkov IE (2008) Ethylene evolution and ABA and polyamine contents in Arabidopsis thaliana during UV-B stress. Russ J Plant Physiol 55:321–327

    CAS  Google Scholar 

  • Rakitin VY, Prudnikova ON, Rakitina TY, Karyagin VV, Vlasov PV, Novikova GV, Moshkov IE (2009) Interaction between ethylene and ABA in the regulation of polyamine level in Arabidopsis thaliana during UV-B stress. Russ J Plant Physiol 56:147–153

    CAS  Google Scholar 

  • Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portoles S, Rodriguez-Conception M, Martinez-Garcia JF (2007) Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J 26:4756–4767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rojo E, Solano R, Sánchez-Serrano J (2003) Interactions between signaling compounds involved in plant defense. J Plant Growth Regul 22:82–98

    CAS  Google Scholar 

  • Romanov GA, Kieber JJ, Schmulling T (2002) A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalling. FEBS Lett 515:39–43

    CAS  PubMed  Google Scholar 

  • Romanov GA, Lomin SN, Rakova NY, Heyl A, Schmülling T (2008) Does NO play a role in cytokinin signal transduction? FEBS Lett 582:874–880

    CAS  PubMed  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    CAS  PubMed  Google Scholar 

  • Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J 22:367–376

    CAS  PubMed  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature (Lond) 459:1071–1078

    CAS  Google Scholar 

  • Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis: structure, function, regulation. Phytochemistry 70:1532–1538

    CAS  PubMed  Google Scholar 

  • Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9:623–642

    CAS  PubMed  Google Scholar 

  • Sendon PM, Seo HS, Song JT (2011) Salicylic acid signaling: biosynthesis, metabolism, and crosstalk with jasmonic acid. J Kor Soc Appl Biol Chem 54:501–506

    CAS  Google Scholar 

  • Serrano M, Martínez-Madrid MC, Riquelme F, Romojaro F (1995) Endogenous levels of polyamines and abscisic acid in pepper fruits during growth and ripening. Physiol Plant 95:73–76

    CAS  Google Scholar 

  • Sharma A, Slathia S, Choudhary S, Sharma Y, Langer A (2014) Role of 24-epibrassinolide, putrescine and spermine in salinity stressed Adiantum capillus-veneris leaves. Proc Natl Acad Sci India B Biol Sci 84:183–192

    CAS  Google Scholar 

  • Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature (Lond) 468:400–U301

    CAS  Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126:770–779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41:831–839

    CAS  PubMed  Google Scholar 

  • Shukla V, Mattoo A (2008) Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling. Physiol Mol Biol Plants 14:91–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh PK, Gautam S (2013) Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiol Plant 35:2345–2353

    CAS  Google Scholar 

  • Sobieszczuk-Nowicka E, Rorat T, Legocka J (2007) Polyamine metabolism and S-adenosylmethionine decarboxylase gene expression during the cytokinin-stimulated greening process. Acta Physiol Plant 29:495–502

    CAS  Google Scholar 

  • Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inzé D, Peer WA, Murphy AS, Overvoorde PJ, Gray WM (2012) The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J 70:978–990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srivastava A, Handa AK (2005) Hormonal regulation of tomato fruit development: a molecular perspective. J Plant Growth Regul 24:67–82

    CAS  Google Scholar 

  • Srivastava A, Chung SH, Fatima T, Datsenka T, Handa AK, Mattoo AK (2007) Polyamines as anabolic growth regulators revealed by transcriptome analysis and metabolite profiles of tomato fruits engineered to accumulate spermidine and spermine. Plant Biotechnol 24:57–70

    CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837–12842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sudha G, Ravishankar GA (2003) Elicitation of anthocyanin production in callus cultures of Daucus carota and the involvement of methyl jasmonate and salicylic acid. Acta Physiol Plant 25:249–256

    CAS  Google Scholar 

  • Suresh MR, Ramakrishna S, Adiga PR (1978) Regulation of arginine decarboxylase and putrescine levels in Cucumis sativus cotyledons. Phytochemistry 17:57–63

    CAS  Google Scholar 

  • Takahashi T, Kakehi J-I (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003) Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J 36:820–829

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H, Miyazaki A, Terauchi R, Kusano T (2004) A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. Plant J 40:586–595

    CAS  PubMed  Google Scholar 

  • Takano A, Kakehi JI, Takahashi T (2012) Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol 53:606–616

    CAS  PubMed  Google Scholar 

  • Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, K-I T, Shibata D, Kobayashi Y, Ohta H (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tebayashi S-I, Horibata Y, Mikagi E, Kashiwagi T, Mekuria DB, Dekebo A, Ishihara A, Kim C-S (2007) Induction of resistance against the leafminer, Liriomyza trifolii, by jasmonic acid in sweet pepper. Biosci Biotechnol Biochem 71:1521–1526

    CAS  PubMed  Google Scholar 

  • Theiss C, Bohley P, Voigt J (2002) Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 128:1470–1479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu GH, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature (Lond) 448:661–U662

    CAS  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    CAS  PubMed  Google Scholar 

  • Tieman DM, Taylor MG, Ciardi JA, Klee HJ (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci USA 97:5663–5668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA, Angelini R, Cona A (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157:200–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tivendale ND, Ross JJ, Cohen JD (2014) The shifting paradigms of auxin biosynthesis. Trends Plant Sci 19:44–51

    CAS  PubMed  Google Scholar 

  • Torrigiani P, Bregoli AM, Ziosi V, Costa G (2008) Molecular and biochemical aspects underlying polyamine modulation of fruit development and ripening. Stewart Postharvest Rev 4:1–12

    Google Scholar 

  • Torrigiani P, Bressanin D, Beatriz Ruiz K, Tadiello A, Trainotti L, Bonghi C, Ziosi V, Costa G (2012) Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiol Plant 146:86–98

    CAS  PubMed  Google Scholar 

  • Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Ben Salem-fnayou A, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167:519–525

    CAS  PubMed  Google Scholar 

  • Tufail A, Arfan M, Gurmani AR, Khan A, Bano A (2013) Salicylic acid induced salinity tolerance in maize (Zea mays). Pakistan J Bot 45:75–82

    Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    CAS  PubMed  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:S153–S164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uehara Y, Takahashi Y, Berberich T, Miyazaki A, Takahashi H, Matsui K, Ohme-Takagi M, Saitoh H, Terauchi R, Kusano T (2005) Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway. Plant Mol Biol 59:435–448

    CAS  PubMed  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    CAS  Google Scholar 

  • Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579:1557–1564

    CAS  PubMed  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    CAS  PubMed  Google Scholar 

  • Valero D, Martinez-Romero D, Serrano M, Riquelme F (1998) Postharvest gibberellin and heat treatment effects on polyamines, abscisic acid and firmness in lemons. J Food Sci 63:611–615

    CAS  Google Scholar 

  • van Berkel K, de Boer RJ, Scheres B, ten Tusscher K (2013) Polar auxin transport: models and mechanisms. Development (Camb) 140:2253–2268

    Google Scholar 

  • van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    PubMed Central  PubMed  Google Scholar 

  • Vanleeuwenhoek AV (1978) Observationes D. Anthonii Leeuwenhoek, de natis e semine genitali animalculis. Philos Trans R Soc Lond 12:1040–1043

    Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    CAS  PubMed  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187

    CAS  PubMed  Google Scholar 

  • Walker MA, Roberts DR, Dumbroff EB (1988) Effects of cytokinin and light on polyamines during the greening response of cucumber cotyledons. Plant Cell Physiol 29:201–205

    CAS  Google Scholar 

  • Walker MA, Roberts DR, Waite JL, Dumbroff EB (1989) Relationships among cytokinins, ethylene and poly amines during the stratification-germination process in seeds of Acer saccharum. Physiol Plant 76:326–332

    CAS  Google Scholar 

  • Wallace HM (2009) The polyamines: past, present and future. Essays Biochem 46:9

    Google Scholar 

  • Walters D, Cowley T, Mitchell A (2002) Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J Exp Bot 53:747–756

    CAS  PubMed  Google Scholar 

  • Wang CY, Buta JG (1994) Methyl jasmonate reduces chilling injury in Cucurbita pepo through its regulation of abscisic acid and polyamine levels. Environ Exp Bot 34:427–432

    CAS  Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183–192

    CAS  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei YX, Liu ZF, Su YJ, Liu DH, Ye XQ (2011) Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus. J Food Sci 76:S126–S132

    CAS  PubMed  Google Scholar 

  • Weiner JJ, Peterson FC, Volkman BF, Cutler SR (2010) Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 13:495–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widiastuti A, Yoshino M, Hasegawa M, Nitta Y, Sato T (2013) Heat shock-induced resistance increases chitinase-1 gene expression and stimulates salicylic acid production in melon (Cucumis melo L.). Physiol Mol Plant Pathol 82:51–55

    CAS  Google Scholar 

  • Hayat S, Mori M, Pichtel J, Ahmad A (2009) Polyamines and cytokinin: is nitric oxide biosynthesis the key to overlapping functions? In: Wimalasekera R, Scherer GFE (eds) Nitric oxide in plant physiology. Wiley-VCH Verlag, pp 65–76

    Google Scholar 

  • Winz RA, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. IV. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiol 125:2189–2202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a Rosette-Lethal phenotype. Plant Cell 12:443–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Liu S, He Y, Guan X, Zhu X, Cheng L, Wang J, Lu G (2012a) Genome-wide analysis of SAUR gene family in Solanaceae species. Gene (Amst) 509:38–50

    CAS  Google Scholar 

  • Wu J, Peng Z, Liu S, He Y, Cheng L, Kong F, Wang J, Lu G (2012b) Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Mol Genet Genomics 287:295–311

    CAS  PubMed  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C (2012c) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    CAS  PubMed  Google Scholar 

  • Xu BF, Timko MP (2004) Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Mol Biol 55:743–761

    CAS  PubMed  Google Scholar 

  • Yamakawa H, Kamada H, Satoh M, Ohashi Y (1998) Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol 118:1213–1222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci 11:522–524

    CAS  PubMed  Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Wu Y, Pirrello J, Regad F, Bouzayen M, Deng W, Li Z (2010) Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato. J Exp Bot 61:697–708

    CAS  PubMed  Google Scholar 

  • Yokota T, Nakayama M, Harasawa I, Sato M, Katsuhara M, Kawabe S (1994) Polyamines, indole-3-acetic acid and abscisic acid in rice phloem sap. Plant Growth Regul 15:125–128

    CAS  Google Scholar 

  • Yoshikawa H, Honda C, Kondo S (2007) Effect of low-temperature stress on abscisic acid, jasmonates, and polyamines in apples. Plant Growth Regul 52:199–206

    CAS  Google Scholar 

  • Yoshimoto K, Noutoshi Y, Hayashi K, Shirasu K, Takahashi T, Motose H (2012) A chemical biology approach reveals an opposite action between thermospermine and auxin in xylem development in Arabidopsis thaliana. Plant Cell Physiol 53:635–645

    CAS  PubMed  Google Scholar 

  • Zazimalova E, Murphy AS, Yang HB, Hoyerova K, Hosek P (2010) Auxin transporters—why so many? Cold Spring Harb Perspect Biol 2:a001552

    PubMed Central  PubMed  Google Scholar 

  • Zenser N, Dreher KA, Edwards SR, Callis J (2003) Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1. Plant J 35:285–294

    CAS  PubMed  Google Scholar 

  • Zhang S, Klessig DF (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci USA 95:7433–7438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Yang B, Lu B, Kai G, Wang Z, Xia Y, Ding R, Zhang H, Sun X, Chen W, Tang K (2007) Tropane alkaloids production in transgenic Hyoscyamus niger hairy root cultures over-expressing putrescine N-methyltransferase is methyl jasmonate-dependent. Planta (Berl) 225:887–896

    CAS  Google Scholar 

  • Zhang XH, Shen L, Li FJ, Meng DM, Sheng JP (2011) Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. J Agric Food Chem 59:9351–9357

    CAS  PubMed  Google Scholar 

  • Zhang Y, Jiang J, Yang YL (2013) Acetyl salicylic acid induces stress tolerance in tomato plants grown at a low night-time temperature. J Hortic Sci Biotechnol 88:490–496

    CAS  Google Scholar 

  • Zheng YS, Zhang QM (2004) Effects of polyamines and salicylic acid on postharvest storage of ‘Ponkan’ mandarin. Acta Hortic 632:317–320

    CAS  Google Scholar 

  • Zhong S, Lin Z, Grierson D (2008) Tomato ethylene receptor–CTR interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. J Exp Bot 59:965–972

    CAS  PubMed  Google Scholar 

  • Zhu JY, Sae-Seaw J, Wang ZY (2013) Brassinosteroid signalling. Development (Camb) 140:1615–1620

    CAS  Google Scholar 

  • Ziosi V, Bregoli AM, Bonghi C, Fossati T, Biondi S, Costa G, Torrigiani P (2006) Transcription of ethylene perception and biosynthesis genes is altered by putrescine, spermidine and aminoethoxyvinylglycine (AVG) during ripening in peach fruit (Prunus persica). New Phytol 172:229–238

    CAS  PubMed  Google Scholar 

  • Ziosi V, Bregoli AM, Bonghi C, Rasori A, Biondi S, Costa G, Torrigiani P (2007) Jasmonates delay ripening by interfering with ethylene biosynthesis and perception and with polyamine accumulation in peach fruit. Advances in Plant Ethylene Research Springer, Dordrecht, pp 109–110

    Google Scholar 

  • Ziosi V, Bregoli AM, Fregola F, Costa G, Torrigiani P (2009) Jasmonate-induced ripening delay is associated with up-regulation of polyamine levels in peach fruit. J Plant Physiol 166:938–946

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research of A.K.H. is supported by USDA/NIFA 2010-65115-20374 and USDA/NIFA 2012-67017-30159. R.A. is partially supported by the Higher Education Commission of Pakistan. Trade names or commercial products mentioned in this publication are only to provide specific information and do not imply any recommendation or endorsement by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avtar K. Handa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Anwar, R., Mattoo, A.K., Handa, A.K. (2015). Polyamine Interactions with Plant Hormones: Crosstalk at Several Levels. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_22

Download citation

Publish with us

Policies and ethics