Skip to main content

Hydrogen Sulfide: Physiological and Pathophysiological Functions

  • Chapter
  • First Online:
Hydrogen Sulfide and its Therapeutic Applications
  • 931 Accesses

Abstract

Hydrogen sulfide (H2S) has been recognized as an endogenous gaseous mediator. The past decade has seen an exponential growth of scientific interest in the physiological and pathological significance of H2S especially with respect to its roles in the central nervous and the cardiovascular systems. In cardiovascular system, H2S regulates heart contractile function and may serve as a cardioprotectant for treating ischemic heart diseases and heart failure. Alterations of the endogenous H2S level have been found in animal models with various pathological conditions such as myocardial ischemia, spontaneous hypertension, and hypoxic pulmonary hypertension. In the central nervous system, H2S facilitates long-term potentiation and regulates intracellular calcium concentration in brain cells. Intriguingly, H2S produces antioxidant, anti-inflammatory, and anti-apoptotic effects that may be of relevance to neurodegenerative disorders. Abnormal generation and metabolism of H2S have been reported in the pathogenesis of ischemic stroke, Alzheimer’s disease, Parkinson’s disease, and recurrent febrile seizure. Exogenously applied H2S is demonstrated to be valuable in the treatment against febrile seizure and Parkinson’s disease. In addition, H2S also regulates the physiological and pathological functions of kidney, pancreas and bone. Exogenously applied H2S may protect against ischemic kidney injuries and osteoporosis. This article surveys the growing recognition of H2S as an endogenous signaling molecule in mammals and its functions in different biological systems. We will emphasize on its physiological and pathological functions in the cardiovascular, central nervous and renal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]i :

Intracellular Ca2+

±LVdp/dtmax :

Maximal/minimal left ventricular pressure development

1-K:

Uninephrectomy

2K1C:

2-Kidneys-1-clip

3-MST:

Mercaptopyruvate sulfurtransferase

6-OHDA:

6-Hydroxydopamine

AC:

Adenylyl cyclase

ACE:

Angiotensin-converting enzyme

AD:

Alzheimer’s disease

Ang II:

Angiotensin II

AOAA:

Aminooxyacetic acid

APD:

Action potential duration

ApoE:

Apolipoprotein E

ATN:

Acute tubular necrosis

ATP:

Adenosine triphosphate

AVF:

Arteriovenous fistula

BACE-1:

Beta-site amyloid precursor protein cleaving enzyme 1

BKCa :

Large Conductance Ca2+−activated potassium channels

BP:

Blood pressure

cAMP:

Cyclic adenosine monophosphate

CAT:

Cysteine aminotransferase

CBS:

Cystathionine β-synthase

cGMP:

Cyclic guanosine monophosphate

CKD:

Chronic kidney disease

CNS:

Central nervous system

CO:

Carbon monoxide

COX-2:

Cyclooxygenase 2

CSE:

Cystathionine γ-lyase

DA:

Dopamine/dopaminergic

DEANO:

Diethylamine nitric oxide

ECs:

Endothelial cells

EDHF:

Endothelium derived hyperpolarizing factor

ER:

Endoplasmic reticulum

ERK (MAPK):

Extracellular signal-regulated kinase

FENa :

Fractional excretion of Na+

FEK :

Fractional excretion of K+

FF:

Filtration rate

FS:

Febrile seizures

GABA:

Gamma-aminobutyric acid

GFR:

Glomerular filtration rate

GLT1:

Glial glutamate transporter 1

GSH:

Glutathione

GSK-3β:

Glycogen synthase kinase-3

GSSG:

Oxidized glutationine

H2S:

Hydrogen sulfide

HF:

Heart failure

HIF:

Hypoxia-inducible factors

HMC1.1:

Human mast cell line 1.1

HNO:

Nitroxyl anion

Hsp:

Heat shock protein

HUVECs:

Human umbilical vein endothelial cells

I/R:

Ischemia/reperfusion

ICAM-1:

Intercellular adhesion molecule 1

IKCa :

Intermediate conductance Ca2+-activated potassium channels

IL:

Interleukin

iNOS:

Inducible NO synthase

IPreC:

Ischemic preconditioning

IRR:

Intrarenal resistance

ISO:

Isoproterenol

JNK:

c-Jun N-terminal kinases

KATP :

ATP-sensitive potassium channel

LCA:

Left coronary artery

LDL:

Low-density lipoprotein

LPO:

Lipid hydroperoxidation

LPS:

Lipppolysaccharide

LTCC ICa, L :

L-type Ca2+ channels

MAP:

Mean arteriole pressure

MCAO:

Middle cerebral artery occlusion

MDA:

Malondialdehyde

MEK:

ERK Kinase

MI:

Myocardial infarction

MMP:

Matrix metalloproteinase

MPP+ :

1-Methyl-4-phenylpyridine

mPTP:

Mitochondrial permeability transition pore

MR:

Mental retardation

Na2S:

Sodium sulfide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NaHS:

Sodium hydrosulfide

NF-E2:

Nuclear factor-erythroid-derived 2

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NHE:

Na+/H+ exchanger

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NRF-1:

Nuclear respiratory factor 1

Nrf2:

NF-E2 related factor 2

NSAIDs:

Non-steroidal anti-inflammatory drugs

ONOO- :

Peroxynitrite

PAG:

DL-Propargylglycine

PARP:

Poly (ADP-ribose) polymerase

p-CREB:

Phosphorlyated cAMP response element-binding protein

PD:

Parkinson’s disease

pHi :

Intracellular pH

PI3K:

Phosphoinositide 3-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

PGE:

Prostaglandin E2

PKG:

Protein kinase G

p-NR1:

Phosphorylated N-methyl-D-aspartate receptor 1 subunit

p-NR2A:

Phosphorylated N-methyl-D-aspartate receptor 2A subunit

p-NR2B:

Phosphorylated N-methyl-D-aspartate receptor 2B subunit

RAS:

Renin-angiotensin system

RBF:

Renal blood flow

ROS:

Reactive oxygen species

SBP:

Systolic blood pressure

SHR:

Spontaneously hypertensive rats

SIN-1:

3-Morpholinosydnonimine

SKCa :

Small conductance Ca2+-activated potassium channels

SMCs:

Smooth muscle cells

SNAP:

S-Nitroso-N-acetylpenicillamine

SNP:

Sodium nitroprusside

SOD:

Superoxide dismutase

SPreC:

H2S preconditioning

STAT:

Signal transducer and activator of transcription

TH:

Tyrosine hydroxylase

TNF:

Tumor necrosis factor

TUNEL:

Terminal deoxynucleotidyl transferase dUTP Nick end labeling

U.V:

Urine flow rate

UCP2:

Uncoupling protein 2

UK.V:

Urinary K+ excretion

UNa.V:

Urinary Na+ excretion

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

WT:

Wild type

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071

    PubMed  CAS  Google Scholar 

  • Abramochkin DV, Moiseenko LS et al (2009) The effect of hydrogen sulfide on electrical activity of rat atrial myocardium. Bull Exp Biol Med 147(6):683–686

    Article  PubMed  CAS  Google Scholar 

  • Ali MY, Ping CY et al (2006) Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol 149(6):625–634

    Article  PubMed  CAS  Google Scholar 

  • Alves MG, Soares AF et al (2011) Sodium hydrosulfide improves the protective potential of the cardioplegic histidine buffer solution. Eur J Pharmacol 654(1):60–67

    Article  PubMed  CAS  Google Scholar 

  • Andrich J, Saft C et al (2004) Hyperhomocysteinaemia in treated patients with Huntington’s disease homocysteine in HD. Mov Disord 19(2):226–228

    Article  PubMed  Google Scholar 

  • Belardinelli MC, Chabli A et al (2001) Urinary sulfur compounds in Down syndrome. Clin Chem 47(8):1500–1501

    PubMed  CAS  Google Scholar 

  • Bethell HW, Vandenberg JI et al (1998) Changes in ventricular repolarization during acidosis and low-flow ischemia. Am J Physiol 275(2 Pt 2):H551–H561

    PubMed  CAS  Google Scholar 

  • Bian JS, Yong QC et al (2006) Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316(2):670–678

    Article  PubMed  CAS  Google Scholar 

  • Bliksoen M, Kaljusto ML et al (2008) Effects of hydrogen sulphide on ischaemia-reperfusion injury and ischaemic preconditioning in the isolated, perfused rat heart. Eur J Cardiothorac Surg 34(2):344–349

    Article  PubMed  Google Scholar 

  • Bos EM, Leuvenink HG et al (2009) Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury. J Am Soc Nephrol 20(9):1901–1905

    Article  PubMed  CAS  Google Scholar 

  • Boutell JM, Wood JD et al (1998) Huntingtin interacts with cystathionine beta-synthase. Hum Mol Genet 7(3):371–378

    Article  PubMed  CAS  Google Scholar 

  • Bucci M, Papapetropoulos A et al (2010) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30(10):1998–2004

    Article  PubMed  CAS  Google Scholar 

  • Cai WJ, Wang MJ et al (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76(1):29–40

    Article  PubMed  CAS  Google Scholar 

  • Calvert JW, Jha S et al (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105(4):365–374

    Article  PubMed  CAS  Google Scholar 

  • Calvert JW, Elston M et al (2010) Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122(1):11–19

    Article  PubMed  Google Scholar 

  • Chen P, Poddar R et al (1999) Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul 39:93–109

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Ndisang JF et al (2004) Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287(5):H2316–H2323

    Article  PubMed  CAS  Google Scholar 

  • Clarke R, Smith AD et al (1998) Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55(11):1449–1455

    Article  PubMed  CAS  Google Scholar 

  • Cuevas J, Bassett AL et al (1991) Effect of H+ on ATP-regulated K+ channels in feline ventricular myocytes. Am J Physiol 261(3 Pt 2):H755–H761

    PubMed  CAS  Google Scholar 

  • Cui J, Liu L et al (2013) Protective effect of endogenous hydrogen sulfide against oxidative stress in gastric ischemia-reperfusion injury. Exp Ther Med 5(3):689–694

    PubMed  Google Scholar 

  • Diwakar L, Ravindranath V (2007) Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Int 50(2):418–426

    Article  PubMed  CAS  Google Scholar 

  • Dombkowski RA, Russell MJ et al (2004) Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 286(4):R678–R685

    Article  PubMed  CAS  Google Scholar 

  • Elrod JW, Calvert JW et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104(39):15560–15565

    Article  PubMed  CAS  Google Scholar 

  • Enokido Y, Suzuki E et al (2005) Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19(13):1854–1856

    PubMed  CAS  Google Scholar 

  • Filipovic MR, Eberhardt M et al (2013) Beyond H(2)S and NO Interplay: hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO. J Med Chem 56(4):1499–1508

    Article  PubMed  CAS  Google Scholar 

  • Fiorucci S, Antonelli E et al (2005) Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129(4):1210–1224

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Liu X et al (2008) Hydrogen sulfide protects rat lung from ischemia-reperfusion injury. Life Sci 82(23–24):1196–1202

    Article  PubMed  CAS  Google Scholar 

  • Fukuto JM, Collins MD (2007) Interactive endogenous small molecule (gaseous) signaling: implications for teratogenesis. Curr Pharm Des 13(29):2952–2978

    Article  PubMed  CAS  Google Scholar 

  • Furne J, Saeed A et al (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295(5):R1479–R1485

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Bereguiain MA, Samhan-Arias AK et al (2008) Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid Redox Signal 10(1):31–42

    Article  PubMed  CAS  Google Scholar 

  • Geng B, Chang L et al (2004a) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318(3):756–763

    Article  PubMed  CAS  Google Scholar 

  • Geng B, Yang J et al (2004b) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313(2):362–368

    Article  PubMed  CAS  Google Scholar 

  • Giggenbach W (1971) Optical spectra of highly alkaline sulfide solutions and the second dissociation constant of hydrogen sulfide. Inorg Chem 10:1333–1338

    Article  CAS  Google Scholar 

  • Givvimani S, Munjal C et al (2011) Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. J Appl Physiol 110(4):1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Gong QH, Wang Q et al (2010) Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol Biochem Behav 96(1):52–58

    Article  PubMed  CAS  Google Scholar 

  • Goodwin LR, Francom D et al (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 13(2):105–109

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Qin J et al (2005a) Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci Res 53(2):216–219

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Qin J et al (2005b) Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem Biophys Res Commun 327(2):431–436

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Qin J et al (2006) Hydrogen sulfide and carbon monoxide are in synergy with each other in the pathogenesis of recurrent febrile seizures. Cell Mol Neurobiol 26(1):101–107

    Article  PubMed  Google Scholar 

  • Henderson PW, Weinstein AL et al (2010) Hydrogen sulfide attenuates ischemia-reperfusion injury in in vitro and in vivo models of intestine free tissue transfer. Plast Reconstr Surg 125(6):1670–1678

    Article  PubMed  CAS  Google Scholar 

  • Hosgood SA, Nicholson ML (2010) Hydrogen sulphide ameliorates ischaemia-reperfusion injury in an experimental model of non-heart-beating donor kidney transplantation. Br J Surg 97(2):202–209

    Article  PubMed  CAS  Google Scholar 

  • Hosoki R, Matsuki N et al (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237(3):527–531

    Article  PubMed  CAS  Google Scholar 

  • House JD, O’Connor CP et al (2003) Plasma homocysteine and glycine are sensitive indices of folate status in a rodent model of folate depletion and repletion. J Agric Food Chem 51(15):4461–4467

    Article  PubMed  CAS  Google Scholar 

  • Hu LF, Wong PT et al (2007) Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem 100(4):1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Hu LF, Pan TT et al (2008a) Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Arch 455(6):971–978

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Chen X et al (2008b) Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch 455(4):607–616

    Article  PubMed  CAS  Google Scholar 

  • Hu LF, Lu M et al (2009) Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol 75(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Hu LF, Lu M et al (2010) Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 9(2):135–146

    Article  PubMed  CAS  Google Scholar 

  • Hu LF, Li Y et al (2011a) Hydrogen sulfide regulates Na+/H+ exchanger activity via stimulation of Phosphoinositide 3-kinase/Akt and protein kinase G pathways. J Pharmacol Exp Ther 339(2):726–735

    Article  PubMed  CAS  Google Scholar 

  • Hu LF, Lu M et al (2011b) Hydrogen sulfide: neurophysiology and neuropathology. Antioxid Redox Signal 15(2):405–419

    Article  PubMed  CAS  Google Scholar 

  • Hvitved-Jacobsen T (2002) Sewer processes: microbial and chemical process engineering of sewer networks, vol 70. CRC Press, Boca Raton

    Google Scholar 

  • Ishigami M, Hiraki K et al (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11(2):205–214

    Article  PubMed  CAS  Google Scholar 

  • Ishii I, Akahoshi N et al (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381(Pt 1):113–123

    PubMed  CAS  Google Scholar 

  • Ishii I, Akahoshi N et al (2010) Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285(34):26358–26368

    Article  PubMed  CAS  Google Scholar 

  • Isobe C, Murata T et al (2005) Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer’s disease and Parkinson’s disease. Life Sci 77(15):1836–1843

    Article  PubMed  CAS  Google Scholar 

  • Jeney V, Komodi E et al (2009) Supression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulfide (H(2)S). Free Radic Biol Med 46(5):616–623

    Article  PubMed  CAS  Google Scholar 

  • Jha S, Calvert JW et al (2008) Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol 295(2):H801–H806

    Article  PubMed  CAS  Google Scholar 

  • Jiang HL, Wu HC et al (2005) Changes of the new gaseous transmitter H2S in patients with coronary heart disease. Di Yi Jun Yi Da Xue Xue Bao 25(8):951–954

    PubMed  CAS  Google Scholar 

  • Jiang B, Tang G et al (2010) Molecular mechanism for H(2)S-induced activation of K(ATP) channels. Antioxid Redox Signal 12(10):1167–1178

    Article  PubMed  CAS  Google Scholar 

  • Jiang LH, Wang J et al (2012) Exogenous sodium hydrosulfide can attenuate naloxone-precipitated withdrawal syndromes and affect cAMP signaling pathway in heroin-dependent rat’s nucleus accumbens. Eur Rev Med Pharmacol Sci 16(14):1974–1982

    PubMed  Google Scholar 

  • Johansen D, Ytrehus K et al (2006) Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury–Evidence for a role of K ATP channels. Basic Res Cardiol 101(1):53–60

    Article  PubMed  CAS  Google Scholar 

  • Kabil O, Banerjee R (2010) The redox biochemistry of hydrogen sulfide. J Biol Chem 285(29):21903–21907

    Article  PubMed  CAS  Google Scholar 

  • Kajimura M, Fukuda R et al (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13(2):157–192

    Article  PubMed  CAS  Google Scholar 

  • Kamoun P (2001) Mental retardation in Down syndrome: a hydrogen sulfide hypothesis. Med Hypotheses 57(3):389–392

    Article  PubMed  CAS  Google Scholar 

  • Kashiba M, Kajimura M et al (2002) From O2 to H2S: a landscape view of gas biology. Keio J Med 51(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Kida K, Yamada M et al (2010) Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid Redox Signal 15:343–352

    Article  CAS  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18(10):1165–1167

    PubMed  CAS  Google Scholar 

  • Kiss L, Deitch EA et al (2008) Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci 83(17–18):589–594

    Article  PubMed  CAS  Google Scholar 

  • Kombian SB, Reiffenstein RJ et al (1993) The actions of hydrogen sulfide on dorsal raphe serotonergic neurons in vitro. J Neurophysiol 70(1):81–96

    PubMed  CAS  Google Scholar 

  • Koyano T, Kakei M et al (1993) ATP-regulated K+ channels are modulated by intracellular H+ in guinea-pig ventricular cells. J Physiol 463:747–766

    PubMed  CAS  Google Scholar 

  • Kubo S, Doe I et al (2007) Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension. Toxicology 232(1–2):138–146

    Article  PubMed  CAS  Google Scholar 

  • Laggner H, Hermann M et al (2007a) The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J Hypertens 25(10):2100–2104

    Article  PubMed  CAS  Google Scholar 

  • Laggner H, Muellner MK et al (2007b) Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl. Free Radic Res 41(7):741–747

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Hu YS et al (2006) Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54(2):116–124

    Article  PubMed  Google Scholar 

  • Lee SW, Cheng Y et al (2007) Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem Biophys Res Commun 358(4):1142–1147

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Schwab C et al (2009) Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol Aging 30(10):1523–1534

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Sparatore A et al (2010a) Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia 58(1):103–113

    Article  PubMed  Google Scholar 

  • Lee M, Tazzari V et al (2010b) Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease. J Biol Chem 285(23):17318–17328

    Article  PubMed  CAS  Google Scholar 

  • Levitt MD, Abdel-Rehim MS et al (2011) Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid Redox Signal 15(2):373–378

    Article  PubMed  CAS  Google Scholar 

  • Li L, Bhatia M et al (2006a) Hydrogen sulphide–a novel mediator of inflammation? Curr Opin Pharmacol 6(2):125–129

    Article  PubMed  CAS  Google Scholar 

  • Li N, Chen L et al (2006b) Hyperhomocysteinemia associated with decreased renal transsulfuration activity in Dahl S rats. Hypertension 47(6):1094–1100

    Article  PubMed  CAS  Google Scholar 

  • Li L, Rossoni G et al (2007) Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 42(5):706–719

    Article  PubMed  CAS  Google Scholar 

  • Li L, Whiteman M et al (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117(18):2351–2360

    Article  PubMed  CAS  Google Scholar 

  • Li L, Hsu A et al (2009) Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation–a tale of three gases! Pharmacol Ther 123(3):386–400

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wang Y et al (2011) Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia. Neurochem Res 36(10):1840–1849

    Article  PubMed  CAS  Google Scholar 

  • Lim JJ, Liu YH et al (2008) Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. Am J Physiol Cell Physiol 295(5):C1261–C1270

    Article  PubMed  CAS  Google Scholar 

  • Liu YY, Bian JS (2010) Hydrogen sulfide protects amyloid-beta induced cell toxicity in microglia. J Alzheimers Dis 22(4):1189–1200

    PubMed  CAS  Google Scholar 

  • Liu X, Pan L et al (2010) Hypoxia-inducible factor-1alpha is involved in the pro-angiogenic effect of hydrogen sulfide under hypoxic stress. Biol Pharm Bull 33(9):1550–1554

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Hao DD et al (2011a) Hydrogen sulphide inhibits cardiomyocyte hypertrophy by up-regulating miR-133a. Biochem Biophys Res Commun 413(2):342–347

    Article  PubMed  CAS  Google Scholar 

  • Liu YH, Lu M et al (2011b) Hydrogen sulfide and renal ischemia. Expert Rev Clin Pharmacol 4(1):49–61

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Cui J et al (2012a) H(2)S-releasing aspirin protects against aspirin-induced gastric injury via reducing oxidative stress. PLoS One 7(9):e46301

    Article  PubMed  CAS  Google Scholar 

  • Liu YH, Lu M et al (2012b) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17(1):141–185

    Article  PubMed  CAS  Google Scholar 

  • Liu, YH, Lu M et al (2013) Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in the isoproterenol treated rats. Antioxid Redox Signal

    Google Scholar 

  • Lu M, Hu LF et al (2008) Hydrogen sulfide protects astrocytes against H(2)O(2)-induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 45(12):1705–1713

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Choo CH et al (2010a) Hydrogen sulfide regulates intracellular pH in rat primary cultured glia cells. Neurosci Res 66(1):92–98

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Liu YH et al (2010b) Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol 21(6):993–1002

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Liu YH et al (2011) Hydrogen sulfide regulates cAMP homeostasis and renin degranulation in As4.1 and rat renin-rich kidney cells. Am J Physiol Cell Physiol 302(1):C59–66

    Google Scholar 

  • Lu M, Zhao FF et al (2012) The neuroprotection of hydrogen sulfide against MPTP-induced dopaminergic neuron degeneration involves uncoupling protein 2 rather than ATP-sensitive potassium channels. Antioxid Redox Signal 17(6):849–859

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Koob GF (1993) Destruction of the locus coeruleus decreases physical signs of opiate withdrawal. Brain Res 605(1):128–138

    Article  PubMed  CAS  Google Scholar 

  • Martelli A, Testai L et al (2013) Vasorelaxation by hydrogen sulphide involves activation of K(v)7 potassium channels. Pharmacol Res 70(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Meng QH, Yang G et al (2007) Protective effect of hydrogen sulfide on balloon injury-induced neointima hyperplasia in rat carotid arteries. Am J Pathol 170(4):1406–1414

    Article  PubMed  CAS  Google Scholar 

  • Minamishima S, Bougaki M et al (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120(10):888–896

    Article  PubMed  CAS  Google Scholar 

  • Mishra PK, Tyagi N et al (2010) H2S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. Am J Physiol Heart Circ Physiol 298(2):H451–H456

    Article  PubMed  CAS  Google Scholar 

  • Morrison LD, Smith DD et al (1996) Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem 67(3):1328–1331

    Article  PubMed  CAS  Google Scholar 

  • Mustafa AK, Sikka G et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109(11):1259–1268

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Tsugane M et al (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18(3):557–559

    PubMed  CAS  Google Scholar 

  • Olson KR, Donald JA (2009) Nervous control of circulation–the role of gasotransmitters, NO, CO, and H2S. Acta Histochem 111(3):244–256

    Article  PubMed  CAS  Google Scholar 

  • Osipov RM, Robich MP et al (2009) Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol 54(4):287–297

    Article  PubMed  CAS  Google Scholar 

  • Pan TT, Feng ZN et al (2006) Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 40(1):119–130

    Article  PubMed  CAS  Google Scholar 

  • Pan TT, Neo KL et al (2008) H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am J Physiol Cell Physiol 294(1):C169–C177

    Article  PubMed  CAS  Google Scholar 

  • Pan TT, Chen YQ et al (2009) All in the timing: a comparison between the cardioprotection induced by H2S preconditioning and post-infarction treatment. Eur J Pharmacol 616(1–3):160–165

    Article  PubMed  CAS  Google Scholar 

  • Papapetropoulos A, Pyriochou A et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106(51):21972–21977

    Article  PubMed  CAS  Google Scholar 

  • Perna AF, Luciano MG et al (2009) Hydrogen sulphide-generating pathways in haemodialysis patients: a study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Nephrol Dial Transplant 24(12):3756–3763

    Article  PubMed  CAS  Google Scholar 

  • Prathapasinghe GA, Siow YL et al (2007) Detrimental role of homocysteine in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 292(5):F1354–F1363

    Article  PubMed  CAS  Google Scholar 

  • Prathapasinghe GA, Siow YL et al (2008) Inhibition of cystathionine-beta-synthase activity during renal ischemia-reperfusion: role of pH and nitric oxide. Am J Physiol Renal Physiol 295(4):F912–F922

    Article  PubMed  CAS  Google Scholar 

  • Qu K, Chen CP et al (2006) Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37(3):889–893

    Article  PubMed  CAS  Google Scholar 

  • Robert K, Vialard F et al (2003) Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J Histochem Cytochem 51(3):363–371

    Article  PubMed  CAS  Google Scholar 

  • Rona G, Chappel CI et al (1959) An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol 67(4):443–455

    PubMed  CAS  Google Scholar 

  • Savage JC, Gould DH (1990) Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 526(2):540–545

    PubMed  CAS  Google Scholar 

  • Sen U, Vacek TP et al (2008) Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. Pharmacology 82(3):201–213

    Article  PubMed  CAS  Google Scholar 

  • Sen U, Basu P et al (2009) Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am J Physiol Renal Physiol 297(2):F410–F419

    Article  PubMed  CAS  Google Scholar 

  • Sen U, Munjal C et al (2010) Hydrogen sulfide regulates homocysteine-mediated glomerulosclerosis. Am J Nephrol 31(5):442–455

    Article  PubMed  CAS  Google Scholar 

  • Shi YX, Chen Y et al (2007) Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 293(4):H2093–H2100

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Tanaka M et al (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11(4):703–714

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Koike S et al (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366

    Article  PubMed  CAS  Google Scholar 

  • Sidhapuriwala J, Li L et al (2007) Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur J Pharmacol 569(1–2):149–154

    Article  PubMed  CAS  Google Scholar 

  • Sivarajah A, McDonald MC et al (2006) The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 26(2):154–161

    Article  PubMed  CAS  Google Scholar 

  • Sodha NR, Clements RT et al (2008) The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury. Eur J Cardiothorac Surg 33(5):906–913

    Article  PubMed  Google Scholar 

  • Sodha NR, Clements RT et al (2009) Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg 138(4):977–984

    Article  PubMed  CAS  Google Scholar 

  • Sojitra B, Bulani Y et al (2011) Nitric oxide synthase inhibition abrogates hydrogen sulfide-induced cardioprotection in mice. Mol Cell Biochem 360(1–2):61–69

    PubMed  Google Scholar 

  • Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206(2):267–277

    PubMed  CAS  Google Scholar 

  • Su YW, Liang C et al (2009) Hydrogen sulfide regulates cardiac function and structure in adriamycin-induced cardiomyopathy. Circ J 73(4):741–749

    Article  PubMed  CAS  Google Scholar 

  • Sun YG, Cao YX et al (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79(4):632–641

    Article  PubMed  CAS  Google Scholar 

  • Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6(11):917–935

    Article  PubMed  CAS  Google Scholar 

  • Szabo C (2012) Roles of hydrogen sulfide in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 17(1):68–80

    Article  PubMed  CAS  Google Scholar 

  • Szabo G, Veres G et al (2011) Cardioprotective effects of hydrogen sulfide. Nitric Oxide 25(2):201–210

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Wu L et al (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68(6):1757–1764

    PubMed  CAS  Google Scholar 

  • Tang XQ, Yang CT et al (2008) Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35(2):180–186

    PubMed  CAS  Google Scholar 

  • Tay AS, Hu LF et al (2010) Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein90 pathway. Neuroscience 167(2):277–286

    Article  PubMed  CAS  Google Scholar 

  • Tiong CX, Lu M, Bian JS (2010) Protective effect of hydrogen sulfide against 6-OHDA induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161(2):467–480

    Article  PubMed  CAS  Google Scholar 

  • Tripatara P, Patel NS et al (2008) Generation of endogenous hydrogen sulfide by cystathionine gamma-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab Invest 88(10):1038–1048

    Article  PubMed  CAS  Google Scholar 

  • Tripatara P, Patel NS et al (2009) Characterisation of cystathionine gamma-lyase/hydrogen sulphide pathway in ischaemia/reperfusion injury of the mouse kidney: an in vivo study. Eur J Pharmacol 606(1–3):205–209

    Article  PubMed  CAS  Google Scholar 

  • Umemura K, Kimura H (2007) Hydrogen sulfide enhances reducing activity in neurons: neurotrophic role of H2S in the brain? Antioxid Redox Signal 9(11):2035–2041

    Article  PubMed  CAS  Google Scholar 

  • Vandiver MS, Paul BD et al (2013) Sulfhydration mediates neuroprotective actions of parkin. Nat Commun 4:1626

    Article  PubMed  CAS  Google Scholar 

  • Vitvitsky V, Thomas M et al (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281(47):35785–35793

    Article  PubMed  CAS  Google Scholar 

  • Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16(13):1792–1798

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhao X et al (2009) Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 29(2):173–179

    Article  PubMed  CAS  Google Scholar 

  • Wang MJ, Cai WJ et al (2010) The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid Redox Signal 12(9):1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang Q et al (2011) Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection. Biosci Rep 31(2):87–98

    Article  PubMed  CAS  Google Scholar 

  • Warenycia MW, Goodwin LR et al (1989a) Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 38(6):973–981

    Article  PubMed  CAS  Google Scholar 

  • Warenycia MW, Steele JA et al (1989b) Hydrogen sulfide in combination with taurine or cysteic acid reversibly abolishes sodium currents in neuroblastoma cells. Neurotoxicology 10(2):191–199

    PubMed  CAS  Google Scholar 

  • Webb GD, Lim LH et al (2008) Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery. J Pharmacol Exp Ther 324(2):876–882

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Zhang R et al (2010) Hydrogen sulfide attenuates hyperhomocysteinemia-induced cardiomyocytic endoplasmic reticulum stress in rats. Antioxid Redox Signal 12(9):1079–1091

    Article  PubMed  CAS  Google Scholar 

  • Whiteman M, Armstrong JS et al (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90(3):765–768

    Article  PubMed  CAS  Google Scholar 

  • Whiteman M, Cheung NS et al (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326(4):794–798

    Article  PubMed  CAS  Google Scholar 

  • Whitfield NL, Kreimier EL et al (2008) Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol Regul Integr Comp Physiol 294(6):R1930–R1937

    Article  PubMed  CAS  Google Scholar 

  • Wong PT, Qu K et al (2006) High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide. J Neuropathol Exp Neurol 65(2):109–115

    Article  PubMed  CAS  Google Scholar 

  • Wu SY, Pan CS et al (2006) Hydrogen sulfide ameliorates vascular calcification induced by vitamin D3 plus nicotine in rats. Acta Pharmacol Sin 27(3):299–306

    Article  PubMed  CAS  Google Scholar 

  • Wu N, Siow YL et al (2010) Ischemia/reperfusion reduces transcription factor Sp1-mediated cystathionine beta-synthase expression in the kidney. J Biol Chem 285(24):18225–18233

    Article  PubMed  CAS  Google Scholar 

  • Xia M, Chen L et al (2009) Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J Pharmacol Exp Ther 329(3):1056–1062

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Tiong CX et al (2012) Hydrogen sulfide protects SH-SY5Y cells against 6-hydroxydopamine-induced endoplasmic reticulum stress. Am J Physiol Cell Physiol 303(1):C81–C91

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Hu LF et al (2013) Therapeutic effect of hydrogen sulfide-releasing L-Dopa derivative ACS84 on 6-OHDA-induced Parkinson’s disease rat model. PLoS One 8(4):e60200

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Prathapasinghe G et al (2009) Ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol 297(1):F27–F35

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Wang XY et al (2011) Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic Biol Med 50(10):1314–1323

    Article  PubMed  CAS  Google Scholar 

  • Xue R, Hao DD et al (2013) Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 19(1):5–23

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Du J et al (2004) The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 313(1):22–27

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Wu L et al (2006) Pro-apoptotic effect of endogenous H2S on human aorta smooth muscle cells. FASEB J 20(3):553–555

    PubMed  CAS  Google Scholar 

  • Yang G, Wu L et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):587–590

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Tang G et al (2011) The pathogenic role of cystathionine gamma-lyase/hydrogen sulfide in streptozotocin-induced diabetes in mice. Am J Pathol 179(2):869–879

    Article  PubMed  CAS  Google Scholar 

  • Yang HY, Wu ZY et al (2013) Hydrogen sulfide attenuates opioid dependence by suppression of adenylate cyclase/cAMP pathway. Antioxid Redox Signal (in press)

    Google Scholar 

  • Yao LL, Huang XW et al (2010) Hydrogen sulfide protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by preventing GSK-3beta-dependent opening of mPTP. Am J Physiol Heart Circ Physiol 298(5):H1310–H1319

    Article  PubMed  CAS  Google Scholar 

  • Yin WL, He JQ et al (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85(7–8):269–275

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Tu C et al (2013) Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats. Brain Res 1491:188–196

    Article  PubMed  CAS  Google Scholar 

  • Yong QC, Lee SW et al (2008a) Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol 295(3):H1330–H1340

    Article  PubMed  CAS  Google Scholar 

  • Yong QC, Pan TT et al (2008b) Negative regulation of beta-adrenergic function by hydrogen sulphide in the rat hearts. J Mol Cell Cardiol 44(4):701–710

    Article  PubMed  CAS  Google Scholar 

  • Yong QC, Choo CH et al (2010a) Effect of hydrogen sulfide on intracellular calcium homeostasis in neuronal cells. Neurochem Int 56(3):508–515

    Article  PubMed  CAS  Google Scholar 

  • Yong QC, Hu LF et al (2010b) Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc Res 88(3):482–491

    Article  PubMed  CAS  Google Scholar 

  • Yong QC, Cheong JL et al (2011) Regulation of heart function by endogenous gaseous mediators-crosstalk between nitric oxide and hydrogen sulfide. Antioxid Redox Signal 14(11):2081–2091

    Article  PubMed  CAS  Google Scholar 

  • Zanardo RC, Brancaleone V et al (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20(12):2118–2120

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Du J et al (2003) The regulatory effect of endogenous hydrogen sulfide on hypoxic pulmonary hypertension. Beijing Da Xue Xue Bao 35(5):488–493

    PubMed  CAS  Google Scholar 

  • Zhang Z, Huang H et al (2007) Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening K ATP channels. Can J Physiol Pharmacol 85(12):1248–1253

    Article  PubMed  CAS  Google Scholar 

  • Zhang LM, Jiang CX et al (2009) Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res 34(11):1984–1992

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Gao Y et al (2011a) Hydrogen sulfide reduces mRNA and protein levels of beta-site amyloid precursor protein cleaving enzyme 1 in PC12 cells. Neurochem Int 58(2):169–175

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhang A et al (2011b) S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling. PLoS One 6(10):e26441

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283(2):H474–H480

    PubMed  CAS  Google Scholar 

  • Zhao W, Zhang J et al (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20(21):6008–6016

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Zhang LK et al (2008) Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats. Hypertens Res 31(8):1619–1630

    Article  PubMed  CAS  Google Scholar 

  • Zhong G, Chen F et al (2003) The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens 21(10):1879–1885

    Article  PubMed  CAS  Google Scholar 

  • Zhu YZ, Wang ZJ et al (2007) Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol 102(1):261–268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from Singapore National Medical Research Council (NMRC 1183 ⁄ 2008, 1219/2009) and Singapore Kidney foundation (NKFRC/2009/01/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Bian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Liu, Y.T., Bian, JS. (2013). Hydrogen Sulfide: Physiological and Pathophysiological Functions. In: Kimura, H. (eds) Hydrogen Sulfide and its Therapeutic Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1550-3_6

Download citation

Publish with us

Policies and ethics