Skip to main content

In Situ SXS and XAFS Measurements of Electrochemical Interface

  • Chapter
  • First Online:
X-ray and Neutron Techniques for Nanomaterials Characterization

Abstract

In this chapter, we focus on structural studies at electrode/electrolyte solution interfaces by means of surface x-ray scattering (SXS) and x-ray absorption fine structure (XAFS) measurements using synchrotron radiation (SR) light as an x-ray source. After describing the importance of these techniques for structural studies at the electrode/electrolyte interface as an introduction, we explain the fundamental principles and experimental methodologies of these techniques. Finally, we describe trends in the development of these techniques and review the latest topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uosaki K (2015) In situ real-time monitoring of geometric, electronic, and molecular structures at solid/liquid interfaces. Jpn J Appl Phys, Part 1 54(3):030102/1–030102/14

    Google Scholar 

  2. Jerkiewicz G, Soriaga MP, Uosaki K, Wieckowski A (1997) Solid–liquid electrochemical interfaces. American Chemical Society, Washington, DC

    Book  Google Scholar 

  3. Gewirth AA, Niece BK (1997) Electrochemical applications of in situ scanning probe microscopy. Chem Rev 97(4):1129–1162

    Article  Google Scholar 

  4. Szklarczyk M, Strawski M, Bienkowski K (2008) 25 years of the scanning tunneling microscopy. Mod Aspects Electrochem 42:303–368

    Google Scholar 

  5. Tadjeddine A, Peremans A (1998) Non-linear optical spectroscopy of the electrochemical interface. Adv Spectrosc 26:159–217

    Google Scholar 

  6. Shen YR (1989) Surface-properties probed by 2nd-harmonic and sum-frequency generation. Nature 337(6207):519–525

    Article  Google Scholar 

  7. Brown GS, Moncton DE (1991) Handbook on synchrotron radiation, vol 3. North Holland, Amsterdam

    Google Scholar 

  8. Margaritondo G (1991) Introduction to synchrotron radiation. Oxford University Press, New York

    Google Scholar 

  9. Willmott P (2011) An introduction to synchrotron radiation: techniques and applications. John Wiley & Sons Ltd, West Sussex

    Book  Google Scholar 

  10. Melendres CA, Tadjeddine A (1994) Synchrotron techniques in interfacial electrochemistry. Springer, Dordrecht

    Book  Google Scholar 

  11. Toney MF, McBreen J (1993) In situ synchrotron x-ray techniques for determining atomic structure at electrode/electrolyte interfaces. Electrochem Soc Interface 2(Spring):22–31

    Google Scholar 

  12. Feidenhansl R (1989) Surface-structure determination by x-ray-diffraction. Surf Sci Rep 10(3):105–188

    Article  Google Scholar 

  13. Als-Nielsen J, McMorrow D (2001) Elements of modern x-ray physics. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  14. Robinson J (1988) X-ray techniques. In: Gale RJ (ed) Spectroelectrochemistry: theory and practice. Plenum Press, New York, pp 9–40

    Chapter  Google Scholar 

  15. Wang J, Ocko BM, Davenport AJ, Isaacs HS (1992) In situ x-ray-diffraction and x-ray-reflectivity studies of the Au(111) electrolyte interface – reconstruction and anion adsorption. Phys Rev B 46(16):10321–10338

    Article  Google Scholar 

  16. Scherb G, Kazimirov A, Zegenhagen J (1998) A novel thick-layer electrochemical cell for in situ x-ray diffraction. Rev Sci Instrum 69(2):512–516

    Article  Google Scholar 

  17. Scherb G, Kazimirov A, Zegenhagen J, Lee TL, Bedzyk MJ, Noguchi H, Uosaki K (1998) In situ x-ray standing-wave analysis of electrodeposited Cu monolayers on GaAs(001). Phys Rev B 58(16):10800–10805

    Article  Google Scholar 

  18. Nagy Z, You H (2002) Applications of surface x-ray scattering to electrochemistry problems. Electrochim Acta 47(19):3037–3055

    Article  Google Scholar 

  19. Kondo T, Zegenhagen J, Takakusagi S, Uosaki K (2015) In situ real-time study on potential induced structure change at Au(111) and Au(100) single crystal electrode/sulfuric acid solution interfaces by surface x-ray scattering. Surf Sci 631:96–104

    Article  Google Scholar 

  20. Tamura K, Wang JX, Adzic RR, Ocko BM (2004) Kinetics of monolayer Bi electrodeposition on Au(111): surface x-ray scattering and current transients. J Phys Chem B 108(6):1992–1998

    Article  Google Scholar 

  21. Ayyad AH, Stettner J, Magnussen OM (2005) Electrocompression of the Au(111) surface layer during Au electrodeposition. Phys Rev Lett 94(6):066106/1–066106/4

    Article  Google Scholar 

  22. Krug K, Stettner J, Magnussen OM (2006) In situ surface x-ray diffraction studies of homoepitaxial electrochemical growth on Au(100). Phys Rev Lett 96(24):246101/1–246101/4

    Article  Google Scholar 

  23. Iwasawa Y (1996) X-ray absorption fine structure for catalyst and surfaces. World Scientific, Singapore

    Book  Google Scholar 

  24. Lytle FW (1999) The EXAFS family tree: a personal history of the development of extended x-ray absorption fine structure. J Synchrotron Radiat 6:123–134

    Article  Google Scholar 

  25. McBreen J, O’Grady WE, Pandya KI (1988) EXAFS – a new tool for the study of battery and fuel-cell materials. J Power Sources 22(3–4):323–340

    Article  Google Scholar 

  26. McBreen J, O’Grady WE, Pandya KI, Hoffman RW, Sayers DE (1987) EXAFS study of the nickel-oxide electrode. Langmuir 3(3):428–433

    Article  Google Scholar 

  27. Dewald HD, Watkins JW, Elder RC, Heineman WR (1986) Development of extended x-ray absorption fine-structure spectroelectrochemistry and its application to structural studies of transition-metal ions in aqueous-solution. Anal Chem 58(14):2968–2975

    Article  Google Scholar 

  28. Kaito T, Mitsumoto H, Sugawara S, Shinohara K, Uehara H, Ariga H, Takakusagi S, Asakura K (2014) A new spectroelectrochemical cell for in situ measurement of Pt and Au K-edge x-ray absorption fine structure. Rev Sci Instrum 85(8):084104/1–084104/8

    Article  Google Scholar 

  29. Holtz ME, Yu YC, Gunceler D, Gao J, Sundararaman R, Schwarz KA, Arias TA, Abruña HD, Muller DA (2014) Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett 14(3):1453–1459

    Article  Google Scholar 

  30. Mehdi BL, Gu M, Parent LR, Xu W, Nasybulin EN, Chen XL, Unocic RR, Xu PH, Welch DA, Abellan P, Zhang JG, Liu J, Wang CM, Arslan I, Evans J, Browning ND (2014) In-situ electrochemical transmission electron microscopy for battery research. Microsc Microanal 20(2):484–492

    Article  Google Scholar 

  31. White ER, Singer SB, Augustyn V, Hubbard WA, Mecklenburg M, Dunn B, Regan BC (2012) In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6(7):6308–6317

    Article  Google Scholar 

  32. Wu F, Yao N (2015) Advances in sealed liquid cells for in-situ TEM electrochemical investigation of lithium-ion battery. Nano Energ 11:196–210

    Article  Google Scholar 

  33. Niwa H, Kiuchi H, Miyawaki J, Harada Y, Oshima M, Nabae Y, Aoki T (2013) Operando soft x-ray emission spectroscopy of iron phthalocyanine-based oxygen reduction catalysts. Electrochem Commun 35:57–60

    Article  Google Scholar 

  34. Asakura D, Hosono E, Niwa H, Kiuchi H, Miyawaki J, Nanba Y, Okubo M, Matsuda H, Zhou H, Oshima M, Harada Y (2015) Operando soft x-ray emission spectroscopy of LiMn2O4 thin film involving Li–ion extraction/insertion reaction. Electrochem Commun 50:93–96

    Article  Google Scholar 

  35. Masuda T, Yoshikawa H, Noguchi H, Kawasaki T, Kobata M, Kobayashi K, Uosaki K (2013) In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents. Appl Phys Lett 103(11):111605/1–111605/4

    Article  Google Scholar 

  36. Nagasaka M, Hatsui T, Horigome T, Hamamura Y, Kosugi N (2010) Development of a liquid flow cell to measure soft x-ray absorption in transmission mode: a test for liquid water. J Electron Spectrosc Relat Phenom 177(2–3):130–134

    Article  Google Scholar 

  37. Nagasaka M, Yuzawa H, Horigome T, Hitchcock AP, Kosugi N (2013) Electrochemical reaction of aqueous iron sulfate solutions studied by Fe L-edge soft x-ray absorption spectroscopy. J Phys Chem C 117(32):16343–16348

    Article  Google Scholar 

  38. Nagasaka M, Yuzawa H, Horigome T, Kosugi N (2014) In operando observation system for electrochemical reaction by soft x-ray absorption spectroscopy with potential modulation method. Rev Sci Instrum 85(10):104105/1–104105/7

    Article  Google Scholar 

  39. Nagasaka M, Mochizuki K, Leloup V, Kosugi N (2014) Local structures of methanol–water binary solutions studied by soft x-ray absorption spectroscopy. J Phys Chem B 118(16):4388–4396

    Article  Google Scholar 

  40. Tada M, Murata S, Asakoka T, Hiroshima K, Okumura K, Tanida H, Uruga T, Nakanishi H, Matsumoto S, Inada Y, Nomura M, Iwasawa Y (2007) In situ time-resolved dynamic surface events on the Pt/C cathode in a fuel cell under operando conditions. Angew Chem Int Ed 46(23):4310–4315

    Article  Google Scholar 

  41. Uemura Y, Inada Y, Bando KK, Sasaki T, Kamiuchi N, Eguchi K, Yagishita A, Nomura M, Tada M, Iwasawa Y (2011) In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Phys Chem Chem Phys 13(35):15833–15844

    Article  Google Scholar 

  42. Ishiguro N, Saida T, Uruga T, Nagamatsu S, Sekizawa O, Nitta K, Yamamoto T, Ohkoshi S, Iwasawa Y, Yokoyama T, Tada M (2012) Operando time-resolved x-ray absorption fine structure study for surface events on a Pt3Co/C cathode catalyst in a polymer electrolyte fuel cell during voltage-operating processes. ACS Catal 2(7):1319–1330

    Article  Google Scholar 

  43. Ishiguro N, Saida T, Uruga T, Sekizawa O, Nagasawa K, Nitta K, Yamamoto T, Ohkoshi S, Yokoyama T, Tada M (2013) Structural kinetics of a Pt/C cathode catalyst with practical catalyst loading in an MEA for PEFC operating conditions studied by in situ time-resolved XAFS. Phys Chem Chem Phys 15(43):18827–18834

    Article  Google Scholar 

  44. Nagasawa K, Takao S, Higashi K, Nagamatsu S, Samjeske G, Imaizumi Y, Sekizawa O, Yamamoto T, Uruga T, Iwasawa Y (2014) Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques. Phys Chem Chem Phys 16(21):10075–10087

    Article  Google Scholar 

  45. Kityakarn S, Saida T, Sode A, Ishiguro N, Sekizawa O, Uruga T, Nagasawa K, Yamamoto T, Yokoyama T, Tada M (2014) In situ time-resolved XAFS of transitional states of Pt/C cathode electrocatalyst in an MEA during PEFC loading with transient voltages. Topics Catal 57(10–13):903–910

    Article  Google Scholar 

  46. Masuda T, Fukumitsu H, Takakusagi S, Chun WJ, Kondo T, Asakura K, Uosaki K (2012) Molecular catalysts confined on and within molecular layers formed on a Si(111) surface with direct Si-C bonds. Adv Mater 24(2):268–272

    Article  Google Scholar 

  47. Albarelli MJ, White JH, Bommarito GM, Mcmillan M, Abruña HD (1988) In situ surface EXAFS at chemically modified electrodes. J Electroanal Chem 248(1):77–86

    Article  Google Scholar 

  48. Masuda T, Fukumitsu H, Fugane K, Togasaki H, Matsumura D, Tamura K, Nishihata Y, Yoshikawa H, Kobayashi K, Mori T, Uosaki K (2012) Role of cerium oxide in the enhancement of activity for the oxygen reduction reaction at Pt-CeOx nanocomposite electrocatalyst – an in situ electrochemical x-ray absorption fine structure study. J Phys Chem C 116(18):10098–10102

    Article  Google Scholar 

  49. Kordesch ME, Hoffman RW (1984) Electrochemical-cells for in situ EXAFS. Nucl Instrum Methods Phys Res Sect A 222(1–2):347–350

    Article  Google Scholar 

  50. Davenport AJ, Isaacs HS, Frankel GS, Schrott AG, Jahnes CV, Russak MA (1991) In situ X-ray absorption study of chromium valency changes in passive oxides on sputtered AlCr thin-films under electrochemical control. J Electrochem Soc 138(1):337–338

    Article  Google Scholar 

  51. Velasco-Velez JJ, Chuang CH, Han HL, Martin-Fernandez I, Martinez C, Pong WF, Shen YR, Wang F, Zhang YG, Guo JH, Salmeron M (2013) In-situ XAS investigation of the effect of electrochemical reactions on the structure of graphene in aqueous electrolytes. J Electrochem Soc 160(9):C445–C450

    Article  Google Scholar 

  52. Gorlin Y, Lassalle-Kaiser B, Benck JD, Gul S, Webb SM, Yachandra VK, Yano J, Jaramillo TF (2013) In situ x-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J Am Chem Soc 135(23):8525–8534

    Article  Google Scholar 

  53. Bozzini B, Gianoncelli A, Kaulich B, Kiskinova M, Mele C, Prasciolu M (2011) Corrosion of Ni in 1-butyl-1-methyl-pyrrolidinium bis (trifluoromethylsulfonyl) amide room-temperature ionic liquid: an in situ x-ray imaging and spectromicroscopy study. Phys Chem Chem Phys 13(17):7968–7974

    Article  Google Scholar 

  54. Arthur TS, Glans PA, Matsui M, Zhang RG, Ma BW, Guo JH (2012) Mg deposition observed by in situ electrochemical Mg K-edge x-ray absorption spectroscopy. Electrochem Commun 24:43–46

    Article  Google Scholar 

  55. Nakanishi K, Kato D, Arai H, Tanida H, Mori T, Orikasa Y, Uchimoto Y, Ohta T, Ogumi Z (2014) Novel spectro-electrochemical cell for in situ/operando observation of common composite electrode with liquid electrolyte by x-ray absorption spectroscopy in the tender x-ray region. Rev Sci Instrum 85(8):084103/1–084103/6

    Article  Google Scholar 

  56. Erickson EM, Thorum MS, Vasic R, Marinkovic NS, Frenkel AI, Gewirth AA, Nuzzo RG (2012) In situ electrochemical x-ray absorption spectroscopy of oxygen reduction electrocatalysis with high oxygen flux. J Am Chem Soc 134(1):197–200

    Article  Google Scholar 

  57. Uehara H, Uemura Y, Ogawa T, Kono K, Ueno R, Niwa Y, Nitani H, Abe H, Takakusagi S, Nomura M, Iwasawa Y, Asakura K (2014) In situ back-side illumination fluorescence XAFS (BI-FXAFS) studies on platinum nanoparticles deposited on a HOPG surface as a model fuel cell: a new approach to the Pt-HOPG electrode/electrolyte interface. Phys Chem Chem Phys 16(27):13748–13754

    Article  Google Scholar 

  58. Asakura K (2003) Recent developments in the in situ XAFS and related work for the characterization of catalysts in Japan. Catal Surv Asia 7(2–3):177–182

    Article  Google Scholar 

  59. Chun WJ, Tanizawa Y, Shido T, Iwasawa Y, Nomura M, Asakura K (2001) Development of an in situ polarization-dependent total-reflection fluorescence XAFS measurement system. J Synchrotron Radiat 8:168–172

    Article  Google Scholar 

  60. Frahm R (1989) New method for time-dependent x-ray absorption studies. Rev Sci Instrum 60(7):2515–2518

    Article  Google Scholar 

  61. Frahm R (1989) QEXAFS – x-ray absorption studies in seconds. Phys B Condens Matter 158(1–3):342–343

    Article  Google Scholar 

  62. Iwasawa Y (2003) In situ characterization of supported metal catalysts and model surfaces by time-resolved and three-dimensional XAFS techniques. J Catal 216(1–2):165–177

    Article  Google Scholar 

  63. Nonaka T, Dohmae K, Araki T, Hayashi Y, Hirose Y, Uruga T, Yamazaki H, Mochizuki T, Tanida H, Goto S (2012) Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms. Rev Sci Instrum 83(8):083112/1–083112/5

    Article  Google Scholar 

  64. Kaminaga U, Matsushita T, Kohra K (1981) A dispersive method of measuring extended x-ray absorption fine-structure. Jpn J Appl Phys 20(5):L355–L358

    Article  Google Scholar 

  65. Matsushita T, Phizackerley RP (1981) A fast x-ray absorption spectrometer for use with synchrotron radiation. Jpn J Appl Phys 20(11):2223–2228

    Article  Google Scholar 

  66. Flank AM, Fontaine A, Jucha A, Lemonnier M, Williams C (1982) Extended x-ray absorption fine-structure in dispersive mode. J Phys Lett 43(9):L315–L319

    Article  Google Scholar 

  67. Flank AM, Fontaine A, Jucha A, Lemonnier M, Raoux D, Williams C (1983) EXAFS in dispersive mode. Nucl Instrum Methods Phys Res 208(1–3):651–654

    Article  Google Scholar 

  68. Tanida H, Yamashige H, Orikasa Y, Oishi M, Takanashi Y, Fujimoto T, Sato K, Takamatsu D, Murayama H, Arai H, Matsubara E, Uchimoto Y, Ogumi Z (2011) In situ two-dimensional imaging quick-scanning XAFS with pixel array detector. J Synchrotron Radiat 18:919–922

    Article  Google Scholar 

  69. Takao S, Sekizawa O, Nagamatsu S, Kaneko T, Yamamoto T, Samjeske G, Higashi K, Nagasawa K, Tsuji T, Suzuki M, Kawamura N, Mizumaki M, Uruga T, Iwasawa Y (2014) Mapping platinum species in polymer electrolyte fuel cells by spatially resolved XAFS techniques. Angew Chem Int Ed 53(51):14110–14114

    Article  Google Scholar 

  70. Beale AM, Jacques SDM, Weckhuysen BM (2010) Chemical imaging of catalytic solids with synchrotron radiation. Chem Soc Rev 39(12):4656–4672

    Article  Google Scholar 

  71. Grunwaldt JD, Schroer CG (2010) Hard and soft x-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem Soc Rev 39(12):4741–4753

    Article  Google Scholar 

  72. Clavilier J (1999) Flame-annealing and cleaning technique. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, New York, pp 231–248

    Google Scholar 

  73. Wang J, Davenport AJ, Isaacs HS, Ocko BM (1992) Surface-charge induced ordering of the Au(111) surface. Science 255(5050):1416–1418

    Article  Google Scholar 

  74. Ocko BM, Wang J (1994) Surface structure of the Au(111) electrode. In: Melendres CA, Tadjeddine A (eds) Synchrotron techniques in interfacial electrochemistry (Nato Science Series C). Springer, Dordrecht, pp 127–155

    Chapter  Google Scholar 

  75. Toney MF, Melroy OR (1991) Surface x-ray scattering. In: Abruña HD (ed) Electrochemical interfaces modern techniques for in-situ interface characterization. VCH Publishers, New York/Weinheim/Cambridge, pp 55–129

    Google Scholar 

  76. Toney MF (1994) Studies of electrodes by in situ x-ray scattering. In: Melendres CA, Tadjeddine A (eds) Synchrotron techniques in interfacial electrochemistry. Kluwer Academic Publishers, Dordrecht, pp 109–125

    Chapter  Google Scholar 

  77. Toney MF, Gordon JG, Samant MG, Borges GL, Wiesler DG, Yee D, Sorensen LB (1991) In situ surface x-ray-scattering measurements of electrochemically deposited Bi on Ag(111) – structure, compressibility, and comparison with exsitu low-energy electron-diffraction measurements. Langmuir 7(4):796–802

    Article  Google Scholar 

  78. Toney MF (1991) In-situ surface x-ray scattering of metal monolayers adsorbed at solid–liquid interfaces. Proc SPIE Int Soc Opt Eng 1550:140–150

    Google Scholar 

  79. Kondo T, Morita J, Hanaoka K, Takakusagi S, Tamura K, Takahasi M, Mizuki J, Uosaki K (2007) Structure of Au(111) and Au(100) single-crystal electrode surfaces at various potentials in sulfuric acid solution determined by in situ surface x-ray scattering. J Phys Chem C 111(35):13197–13204

    Article  Google Scholar 

  80. Gründer Y, Markovic NM, Thompson P, Lucas CA (2015) Temperature effects on the atomic structure and kinetics in single crystal electrochemistry. Surf Sci 631:123–129

    Article  Google Scholar 

  81. Pierce MS, Komanicky V, Barbour A, Hennessy DC, Zhu CH, Sandy A, You H (2012) Dynamics of the Au (001) surface in electrolytes: in situ coherent x-ray scattering. Phys Rev B 86(8):085410/1–085410/7

    Article  Google Scholar 

  82. Masuda T, Fukumitsu H, Kondo T, Naohara H, Tamura K, Sakata O, Uosaki K (2013) Structure of Pt(111)/ionomer membrane interface and its bias-induced change in membrane electrode assembly. J Phys Chem C 117(23):12168–12171

    Article  Google Scholar 

  83. Tamura K, Miyaguchi S, Sakaue K, Nishihata Y, Mizuki J (2011) Direct observation of Au(111) electrode surface structure in bis(trifluoromethylsulfonyl)amide-based ionic liquids using surface x-ray scattering. Electrochem Commun 13(5):411–413

    Article  Google Scholar 

  84. Hoshi N, Nakamura M, Sakata O, Nakahara A, Naito K, Ogata H (2011) Surface x-ray scattering of stepped surfaces of platinum in an electrochemical environment: Pt(331)=3(111)-(111) and Pt(511)=3(100)-(111). Langmuir 27(7):4236–4242

    Article  Google Scholar 

  85. Kondo T, Shibata M, Hayashi N, Fukumitsu H, Masuda T, Takakusagi S, Uosaki K (2010) Resonance surface x-ray scattering technique to determine the structure of electrodeposited Pt ultrathin layers on Au(111) surface. Electrochim Acta 55(27):8302–8306

    Article  Google Scholar 

  86. Shibata M, Hayashi N, Sakurai T, Kurokawa A, Fukumitsu H, Masuda T, Uosaki K, Kondo T (2012) Electrochemical layer-by-layer deposition of pseudomorphic Pt layers on Au(111) electrode surface confirmed by electrochemical and in situ resonance surface x-ray scattering measurements. J Phys Chem C 116(50):26464–26474

    Article  Google Scholar 

  87. Takahasi M, Tamura K, Mizuki J, Kondo T, Uosaki K (2010) Orientation dependence of Pd growth on Au electrode surfaces. J Phys Condens Matter 22(47):474002/1–474002/9

    Article  Google Scholar 

  88. Zheng SH, Krug K, Golks F, Kaminski D, Morin S, Magnussen OM (2010) Study of B1 UPD structures on Au(1 0 0) using in situ surface x-ray scattering. J Electroanal Chem 649(1–2):189–197

    Article  Google Scholar 

  89. Golks F, Gründer Y, Stettner J, Krug K, Zegenhagen J, Magnussen OM (2015) In situ surface x-ray diffraction studies of homoepitaxial growth on Cu(100) from aqueous acidic electrolyte. Surf Sci 631:112–122

    Article  Google Scholar 

  90. Krug K, Kaminski D, Golks F, Stettner J, Magnussen OM (2010) Real-time surface x-ray scattering study of Au(111) electrochemical dissolution. J Phys Chem C 114(43):18634–18644

    Article  Google Scholar 

  91. Gründer Y, Kaminski D, Golks F, Krug K, Stettner J, Magnussen OM, Franke A, Stremme J, Pehlke E (2010) Reversal of chloride-induced Cu(001) subsurface buckling in the electrochemical environment: an in situ surface x-ray diffraction and density functional theory study. Phys Rev B 81(17):174114/1–174114/10

    Article  Google Scholar 

  92. Magnussen OM, Krug K, Ayyad AH, Stettner J (2008) In situ diffraction studies of electrode surface structure during gold electrodeposition. Electrochim Acta 53(9):3449–3458

    Article  Google Scholar 

  93. Uosaki K, Morita J, Katsuzaki T, Takakusagi S, Tamura K, Takahasi M, Mizuki J, Kondo T (2011) In situ electrochemical, electrochemical quartz crystal microbalance, scanning tunneling microscopy, and surface x-ray scattering studies on Ag/AgCl reaction at the underpotentially deposited Ag bilayer on the Au(111) electrode surface. J Phys Chem C 115(25):12471–12482

    Article  Google Scholar 

  94. Naito K, Nakamura M, Sakata O, Hoshi N (2011) Surface x-ray scattering of Pd(111) and Pd(100) electrodes during the oxygen reduction reaction. Electrochemistry 79(4):256–260

    Article  Google Scholar 

  95. Lebouin C, Soldo-Olivier Y, Sibert E, De Santis M, Maillard F, Faure R (2009) Evidence of the substrate effect in hydrogen electroinsertion into palladium atomic layers by means of in situ surface x-ray diffraction. Langmuir 25(8):4251–4255

    Article  Google Scholar 

  96. Soldo-Olivier Y, Lafouresse MC, De Santis M, Lebouin C, de Boissieu M, Sibert E (2011) Hydrogen electro-insertion into Pd/Pt(111) nanofilms: an in situ surface x-ray diffraction study. J Phys Chem C 115(24):12041–12047

    Article  Google Scholar 

  97. Soldo-Olivier Y, Sibert E, Previdello B, Lafouresse MC, Maillard F, De Santis M (2013) H electro-insertion into Pd/Pt(111) nanofilms: an original method for isotherm measurement coupled to in situ surface x-ray diffraction structural study. Electrochim Acta 112:905–912

    Article  Google Scholar 

  98. Lucas CA, Cormack M, Gallagher ME, Brownrigg A, Thompson P, Fowler B, Grunder Y, Roy J, Stamenkovic V, Markovic NM (2008) From ultra-high vacuum to the electrochemical interface: x-ray scattering studies of model electrocatalysts. Faraday Discuss 140:41–58

    Article  Google Scholar 

  99. Strmcnik D, van der Vliet DF, Chang KC, Komanicky V, Kodama K, You H, Stamenkovic VR, Markovic NM (2011) Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J Phys Chem Lett 2(21):2733–2736

    Article  Google Scholar 

  100. Nakamura M, Sato N, Hoshi N, Sakata O (2011) Outer Helmholtz plane of the electrical double layer formed at the solid electrode-liquid interface. ChemPhysChem 12(8):1430–1434

    Article  Google Scholar 

  101. Lucas CA, Thompson P, Gründer Y, Markovic NM (2011) The structure of the electrochemical double layer: Ag(111) in alkaline electrolyte. Electrochem Commun 13(11):1205–1208

    Article  Google Scholar 

  102. Keller H, Saracino M, Nguyen HMT, Broekmann P (2010) Templating the near-surface liquid electrolyte: in situ surface x-ray diffraction study on anion/cation interactions at electrified interfaces. Phys Rev B 82(24):245425/1–245425/7

    Article  Google Scholar 

  103. Keller H, Saracino M, Nguyen HMT, Thi MTH, Broekmann P (2012) Competitive anion/water and cation/water interactions at electrified copper/electrolyte interfaces probed by in situ x-ray diffraction. J Phys Chem C 116(20):11068–11076

    Article  Google Scholar 

  104. Angersteinkozlowska H, Conway BE, Hamelin A, Stoicoviciu L (1986) Elementary steps of electrochemical oxidation of single-crystal planes of Au.1. Chemical basis of processes involving geometry of anions and the electrode surfaces. Electrochim Acta 31(8):1051–1061

    Article  Google Scholar 

  105. Angersteinkozlowska H, Conway BE, Hamelin A, Stoicoviciu L (1987) Elementary steps of electrochemical oxidation of single-crystal planes of Au.2. A chemical and structural basis of oxidation of the (111) plane. J Electroanal Chem 228(1–2):429–453

    Article  Google Scholar 

  106. Bourkane S, Gabrielle C, Huet F, Keddam M (1993) Investigation of gold oxidation in sulfuric medium.1. Electrochemical impedance techniques. Electrochim Acta 38(7):1023–1028

    Article  Google Scholar 

  107. Bourkane S, Gabrielli C, Keddam M (1993) Investigation of gold oxidation in sulfuric medium.2. Electrogravimetric transfer-function technique. Electrochim Acta 38(14):1827–1835

    Article  Google Scholar 

  108. Conway BE (1995) Electrochemical oxide film formation at noble-metals as a surface-chemical process. Prog Surf Sci 49(4):331–452

    Article  Google Scholar 

  109. Dickertmann D, Schultze JW, Vetter KJ (1974) Electrochemical formation and reduction of monomolecular oxide layers on (111) and (100) planes of gold single-crystals. J Electroanal Chem 55(3):429–443

    Article  Google Scholar 

  110. Tremiliosi-Filho G, Dall’Antonia LH, Jerkiewicz G (2005) Growth of surface oxides on gold electrodes under well-defined potential, time and temperature conditions. J Electroanal Chem 578(1):1–8

    Article  Google Scholar 

  111. Schneeweiss MA, Kolb DM (1997) Oxide formation on au(111) – an in situ STM study. Solid State Ion 94(1–4):171–179

    Article  Google Scholar 

  112. Vitus CM, Davenport AJ (1994) In-situ scanning-tunneling-microscopy studies of the formation and reduction of a gold oxide monolayer on Au(111). J Electrochem Soc 141(5):1291–1298

    Article  Google Scholar 

  113. Honbo H, Sugawara S, Itaya K (1990) Detailed in situ scanning tunneling microscopy of single-crystal planes of gold(111) in aqueous-solutions. Anal Chem 62(22):2424–2429

    Article  Google Scholar 

  114. Gao XP, Hamelin A, Weaver MJ (1991) Atomic relaxation at ordered electrode surfaces probed by scanning tunneling microscopy – Au(111) in aqueous-solution compared with ultrahigh-vacuum environments. J Chem Phys 95(9):6993–6996

    Article  Google Scholar 

  115. Cuesta A, Kleinert M, Kolb DM (2000) The adsorption of sulfate and phosphate on Au(111) and Au(100) electrodes: an in situ STM study. Phys Chem Chem Phys 2(24):5684–5690

    Article  Google Scholar 

  116. Kolb DM (1996) Reconstruction phenomena at metal-electrolyte interfaces. Prog Surf Sci 51(2):109–173

    Article  Google Scholar 

  117. Schneeweiss MA, Kolb DM, Liu DZ, Mandler D (1997) Anodic oxidation of Au(111). Can J Chem 75(11):1703–1709

    Article  Google Scholar 

  118. Magnussen OM, Hagebock J, Hotlos J, Behm RJ (1992) In-situ scanning-tunneling-microscopy observations of a disorder–order phase-transition in hydrogensulfate adlayers on Au(111). Faraday Discuss 94:329–338

    Article  Google Scholar 

  119. Ye S, Ishibashi C, Uosaki K (1999) Anisotropic dissolution of an Au(111) electrode in perchloric acid solution containing chloride anion investigated by in situ STM – the important role of adsorbed chloride anion. Langmuir 15(3):807–812

    Article  Google Scholar 

  120. Sato K, Yoshimoto S, Inukai J, Itaya K (2006) Effect of sulfuric acid concentration on the structure of sulfate adlayer on Au(111) electrode. Electrochem Commun 8(5):725–730

    Article  Google Scholar 

  121. Takakusagi S, Kitamura K, Uosaki K (2008) In situ real-time monitoring of electrochemical Ag deposition on a reconstructed Au(111) surface studied by scanning tunneling microscopy. J Phys Chem C 112(8):3073–3077

    Article  Google Scholar 

  122. Edens GJ, Gao XP, Weaver MJ (1994) The adsorption of sulfate on gold(111) in acidic aqueous-media – adlayer structural inferences from infrared-spectroscopy and scanning-tunneling-microscopy. J Electroanal Chem 375(1–2):357–366

    Article  Google Scholar 

  123. de Moraes IR, Nart FC (1999) Sulfate ions adsorbed on Au(hkl) electrodes: in situ vibrational spectroscopy. J Electroanal Chem 461(1–2):110–120

    Article  Google Scholar 

  124. Horkans J, Cahan BD, Yeager E (1974) Electrode potential scanning ellipsometric spectroscopy – study of formation of anodic oxide film on noble-metals. Surf Sci 46(1):1–23

    Article  Google Scholar 

  125. Kolb DM (1988) UV-visible reflectance spectroscopy. In: Gale RJ (ed) Spectroelectrochemistry: theory and practice. Plenum Press, New York, pp 87–188

    Chapter  Google Scholar 

  126. Beden B, Lamy C (1988) Infrared reflectance spectroscopy. In: Gale RJ (ed) Spectroelectrochemistry: theory and practice. Plenum Press, New York, pp 189–262

    Chapter  Google Scholar 

  127. Birke RL, Lombardi JR (1988) Surface-enhanced Raman scattering. In: Gale RJ (ed) Spectroelectrochemistry: theory and practice. Plenum Press, New York, pp 263–446

    Chapter  Google Scholar 

  128. Kolb DM, Mcintyre JD (1971) Spectrophotometric determination of optical properties of an adsorbed oxygen layer on gold. Surf Sci 28(1):321

    Article  Google Scholar 

  129. Zhumaev U, Rudnev AV, Li JF, Kuzume A, Vu TH, Wandlowski T (2013) Electro-oxidation of Au(111) in contact with aqueous electrolytes: new insight from in situ vibration spectroscopy. Electrochim Acta 112:853–863

    Article  Google Scholar 

  130. Shi Z, Lipkowski J, Gamboa M, Zelenay P, Wieckowski A (1994) Investigations of SO4 2− adsorption at the Au(111) electrode by chronocoulometry and radiochemistry. J Electroanal Chem 366(1–2):317–326

    Article  Google Scholar 

  131. Ocko BM, Wang J, Davenport A, Isaacs H (1990) In situ x-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical-cell. Phys Rev Lett 65(12):1466–1469

    Article  Google Scholar 

  132. Perdereau J, Biberian JP, Rhead GE (1974) Adsorption and surface alloying of lead monolayers on (111) and (110) faces of gold. J Phys F-Met Phys 4(5):798

    Article  Google Scholar 

  133. Sandy AR, Mochrie SGJ, Zehner DM, Huang KG, Gibbs D (1991) Structure and phases of the Au(111) surface – x-ray-scattering measurements. Phys Rev B 43(6):4667–4687

    Article  Google Scholar 

  134. Barth JV, Brune H, Ertl G, Behm RJ (1990) Scanning tunneling microscopy observations on the reconstructed Au(111) surface – atomic-structure, long-range superstructure, rotational domains, and surface-defects. Phys Rev B 42(15):9307–9318

    Article  Google Scholar 

  135. Wang Y, Hush NS, Reimers JR (2007) Simulation of the Au(111)-(22 × √3) surface reconstruction. Phys Rev B 75(23):233416/1–233416/4

    Google Scholar 

  136. You H, Pierce M, Komanicky V, Barbour A, Zhu CH (2012) Study of electrode surface dynamics using coherent surface x-ray scattering. Electrochim Acta 82:570–575

    Article  Google Scholar 

  137. Kordesch KV, Simader GR (1995) Environmental-impact of fuel-cell technology. Chem Rev 95(1):191–207

    Article  Google Scholar 

  138. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269

    Article  Google Scholar 

  139. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951

    Article  Google Scholar 

  140. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1(14):2204–2219

    Article  Google Scholar 

  141. Ohno H (2005) Electrochemical aspects of ionic liquids. John Wiley & Sons Inc, Hoboken

    Book  Google Scholar 

  142. Rollins JB, Conboy JC (2009) Kinetics and thermodynamics of hydrogen oxidation and oxygen reduction in hydrophobic room-temperature ionic liquids. J Electrochem Soc 156(8):B943–B954

    Article  Google Scholar 

  143. Xiang HF, Yin B, Wang H, Lin HW, Ge XW, Xie S, Chen CH (2010) Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries. Electrochim Acta 55(18):5204–5209

    Article  Google Scholar 

  144. Sugimoto T, Atsumi Y, Kono M, Kikuta M, Ishiko E, Yamagata M, Ishikawa M (2010) Application of bis(fluorosulfonyl)imide-based ionic liquid electrolyte to silicon-nickel-carbon composite anode for lithium-ion batteries. J Power Sources 195(18):6153–6156

    Article  Google Scholar 

  145. Kubo K, Hirai N, Tanaka T, Hara S (2003) In situ observation on Au(100) surface in molten EMImBF(4) by electrochemical atomic force microscopy (EC-AFM). Surf Sci 546(1):L785–L788

    Article  Google Scholar 

  146. Bozzini B, Bund A, Busson B, Humbert C, Ispas A, Mele C, Tadjeddine A (2010) An SFG/DFG investigation of CN- adsorption at an Au electrode in 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid. Electrochem Commun 12(1):56–60

    Article  Google Scholar 

  147. Brandao CRR, Costa LAF, Breyer HS, Rubim JC (2009) Surface-enhanced Raman scattering (SERS) of a copper electrode in 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Electrochem Commun 11(9):1846–1848

    Article  Google Scholar 

  148. Adzic R (1990) Reaction kinetics and mechanisms on metal single-crystal electrode surfaces. In: Modern aspects of electrochemistry, vol 21. Plenum Press, New York

    Google Scholar 

  149. Lamy C, Leger JM (1991) Electrocatalytic oxidation of small organic-molecules at platinum single-crystals. J Chim Phys Phys -Chim Biol 88(7–8):1649–1671

    Google Scholar 

  150. Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45(4–6):121–229

    Google Scholar 

  151. Ye S, Kondo T, Hoshi N, Inukai J, Yoshimoto S, Osawa M, Itaya K (2009) Recent progress in electrochemical surface science with atomic and molecular levels (vol 77, pg 2, 2009). Electrochemistry 77(4):322–340

    Article  Google Scholar 

  152. Sashikata K, Furuya N, Itaya K (1991) In situ electrochemical scanning tunneling microscopy of single-crystal surfaces of Pt(111), Rh(111), and Pd(111) in aqueous sulfuric-acid-solution. J Vac Sci Technol B 9(2):457–464

    Article  Google Scholar 

  153. Villegas I, Weaver MJ (1994) Carbon-monoxide adlayer structures on platinum(111) electrodes – a synergy between in-situ scanning-tunneling-microscopy and infrared-spectroscopy. J Chem Phys 101(2):1648–1660

    Article  Google Scholar 

  154. Itaya K (1998) In situ scanning tunneling microscopy in electrolyte solutions. Prog Surf Sci 58(3):121–247

    Article  Google Scholar 

  155. Tidswell IM, Markovic NM, Ross PN (1994) Potential-dependent surface-structure of the Pt(111) vertical-bar-electrolyte interface. J Electroanal Chem 376(1–2):119–126

    Article  Google Scholar 

  156. Tidswell IM, Markovic NM, Ross PN (1993) Potential-dependent surface relaxation of the Pt(001) electrolyte interface. Phys Rev Lett 71(10):1601–1604

    Article  Google Scholar 

  157. Lucas CA, Markovic NM, Ross PN (1996) Surface structure and relaxation at the Pt(110)/electrolyte interface. Phys Rev Lett 77(24):4922–4925

    Article  Google Scholar 

  158. Nakahara A, Nakamura M, Sumitani K, Sakata O, Hoshi N (2007) In situ surface x-ray scattering of stepped surface of platinum: Pt(311). Langmuir 23(22):10879–10882

    Article  Google Scholar 

  159. Hoshi N, Naito K, Nakamura M, Sakata O (2014) Surface x-ray scattering of Pd(110) and Pd(311) in electrochemical environments. Electrochemistry 82(5):351–354

    Article  Google Scholar 

  160. Somorjai GA (1994) Introduction to surface chemistry and catalysis. John Wiley & Sons, Inc, New York

    Google Scholar 

  161. Adamson AW, Gast AP (1997) Physical chemistry of surfaces. John Wiley and Sons, Inc, New York

    Google Scholar 

  162. Naohara H, Ye S, Uosaki K (2001) Thickness dependent electrochemical reactivity of epitaxially electrodeposited palladium thin layers on Au(111) and Au(100) surfaces. J Electroanal Chem 500(1–2):435–445

    Article  Google Scholar 

  163. Uosaki K, Ye S, Naohara H, Oda Y, Haba T, Kondo T (1997) Electrochemical epitaxial growth of a Pt(111) phase on an Au(111) electrode. J Phys Chem B 101(38):7566–7572

    Article  Google Scholar 

  164. Waibel HF, Kleinert M, Kibler LA, Kolb DM (2002) Initial stages of Pt deposition on Au(111) and Au(100). Electrochim Acta 47(9):1461–1467

    Article  Google Scholar 

  165. Strbac S, Petrovic S, Vasilic R, Kovac J, Zalar A, Rakocevic Z (2007) Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt. Electrochim Acta 53(2):998–1005

    Article  Google Scholar 

  166. Mathur A, Erlebacher J (2008) Effects of substrate shape, curvature and roughness on thin heteroepitaxial films of Pt on Au(111). Surf Sci 602(17):2863–2875

    Article  Google Scholar 

  167. Takahasi M, Hayashi Y, Mizuki J, Tamura K, Kondo T, Naohara H, Uosaki K (2000) Pseudomorphic growth of Pd monolayer on Au(111) electrode surface. Surf Sci 461(1–3):213–218

    Article  Google Scholar 

  168. Uosaki K, Ye S, Kondo T, Naohara H (2002) Electrochemical epitaxial growth, structure, and electrocatalytic properties of noble metal thin films on Au(111) and Au(100). In: Soriaga MP, Stickney JL, Bottomley LA, Kim Y-G (eds) Thin films: preparation, characterization, applications. Kluwer Academic/Plenum Publishers, New York, pp 17–35

    Chapter  Google Scholar 

  169. Kondo T, Morita J, Okamura M, Saito T, Uosaki K (2002) In situ structural study on underpotential deposition of Ag on Au(111) electrode using surface x-ray scattering technique. J Electroanal Chem 532(1–2):201–205

    Article  Google Scholar 

  170. Kondo T, Takakusagi S, Uosaki K (2009) Stability of underpotentially deposited Ag layers on a Au(111) surface studied by surface x-ray scattering. Electrochem Commun 11(4):804–807

    Article  Google Scholar 

  171. Kondo T, Tamura K, Takakusagi S, Kitamura K, Takahasi M, Mizuki J, Uosaki K (2009) Partial stripping of Ag atoms from silver bilayer on a Au(111) surface accompanied with the reductive desorption of hexanethiol SAM. J Solid State Electrochem 13(7):1141–1145

    Article  Google Scholar 

  172. Tweet DJ, Akimoto K, Tatsumi T, Hirosawa I, Mizuki J, Matsui J (1992) Direct observation of Ge and Si ordering at the Si/B/Gexsi1-X (111) interface by anomalous x-ray-diffraction. Phys Rev Lett 69(15):2236–2239

    Article  Google Scholar 

  173. Chu YS, You H, Tanzer JA, Lister TE, Nagy Z (1999) Surface resonance x-ray scattering observation of core-electron binding-energy shifts of Pt(111)-surface atoms during electrochemical oxidation. Phys Rev Lett 83(3):552–555

    Article  Google Scholar 

  174. Takahasi M, Mizuki J (2006) Element-specific surface x-ray diffraction study of GaAs(001)-c(4x4). Phys Rev Lett 96(5):055506/1–055506/4

    Article  Google Scholar 

  175. Menzel A, Chang KC, Komanicky V, You H, Chu YS, Tolmachev YV, Rehr JJ (2006) Resonance anomalous surface x-ray scattering. Radiat Phys Chem 75(11):1651–1660

    Article  Google Scholar 

  176. Sibert E, Wang L, De Santis M, Soldo-Olivier Y (2014) Mechanisms of the initial steps in the Pd electro-deposition onto Au(111). Electrochim Acta 135:594–603

    Article  Google Scholar 

  177. Schultze JW, Dickertmann D (1976) Potentiodynamic desorption spectra of metallic monolayers of Cu, Bi, Pb, Tl, and Sb adsorbed at (111), (100), and (110) planes of gold electrodes. Surf Sci 54(2):489–505

    Article  Google Scholar 

  178. Juttner K (1986) Surface structural effects in electrocatalysis. Electrochim Acta 31(8):917–927

    Article  Google Scholar 

  179. Chen CH, Kepler KD, Gewirth AA, Ocko BM, Wang J (1993) Electrodeposited bismuth monolayers on Au(111) electrodes – comparison of surface x-ray-scattering, scanning-tunneling-microscopy, and atomic-force microscopy lattice structures. J Phys Chem 97(28):7290–7294

    Article  Google Scholar 

  180. Tamura K, Ocko BM, Wang JX, Adzic RR (2002) Structure of active adlayers on bimetallic surfaces: oxygen reduction on Au(111) with Bi adlayers. J Phys Chem B 106(15):3896–3901

    Article  Google Scholar 

  181. Hara M, Nagahara Y, Yoshimoto S, Inukai J, Itaya K (2004) Underpotentially deposited layers of Bi on Au-(100) in HClO4 investigated by in situ STM. J Electrochem Soc 151(3):E92–E96

    Article  Google Scholar 

  182. Nakamura M, Sato N, Hoshi N, Sakata O (2010) Catalytically active structure of Bi deposited on a Au(111) electrode for the hydrogen peroxide reduction reaction. Langmuir 26(7):4590–4593

    Article  Google Scholar 

  183. Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H (1998) Damascene copper electroplating for chip interconnections. IBM J Res Dev 42(5):567–574

    Article  Google Scholar 

  184. Edelstein D, Heidenreich J, Goldblatt R, Cote W, Uzoh C, Lustig N, Roper P, McDevitt T, Motsiff W, Simon A, Dukovic JO, Wachnik R, Rathore H, Schulz R, Su L, Luche S, Slattery JP (1997) Full copper wiring in a sub-0.25 μm CMOS ULSI technology. Technical Digest – International Electron Devices Meeting

    Google Scholar 

  185. Datta M (2009) Electrodeposition. In: Shacham-Diamon Y, Osaka T, Datta M, Ohba T (eds) Advanced nanoscale ULSI interconnects: fundamentals and applications. Springer, New York, pp 63–72

    Chapter  Google Scholar 

  186. Golks F, Stettner J, Gründer Y, Krug K, Zegenhagen J, Magnussen OM (2012) Anomalous potential dependence in homoepitaxial Cu(001) electrodeposition: an in situ surface x-ray diffraction study. Phys Rev Lett 108(25):256101/1–256101/5

    Article  Google Scholar 

  187. Schott JH, White HS (1994) Halogen adlayers on Ag(111). J Phys Chem 98(1):291–296

    Article  Google Scholar 

  188. Aloisi G, Funtikov AM, Will T (1994) Chloride adsorption on Ag(111) studied by in-situ scanning-tunneling-microscopy. J Electroanal Chem 370(1–2):297–300

    Article  Google Scholar 

  189. Sneddon DD, Gewirth AA (1995) In situ characterization of halide adsorption and Ag-halide growth on Ag(111) electrodes using atomic force microscopy. Surf Sci 343(3):185–200

    Article  Google Scholar 

  190. Ocko BM, Magnussen OM, Wang JX, Adzic RR, Wandlowski T (1996) The structure and phase behavior of electrodeposited halides on single-crystal metal surfaces. Phys B -Condens Matter 221(1–4):238–244

    Article  Google Scholar 

  191. Hecht D, Strehblow HH (1997) A surface analytical investigation of the electrochemical double layer on silver electrodes in chloride solutions. J Electroanal Chem 436(1–2):109–118

    Article  Google Scholar 

  192. Shimooka T, Inukai J, Itaya K (2002) Adlayer structures of cl and br and growth of bulk AgBr layers on Ag(100) electrodes. J Electrochem Soc 149(2):E19–E25

    Article  Google Scholar 

  193. Bozzini B, Giovannelli G, Mele C (2007) Electrochemical dynamics and structure of the Ag/AgCl interface in chloride-containing aqueous solutions. Surf Coat Technol 201(8):4619–4627

    Article  Google Scholar 

  194. Wieckowski A (2009) Fuel cell catalysis: a surface science approach. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  195. Kondo S, Nakamura M, Maki N, Hoshi N (2009) Active sites for the oxygen reduction reaction on the low and high index planes of palladium. J Phys Chem C 113(29):12625–12628

    Article  Google Scholar 

  196. Barsellini D, Visintin A, Triaca WE, Soriaga MP (2003) Electrochemical characterization of a hydride-forming metal alloy surface-modified with palladium. J Power Sources 124(1):309–313

    Article  Google Scholar 

  197. Kumar P, Malhotra LK (2004) Electrochemical loading of hydrogen in palladium capped samarium thin film: structural, electrical, and optical properties. Electrochim Acta 49(20):3355–3360

    Article  Google Scholar 

  198. Ambrosio RC, Ticianelli EA (2005) Studies on the influence of palladium coatings on the electrochemical and structural properties of a metal hydride alloy. Surf Coat Technol 197(2–3):215–222

    Article  Google Scholar 

  199. Pitt MP, Blanchard D, Hauback BC, Fjellvag H, Marshall WG (2005) Pressure-induced phase transitions of the LiAlD4 system. Phys Rev B 72(21):214113/1–214113/9

    Article  Google Scholar 

  200. Materer N, Starke U, Barbieri A, Doll R, Heinz K, Vanhove MA, Somorjai GA (1995) Reliability of detailed leed structural-analyses – Pt(111) and Pt(111)-P(2x2)-O. Surf Sci 325(3):207–222

    Article  Google Scholar 

  201. Marinkovic NS, Markovic NM, Adzic RR (1992) Hydrogen adsorption on single-crystal platinum-electrodes in alkaline-solutions. J Electroanal Chem 330(1–2):433–452

    Article  Google Scholar 

  202. Lucas CA (2002) Surface relaxation at the metal/electrolyte interface. Electrochim Acta 47(19):3065–3074

    Article  Google Scholar 

  203. Magnussen OM (2002) Ordered anion adlayers on metal electrode surfaces. Chem Rev 102(3):679–725

    Article  Google Scholar 

  204. Gründer Y, Drunkler A, Golks F, Wijts G, Stettner J, Zegenhagen J, Magnussen OM (2011) Structure and electrocompression of chloride adlayers on Cu(111). Surf Sci 605(17–18):1732–1737

    Article  Google Scholar 

  205. Tolentino HCN, De Santis M, Gauthier Y, Langlais V (2007) Chlorine chemisorption on Cu(001) by surface x-ray diffraction: geometry and substrate relaxation. Surf Sci 601(14):2962–2966

    Article  Google Scholar 

  206. Grey F, Bohr J (1992) A symmetry principle for epitaxial rotation. Europhys Lett 18(8):717–722

    Article  Google Scholar 

  207. von Helmholtz HLF (1879) Studies of electric boundary layers. Ann Phys 243(7):337–382

    Article  Google Scholar 

  208. Gouy G (1910) Construction of the electric charge at the surface of an electrolyte. J Phys II 9:457–467

    Google Scholar 

  209. Chapman DL (1913) A contribution to the theory of electrocapillarity. Phylos Mag 25:475–481

    Article  Google Scholar 

  210. Stern O (1924) The theory of the electrolytic double-layer. Z Elektrochem Angew Phys Chem 30:508–516

    Google Scholar 

  211. Frumkin A (1926) The influence of an electric field on the adsorption of neutral molecules. Z Phys 35:792–802

    Article  Google Scholar 

  212. Bockris JOM, Devanathan MAV, Muller K (1963) On the structure of charged interfaces. Proc Roy Soc Lond A 274:91–121

    Article  Google Scholar 

  213. Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501

    Article  Google Scholar 

  214. Adzic RR, Markovic NM (1979) Reflectance study of cation adsorption on oxide layers of gold and platinum-electrodes. J Electroanal Chem 102(2):263–270

    Article  Google Scholar 

  215. Strmcnik D, Escudero-Escribano M, Kodama K, Stamenkovic VR, Cuesta A, Markovic NM (2010) Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat Chem 2(10):880–885

    Article  Google Scholar 

  216. Strmcnik D, Kodama K, van der Vliet D, Greeley J, Stamenkovic VR, Markovic NM (2009) The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat Chem 1(6):466–472

    Article  Google Scholar 

  217. Stoffelsma C, Rodriguez P, Garcia G, Garcia-Araez N, Strmcnik D, Markovic NM, Koper MTM (2010) Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations. J Am Chem Soc 132(45):16127–16133

    Article  Google Scholar 

  218. van der Vliet DF, Koper MTM (2010) Electrochemistry of Pt (100) in alkaline media: a voltammetric study. Surf Sci 604(21–22):1912–1918

    Article  Google Scholar 

  219. Escudero-Escribano M, Michoff MEZ, Leiva EPM, Markovic NM, Gutierrez C, Cuesta A (2011) Quantitative study of non-covalent interactions at the electrode-electrolyte interface using cyanide-modified Pt(111) electrodes. ChemPhysChem 12(12):2230–2234

    Article  Google Scholar 

  220. Abruña HD (1991) X-ray absorption spectroscopy in the study of electrochemical systems. In: Abruña HD (ed) Electrochemical interfaces: modern techniques for in-situ interface characterization. VCH Publishers, New York/Weinheim/Cambridge, pp 1–54

    Google Scholar 

  221. Bardwell JA, Sproule GI, Macdougall B, Graham MJ, Davenport AJ, Isaacs HS (1992) In situ XANES detection of Cr(VI) in the passive film on Fe-26Cr. J Electrochem Soc 139(2):371–373

    Article  Google Scholar 

  222. Gordon JG, Melroy OR, Borges GL, Reisner DL, Abruña HD, Chandrasekhar P, Blum L (1986) Surface EXAFS of an electrochemical interface iodine on platinum (111). J Electroanal Chem 210(2):311–314

    Article  Google Scholar 

  223. Blum L, Abruña HD, White J, Gordon JG, Borges GL, Samant MG, Melroy OR (1986) Study of underpotentially deposited copper on gold by fluorescence detected surface EXAFS. J Chem Phys 85(11):6732–6738

    Article  Google Scholar 

  224. Samant MG, Borges GL, Gordon JG, Melroy OR, Blum L (1987) In situ surface extended x-ray absorption fine-structure spectroscopy of a lead monolayer at a silver(111) electrode electrolyte interface. J Am Chem Soc 109(20):5970–5974

    Article  Google Scholar 

  225. White JH, Albarelli MJ, Abruña HD, Blum L, Melroy OR, Samant MG, Borges GL, Gordon JG (1988) Surface extended x-ray absorption fine-structure of underpotentially deposited silver on Au(111) electrodes. J Phys Chem 92(15):4432–4436

    Article  Google Scholar 

  226. Melroy OR, Samant MG, Borges GL, Gordon JG, Blum L, White JH, Albarelli MJ, Mcmillan M, Abruña HD (1988) Inplane structure of underpotentially deposited copper on gold(111) determined by surface EXAFS. Langmuir 4(3):728–732

    Article  Google Scholar 

  227. Pandya KI, Hoffman RW, McBreen J, O’Grady WE (1990) In situ x-ray absorption spectroscopic studies of nickel-oxide electrodes. J Electrochem Soc 137(2):383–388

    Article  Google Scholar 

  228. Pandya KI, O’Grady WE, Corrigan DA, McBreen J, Hoffman RW (1990) Extended x-ray absorption fine structure investigations of nickel hydroxides. J Phys Chem 94(1):21–26

    Google Scholar 

  229. McBreen J, O’Grady WE, Tourillon G, Dartyge E, Fontaine A, Pandya KI (1989) In situ time-resolved x-ray absorption near edge structure study of the nickel-oxide electrode. J Phys Chem 93(17):6308–6311

    Article  Google Scholar 

  230. Guay D, Tourillon G, Dartyge E, Fontaine A, McBreen J, Pandya KI, O’Grady WE (1991) In situ time-resolved EXAFS study of the structural modifications occurring in nickel-oxide electrodes between their fully oxidized and reduced states. J Electroanal Chem 305(1):83–95

    Article  Google Scholar 

  231. Yamaguchi T, Mitsunaga T, Yoshida N, Wakita H, Fujiwara M, Matsushita T, Ikeda S, Nomura M (1993) XAFS study with an in situ electrochemical-cell on manganese Schiff-base complexes as a model of photosystem-II. Jpn J Appl Phys Part 1 32:533–535

    Article  Google Scholar 

  232. Yamaguchi T, Valli M, Miyata S, Wakita H (1997) In-situ x-ray absorption spectroelectrochemistry for determination of the oxidation states and the local structure of metalloprotein model compounds. Anal Sci 13:37–40

    Article  Google Scholar 

  233. Bae IT, Scherson DA (1998) In situ x-ray absorption of a carbon monoxide-iron porphyrin adduct adsorbed on high-area carbon in an aqueous electrolyte. J Phys Chem B 102(14):2519–2522

    Article  Google Scholar 

  234. Totir D, Mo YB, Kim S, Antonio MR, Scherson DA (2000) In situ CoK-edge x-ray absorption fine structure of cobalt hydroxide film electrodes in alkaline solutions. J Electrochem Soc 147(12):4594–4597

    Article  Google Scholar 

  235. Mo YB, Antonio MR, Scherson DA (2000) In situ Ru K-edge x-ray absorption fine structure studies of electroprecipitated ruthenium dioxide films with relevance to supercapacitor applications. J Phys Chem B 104(42):9777–9779

    Article  Google Scholar 

  236. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction – an in-situ XANES and EXAFS investigation. J Electrochem Soc 142(5):1409–1422

    Article  Google Scholar 

  237. McBreen J, Mukerjee S (1995) In-situ x-ray-absorption studies of a Pt-Ru electrocatalyst. J Electrochem Soc 142(10):3399–3404

    Article  Google Scholar 

  238. Sanjeev M, McBreen J (1999) An in situ x-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts. Part I. J Electrochem Soc 146(2):600–606

    Google Scholar 

  239. Mukerjee S, McBreen J (1996) Hydrogen electrocatalysis by carbon supported Pt and Pt alloys – an in situ x-ray absorption study. J Electrochem Soc 143(7):2285–2294

    Article  Google Scholar 

  240. Yee HS, Abruña HD (1993) In-situ x-ray-absorption spectroscopy studies of copper underpotentially deposited in the absence and presence of chloride on platinum(111). Langmuir 9(9):2460–2469

    Article  Google Scholar 

  241. Yee HS, Abruña HD (1993) In situ x-ray studies of the underpotential deposition of copper on platinum(111). J Phys Chem 97(23):6278–6288

    Article  Google Scholar 

  242. Yee HS, Abruña HD (1994) Ab-initio XAFS calculations and in-situ XAFS measurements of copper underpotential deposition on Pt(111) – a comparative-study. J Phys Chem 98(26):6552–6558

    Article  Google Scholar 

  243. Gómez R, Yee HS, Bommarito GM, Feliu JM, Abruña HD (1995) Anion effects and the mechanism of Cu Upd on Pt(111) – x-ray and electrochemical studies. Surf Sci 335(1–3):101–109

    Article  Google Scholar 

  244. Herrero E, Li J, Abruña HD (1999) Electrochemical, in-situ surface EXAFS and CTR studies of Co monolayers irreversibly adsorbed onto Pt(111). Electrochim Acta 44(14):2385–2396

    Article  Google Scholar 

  245. Tadjeddine A, Tourillon G (1992) Characterization of metal monolayers electrodeposited on gold single-crystals using x-ray absorption-spectroscopy. Analusis 20(6):309–318

    Google Scholar 

  246. Bommarito GM, Acevedo D, Rodriguez JF, Abruña HD (1994) Potential-dependent structural-changes of underpotentially deposited copper on an iodine-treated platinum surface determined in-situ by surface EXAFS and its polarization dependence. J Electroanal Chem 379(1–2):135–150

    Article  Google Scholar 

  247. Prinz H, Strehblow HH (2002) The structure of Cu- and Cd-UPD-layers on a stepped Pt(533) single crystal surface studied by grazing incidence XAFS, XRD and XPS. Electrochim Acta 47(19):3093–3104

    Article  Google Scholar 

  248. Soldo Y, Sibert E, Tourillon G, Hazemann JL, Levy JP, Aberdam D, Faure R, Durand R (2002) In situ x-ray absorption spectroscopy study of copper under potential deposition on Pt(111): role of the anions on the Cu structural arrangement. Electrochim Acta 47(19):3081–3091

    Article  Google Scholar 

  249. Kondo T, Tamura K, Koinuma M, Oyanagi H, Uosaki K (1997) Coverage dependent structure of electrochemically deposited Cu on p-GaAs(100) in H2SO4 solution determined by in situ surface x-ray absorption fine structure spectra. Chem Lett 8:761–762

    Article  Google Scholar 

  250. Uosaki K, Kondo T, Koinuma M, Tamura K, Oyanagi H (1997) Structural study of electrochemically deposited copper on p-GaAs(001) by atomic force microscopy and surface x-ray absorption fine structure measurement. Appl Surf Sci 121:102–106

    Article  Google Scholar 

  251. Tamura K, Oyanagi H, Kondo T, Koinuma M, Uosaki K (2000) Structural study of electrochemically deposited Cu on p-GaAs(100) in H2SO4 solution by in situ surface-sensitive x-ray absorption fine structure measurements. J Phys Chem B 104(38):9017–9024

    Article  Google Scholar 

  252. Russell AE, Rose A (2004) X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem Rev 104(10):4613–4635

    Article  Google Scholar 

  253. Croze V, Ettingshausen F, Melke J, Soehn M, Stuermer D, Roth C (2010) The use of in situ x-ray absorption spectroscopy in applied fuel cell research. J Appl Electrochem 40(5):877–883

    Article  Google Scholar 

  254. McBreen J (2009) The application of synchrotron techniques to the study of lithium-ion batteries. J Solid State Electrochem 13(7):1051–1061

    Article  Google Scholar 

  255. Herron ME, Doyle SE, Pizzini S, Roberts KJ, Robinson J, Hards G, Walsh FC (1992) In situ studies of a dispersed platinum on carbon electrode using x-ray absorption-spectroscopy. J Electroanal Chem 324(1–2):243–258

    Article  Google Scholar 

  256. Yoshitake H, Mochizuki T, Yamazaki O, Ota K (1993) Study of the density of the D-state and structure transformation of Pt fine particles dispersed on carbon electrodes by in-situ x-ray-absorption spectroscopy. J Electroanal Chem 361(1–2):229–237

    Article  Google Scholar 

  257. Yoshitake H, Yamazaki O, Ota K (1994) In-situ x-ray-absorption fine-structure study on structure transformation and electronic-state of various Pt particles on carbon electrode. J Electrochem Soc 141(9):2516–2522

    Article  Google Scholar 

  258. Mukerjee S, McBreen J (1998) Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. J Electroanal Chem 448(2):163–171

    Article  Google Scholar 

  259. Imai H, Izumi K, Matsumoto M, Kubo Y, Kato K, Imai Y (2009) In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media. J Am Chem Soc 131(17):6293–6300

    Article  Google Scholar 

  260. Shiraishi Y, Nakai I, Tsubata T, Himeda T, Nishikawa F (1997) In situ transmission x-ray absorption fine structure analysis of the charge–discharge process in LiMn2O4, a rechargeable lithium battery material. J Solid State Chem 133(2):587–590

    Article  Google Scholar 

  261. Nakai I, Takahashi K, Shiraishi Y, Nakagome T, Izumi F, Ishii Y, Nishikawa F, Konishi T (1997) X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems. J Power Sources 68(2):536–539

    Article  Google Scholar 

  262. Nakai I, Takahashi K, Shiraishi Y, Nakagome T, Nishikawa F (1998) Study of the Jahn-Teller distortion in LiNiO2, a cathode material in a rechargeable lithium battery, by in situ x-ray absorption fine structure analysis. J Solid State Chem 140(1):145–148

    Article  Google Scholar 

  263. Nakai I, Shiraishi Y, Nishikawa F (1999) Development of a new in situ cell for the x-ray absorption fine structure analysis of the electrochemical reaction in a rechargeable battery and its application to the lithium battery material, Li1+yMn2-yO4. Spectrochim Acta Part B 54(1):143–149

    Article  Google Scholar 

  264. Shiraishi Y, Nakai I, Tsubata T, Himeda T, Nishikawa F (1999) Effect of the elevated temperature on the local structure of lithium manganese oxide studied by in situ XAFS analysis. J Power Sources 81:571–574

    Article  Google Scholar 

  265. Terada Y, Yasaka K, Nishikawa F, Konishi T, Yoshio M, Nakai I (2001) In situ XAFS analysis of Li(Mn, M)2O4 (M = Cr, Co, Ni) 5 V cathode materials for lithium-ion secondary batteries. J Solid State Chem 156(2):286–291

    Article  Google Scholar 

  266. Terada Y, Nishiwaki Y, Nakai I, Nishikawa F (2001) Study of Mn dissolution from LiMn2O4 spinel electrodes using in situ total reflection x-ray fluorescence analysis and fluorescence XAFS technique. J Power Sources 97–98:420–422

    Article  Google Scholar 

  267. Nakai I, Yasaka K, Sasaki H, Terada Y, Ikuta H, Wakihara M (2001) In situ XAFS study of the electrochemical deintercalation of Li from Li1-xMn2-yCryO4 (y = 1/9, 1/6, 1/3). J Power Sources 97–98:412–414

    Article  Google Scholar 

  268. Takamatsu D, Koyama Y, Orikasa Y, Mori S, Nakatsutsumi T, Hirano T, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2012) First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection x-ray absorption spectroscopy. Angew Chem Int Ed 51(46):11597–11601

    Article  Google Scholar 

  269. Takamatsu D, Mori S, Orikasa Y, Nakatsutsumi T, Koyama Y, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2013) Effects of ZrO2 coating on LiCoO2 thin-film electrode studied by in situ x-ray absorption spectroscopy. J Electrochem Soc 160(5):A3054–A3060

    Article  Google Scholar 

  270. Arai H, Sato K, Orikasa Y, Murayama H, Takahashi I, Koyama Y, Uchimoto Y, Ogumi Z (2013) Phase transition kinetics of LiNi0.5Mn1.5O4 electrodes studied by in situ x-ray absorption near-edge structure and x-ray diffraction analysis. J Mater Chem A 1(35):10442–10449

    Article  Google Scholar 

  271. Orikasa Y, Maeda T, Koyama Y, Murayama H, Fukuda K, Tanida H, Arai H, Matsubara E, Uchimoto Y, Ogumi Z (2013) Transient phase change in two phase reaction between LiFePO4 and FePO4 under battery operation. Chem Mater 25(7):1032–1039

    Article  Google Scholar 

  272. Orikasa Y, Maeda T, Koyama Y, Minato T, Murayama H, Fukuda K, Tanida H, Arai H, Matsubara E, Uchimoto Y, Ogumi Z (2013) Phase transition analysis between LiFePO4 and FePO4 by in-situ time-resolved x-ray absorption and x-ray diffraction. J Electrochem Soc 160(5):A3061–A3065

    Article  Google Scholar 

  273. Masese T, Orikasa Y, Mori T, Yamamoto K, Ina T, Minato T, Nakanishi K, Ohta T, Tassel C, Kobayashi Y, Kageyama H, Arai H, Ogumi Z, Uchimoto Y (2014) Local structural change in Li2FeSiO4 polyanion cathode material during initial cycling. Solid State Ion 262:110–114

    Article  Google Scholar 

  274. Takamatsu D, Koyama Y, Orikasa Y, Mori S, Nakatsutsumi T, Hirano T, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2014) Electrochemical and spectroscopic characterization of LiCoO2 thin-film as model electrode. J Electrochem Soc 161(9):A1447–A1452

    Article  Google Scholar 

  275. Yamamoto K, Minato T, Mori S, Takamatsu D, Orikasa Y, Tanida H, Nakanishi K, Murayama H, Masese T, Mori T, Arai H, Koyama Y, Ogumi Z, Uchimoto Y (2014) Improved cyclic performance of lithium-ion batteries: an investigation of cathode/electrolyte interface via in situ total-reflection fluorescence x-ray absorption spectroscopy. J Phys Chem C 118(18):9538–9543

    Article  Google Scholar 

  276. Katayama M, Sumiwaka K, Miyahara R, Yamashige H, Arai H, Uchimoto Y, Ohta T, Inada Y, Ogumi Z (2014) X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO4 lithium-ion battery cathode. J Power Sources 269:994–999

    Article  Google Scholar 

  277. Kawaura H, Takamatsu D, Mori S, Orikasa Y, Sugaya H, Murayama H, Nakanishi K, Tanida H, Koyama Y, Arai H, Uchimoto Y, Ogumi Z (2014) High potential durability of LiNi0.5Mn1.5O4 electrodes studied by surface sensitive x-ray absorption spectroscopy. J Power Sources 245:816–821

    Article  Google Scholar 

  278. Tanida H, Fukuda K, Murayama H, Orikasa Y, Arai H, Uchimoto Y, Matsubara E, Uruga T, Takeshita K, Takahashi S, Sano M, Aoyagi H, Watanabe A, Nariyama N, Ohashi H, Yumoto H, Koyama T, Senba Y, Takeuchi T, Furukawa Y, Ohata T, Matsushita T, Ishizawa Y, Kudo T, Kimura H, Yamazaki H, Tanaka T, Bizen T, Seike T, Goto S, Ohno H, Takata M, Kitamura H, Ishikawa T, Ohta T, Ogumi Z (2014) RISING beamline (BL28XU) for rechargeable battery analysis. J Synchrotron Radiat 21:268–272

    Article  Google Scholar 

  279. Kaito T, Mitsumoto H, Sugawara S, Shinohara K, Uehara H, Ariga H, Takakusagi S, Hatakeyama Y, Nishikawa K, Asakura K (2014) K-edge x-ray absorption fine structure analysis of Pt/Au core-shell electrocatalyst: evidence for short Pt-Pt distance. J Phys Chem C 118(16):8481–8490

    Article  Google Scholar 

  280. Gianoncelli A, Kaulich B, Kiskinova M, Prasciolu M, Urzo BD, Bozzini B (2011) An in situ electrochemical soft x-ray spectromicroscopy investigation of Fe galvanically coupled to Au. Micron 42(4):342–347

    Article  Google Scholar 

  281. Jiang P, Chen JL, Borondics F, Glans PA, West MW, Chang CL, Salmeron M, Guo JH (2010) In situ soft x-ray absorption spectroscopy investigation of electrochemical corrosion of copper in aqueous NaHCO3 solution. Electrochem Commun 12(6):820–822

    Article  Google Scholar 

  282. Jiang P, Prendergast D, Borondics F, Porsgaard S, Giovanetti L, Pach E, Newberg J, Bluhm H, Besenbacher F, Salmeron M (2013) Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy. J Chem Phys 138(2):024704/1–024704/6

    Google Scholar 

  283. Merte LR, Behafarid F, Miller DJ, Friebel D, Cho S, Mbuga F, Sokaras D, Alonso-Mori R, Weng TC, Nordlund D, Nilsson A, Cuenya BR (2012) Electrochemical oxidation of size-selected Pt nanoparticles studied using in situ high-energy-resolution x-ray absorption spectroscopy. ACS Catal 2(11):2371–2376

    Article  Google Scholar 

  284. Friebel D, Miller DJ, O’Grady CP, Anniyev T, Bargar J, Bergmann U, Ogasawara H, Wikfeldt KT, Pettersson LGM, Nilsson A (2011) In situ x-ray probing reveals fingerprints of surface platinum oxide. Phys Chem Chem Phys 13(1):262–266

    Article  Google Scholar 

  285. Friebel D, Viswanathan V, Miller DJ, Anniyev T, Ogasawara H, Larsen AH, O’Grady CP, Norskov JK, Nilsson A (2012) Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: in situ XAS and DFT study. J Am Chem Soc 134(23):9664–9671

    Article  Google Scholar 

  286. Saida T, Sekizawa O, Ishiguro N, Hoshino M, Uesugi K, Uruga T, Ohkoshi S, Yokoyama T, Tada M (2012) 4D visualization of a cathode catalyst layer in a polymer electrolyte fuel cell by 3D laminography-XAFS. Angew Chem Int Ed 51(41):10311–10314

    Article  Google Scholar 

  287. Imai H, Matsumoto M, Miyazaki T, Kato K, Tanida H, Uruga T (2011) Growth limits in platinum oxides formed on Pt-skin layers on Pt-Co bimetallic nanoparticles. Chem Commun 47(12):3538–3540

    Article  Google Scholar 

  288. Kongkanand A, Ziegelbauer JM (2012) Surface platinum electrooxidation in the presence of oxygen. J Phys Chem C 116(5):3684–3693

    Article  Google Scholar 

  289. Redmond EL, Setzler BP, Alamgir FM, Fuller TF (2014) Elucidating the oxide growth mechanism on platinum at the cathode in PEM fuel cells. Phys Chem Chem Phys 16(11):5301–5311

    Article  Google Scholar 

  290. Lee JRI, O’Malley RL, O’Connell TJ, Vollmer A, Rayment T (2009) X-ray absorption spectroscopy characterization of Cu underpotential deposition on Au(111) and organothiol-self-assembled-monolayer-modified Au(111) electrodes from sulfate supporting electrolyte. J Phys Chem C 113(28):12260–12271

    Article  Google Scholar 

  291. Lee JRI, O’Malley RL, O’Connell TJ, Vollmer A, Rayment T (2010) X-ray absorption spectroscopy characterization of Zn underpotential deposition on Au(111) from phosphate supporting electrolyte. Electrochim Acta 55(28):8532–8538

    Article  Google Scholar 

  292. Seo M, Fushimi K, Aoki Y, Habazaki H, Inaba M, Yokomizo M, Hayakawa T, Nakayama T (2012) In situ x-ray absorption spectroscopy for identification of lead species adsorbed on a nickel surface in acidic perchlorate solution. J Electroanal Chem 671:7–15

    Article  Google Scholar 

  293. Seo M, Habazaki H, Inaba M, Yokomizo M, Wakabayashi T, Nakayama T (2014) In situ x-ray absorption spectroscopy study of Sn underpotential deposition on Ni from perchloric acid. J Electrochem Soc 161(4):H195–H202

    Article  Google Scholar 

  294. Price SWT, Rhodes JM, Calvillo L, Russell AE (2013) Revealing the details of the surface composition of electrochemically prepared Au@Pd Core@Shell nanoparticles with in situ EXAFS. J Phys Chem C 117(47):24858–24865

    Article  Google Scholar 

  295. Yoshida M, Yomogida T, Mineo T, Nitta K, Kato K, Masuda T, Nitani H, Abe H, Takakusagi S, Uruga T, Asakura K, Uosaki K, Kondoh H (2013) In situ observation of carrier transfer in the Mn-oxide/Nb:SrTiO3 photoelectrode by x-ray absorption spectroscopy. Chem Commun 49(71):7848–7850

    Article  Google Scholar 

  296. Yoshida M, Gon N, Maeda S, Mineo T, Nitta K, Kato K, Nitani H, Abe H, Uruga T, Kondoh H (2014) In situ XAFS study of the photoinduced potential shift of a MnOx cocatalyst on a SrTiO3 photocatalyst. Chem Lett 43(11):1725–1727

    Article  Google Scholar 

  297. Yoshida M, Yomogida T, Mineo T, Nitta K, Kato K, Masuda T, Nitani H, Abe H, Takakusagi S, Uruga T, Asakura K, Uosaki K, Kondoh H (2014) Photoexcited hole transfer to a MnOx cocatalyst on a SrTiO3 photoelectrode during oxygen evolution studied by in situ x-ray absorption spectroscopy. J Phys Chem C 118(42):24302–24309

    Article  Google Scholar 

  298. Yoshida M, Kondoh H (2014) In situ observation of model catalysts under reaction conditions using x-ray core-level spectroscopy. Chem Rec 14(5):806–818

    Article  Google Scholar 

  299. Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG (2010) Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ x-ray spectroscopy. J Am Chem Soc 132(39):13692–13701

    Article  Google Scholar 

  300. Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG (2012) Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J Am Chem Soc 134(15):6801–6809

    Article  Google Scholar 

  301. Okumura T, Fukutsuka T, Matsumoto K, Orikasa Y, Arai H, Ogumi Z, Uchimoto Y (2011) Role of local and electronic structural changes with partially anion substitution Lithium manganese spinel oxides on their electrochemical properties: x-ray absorption spectroscopy study. Dalton Trans 40(38):9752–9764

    Article  Google Scholar 

  302. Orikasa Y, Ina T, Nakao T, Mineshige A, Amezawa K, Oishi M, Arai H, Ogumi Z, Uchimoto Y (2011) X-ray absorption spectroscopic study on La0.6Sr0.4CoO3-delta cathode materials related with oxygen vacancy formation. J Phys Chem C 115(33):16433–16438

    Article  Google Scholar 

  303. Okumura T, Nakatsutsumi T, Ina T, Orikasa Y, Arai H, Fukutsuka T, Iriyama Y, Uruga T, Tanida H, Uchimoto Y, Ogumi Z (2011) Depth-resolved x-ray absorption spectroscopic study on nanoscale observation of the electrode-solid electrolyte interface for all solid state lithium ion batteries. J Mater Chem 21(27):10051–10060

    Article  Google Scholar 

  304. Okumura T, Fukutsuka T, Yanagihara A, Orikasa Y, Arai H, Ogumi Z, Uchimoto Y (2011) Electronic and local structural changes with lithium-ion insertion in TiO2-B: x-ray absorption spectroscopy study. J Mater Chem 21(39):15369–15377

    Article  Google Scholar 

  305. Orikasa Y, Ina T, Nakao T, Mineshige A, Amezawa K, Oishi M, Arai H, Ogumi Z, Uchimoto Y (2011) An x-ray absorption spectroscopic study on mixed conductive La0.6Sr0.4Co0.8Fe0.2O3-delta cathodes. I. Electrical conductivity and electronic structure. Phys Chem Chem Phys 13(37):16637–16643

    Article  Google Scholar 

  306. Yu XQ, Wang Q, Zhou YN, Li H, Yang XQ, Nam KW, Ehrlich SN, Khalid S, Meng YS (2012) High rate delithiation behaviour of LiFePO4 studied by quick x-ray absorption spectroscopy. Chem Commun 48(94):11537–11539

    Article  Google Scholar 

  307. Chang HH, Chang CC, Wu HC, Yang MH, Sheu HS, Wu NL (2008) Study on dynamics of structural transformation during charge/discharge of LiFePO4 cathode. Electrochem Commun 10(2):335–339

    Article  Google Scholar 

  308. Inoue K, Fujieda S, Shinoda K, Suzuki S, Waseda Y (2010) Chemical state of iron of LiFePO4 during charge–discharge cycles studied by in-situ x-ray absorption spectroscopy. Mater Trans 51(12):2220–2224

    Article  Google Scholar 

  309. Lowe MA, Gao J, Abruña HD (2013) In operando x-ray studies of the conversion reaction in Mn3O4 lithium battery anodes. J Mater Chem A 1(6):2094–2103

    Article  Google Scholar 

  310. Ouvrard G, Zerrouki M, Soudan P, Lestriez B, Masquelier C, Morcrette M, Hamelet S, Belin S, Flank AM, Baudelet F (2013) Heterogeneous behaviour of the lithium battery composite electrode LiFePO4. J Power Sources 229:16–21

    Article  Google Scholar 

  311. Dominko R, Arcon I, Kodre A, Hanzel D, Gaberscek M (2009) In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials. J Power Sources 189(1):51–58

    Article  Google Scholar 

  312. Dominko R, Garrido CVA, Bele M, Kuezma M, Arcon I, Gaberscek M (2011) Electrochemical characteristics of Li2-xVTiO4 rock salt phase in Li-ion batteries. J Power Sources 196(16):6856–6862

    Article  Google Scholar 

  313. Deb A, Bergmann U, Cairns EJ, Cramer SP (2004) X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. J Synchrotron Radiat 11:497–504

    Article  Google Scholar 

  314. Deb A, Bergmann U, Cairns EJ, Cramer SP (2004) Structural investigations of LiFePO4 electrodes by Fe x-ray absorption spectroscopy. J Phys Chem B 108(22):7046–7049

    Article  Google Scholar 

  315. Rumble C, Conry TE, Doeff M, Cairns EJ, Penner-Hahn JE, Deb A (2010) Structural and electrochemical investigation of Li(Ni0.4Co0.15Al0.05Mn0.4)O2 cathode material. J Electrochem Soc 157(12):A1317–A1322

    Article  Google Scholar 

  316. Nedoseykina T, Kim MG, Park SA, Kim HS, Kim SB, Cho J, Lee Y (2010) In situ x-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material. Electrochim Acta 55(28):8876–8882

    Article  Google Scholar 

  317. Lafont U, Locati C, Borghols WJH, Lasinska A, Dygas J, Chadwick AV, Kelder EM (2009) Nanosized high voltage cathode material LiMg0.05Ni0.45Mn1.5O4: structural, electrochemical and in situ investigation. J Power Sources 189(1):179–184

    Article  Google Scholar 

  318. Perea A, Castro L, Aldon L, Stievano L, Dedryvere R, Gonbeau D, Tran N, Nuspl G, Breger J, Tessier C (2012) Study of C-coated LiFe0.33Mn0.67PO4 as positive electrode material for Li-ion batteries. J Solid State Chem 192:201–209

    Article  Google Scholar 

  319. Wang CY (2004) Fundamental models for fuel cell engineering. Chem Rev 104(10):4727–4765

    Article  Google Scholar 

  320. Gasteiger HA, Markovic NM, Ross PN (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru.1. Rotating-disk electrode studies of the pure gases including temperature effects. J Phys Chem 99(20):8290–8301

    Article  Google Scholar 

  321. Gasteiger HA, Markovic NM, Ross PN (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru.2. Rotating disk electrode studies of Co/H2 mixtures at 62-degrees-C. J Phys Chem 99(45):16757–16767

    Article  Google Scholar 

  322. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116

    Article  Google Scholar 

  323. Burstein GT, Barnett CJ, Kucernak AR, Williams KR (1997) Aspects of the anodic oxidation of methanol. Catal Today 38(4):425–437

    Article  Google Scholar 

  324. Zhang SS, Yuan XZ, Hin JNC, Wang HJ, Friedrich KA, Schulze M (2009) A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J Power Sources 194(2):588–600

    Article  Google Scholar 

  325. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies. J Phys Chem 99(13):4577–4589

    Article  Google Scholar 

  326. Mukerjee S, Urian RC (2002) Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: electrochemical and in situ synchrotron spectroscopy. Electrochim Acta 47(19):3219–3231

    Article  Google Scholar 

  327. Kotobuki M, Shido T, Tada M, Uchida H, Yamashita H, Iwasawa Y, Watanabe M (2005) XAFS characterization of Pt-Fe/zeolite catalysts for preferential oxidation of CO in hydrogen fuel gases. Catal Lett 103(3–4):263–269

    Article  Google Scholar 

  328. Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2005) Correlation of water activation, surface properties, and oxygen reduction reactivity of supported Pt-M/C bimetallic electrocatalysts using XAS. J Electrochem Soc 152(11):A2159–A2169

    Article  Google Scholar 

  329. Wiltshire RJK, King CR, Rose A, Wells PP, Hogarth MP, Thompsett D, Russell AE (2005) A PEM fuel cell for in situ XAS studies. Electrochim Acta 50(25–26):5208–5217

    Article  Google Scholar 

  330. Wiltshire RJK, King CR, Rose A, Wells PP, Davies H, Hogarth MP, Thompsett D, Theobald B, Mosselmans FW, Roberts M, Russell AE (2009) Effects of composition on structure and activity of PtRu/C catalysts. Phys Chem Chem Phys 11(13):2305–2313

    Article  Google Scholar 

  331. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton-exchange membrane fuel-cells. J Electroanal Chem 357(1–2):201–224

    Article  Google Scholar 

  332. Tamizhmani G, Capuano GA (1994) Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solid-polymer-electrolyte fuel-cells. J Electrochem Soc 141(4):968–975

    Article  Google Scholar 

  333. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756

    Article  Google Scholar 

  334. Toda T, Igarashi H, Watanabe M (1999) Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J Electroanal Chem 460(1–2):258–262

    Article  Google Scholar 

  335. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 106(16):4181–4191

    Article  Google Scholar 

  336. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247

    Article  Google Scholar 

  337. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497

    Article  Google Scholar 

  338. Ioroi T, Siroma Z, Fujiwara N, Yamazaki S, Yasuda K (2005) Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem Commun 7(2):183–188

    Article  Google Scholar 

  339. Lim DH, Lee WD, Choi DH, Kwon HH, Lee HI (2008) The effect of cerium oxide nanoparticles on a Pt/C electrocatalyst synthesized by a continuous two-step process for low-temperature fuel cell. Electrochem Commun 10(4):592–596

    Article  Google Scholar 

  340. Lee KH, Kwon K, Roev V, Yoo DY, Chang H, Seung D (2008) Synthesis and characterization of nanostructured PtCo-CeOx/C for oxygen reduction reaction. J Power Sources 185(2):871–875

    Article  Google Scholar 

  341. Elezovic NR, Babic BM, Radmilovic VR, Gojkovic SL, Krstajic NV, Vracar LM (2008) Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J Power Sources 175(1):250–255

    Article  Google Scholar 

  342. Elezovic NR, Babic BM, Radmilovic VR, Vracar LM, Krstajic NV (2009) Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. Electrochim Acta 54(9):2404–2409

    Article  Google Scholar 

  343. Sasaki K, Zhang L, Adzic RR (2008) Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys Chem Chem Phys 10(1):159–167

    Article  Google Scholar 

  344. Baturina OA, Garsany Y, Zega TJ, Stroud RM, Schull T, Swider-Lyons KE (2008) Oxygen reduction reaction on platinum/tantalum oxide electrocatalysts for PEM fuel cells. J Electrochem Soc 155(12):B1314–B1321

    Article  Google Scholar 

  345. Chhina H, Campbell S, Kesler O (2009) Ex situ and in situ stability of platinum supported on niobium-doped titania for PEMFCs. J Electrochem Soc 156(10):B1232–B1237

    Article  Google Scholar 

  346. Xiong LF, More KL, He T (2010) Syntheses, characterization, and catalytic oxygen electroreduction activities of carbon-supported PtW nanoparticle catalysts. J Power Sources 195(9):2570–2578

    Article  Google Scholar 

  347. Huang SY, Ganesan P, Popov BN (2010) Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Appl Catal B Environ 96(1–2):224–231

    Article  Google Scholar 

  348. Fugane K, Mori T, Ou DR, Suzuki A, Yoshikawa H, Masuda T, Uosaki K, Yamashita Y, Ueda S, Kobayashi K, Okazaki N, Matolinova I, Matolin V (2011) Activity of oxygen reduction reaction on small amount of amorphous CeOx promoted Pt cathode for fuel cell application. Electrochim Acta 56(11):3874–3883

    Article  Google Scholar 

  349. Lim DH, Lee WD, Choi DH, Lee HI (2010) Effect of ceria nanoparticles into the Pt/C catalyst as cathode material on the electrocatalytic activity and durability for low-temperature fuel cell. Appl Catal B Environ 94(1–2):85–96

    Article  Google Scholar 

  350. Garsany Y, Epshteyn A, Purdy AP, More KL, Swider-Lyons KE (2010) High-activity, durable oxygen reduction electrocatalyst: nanoscale composite of platinum-tantalum oxyphosphate on vulcan carbon. J Phys Chem Lett 1(13):1977–1981

    Article  Google Scholar 

  351. Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – a mechanistic investigation. J Electrochem Soc 152(11):A2256–A2271

    Article  Google Scholar 

  352. Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. Phys Chem Chem Phys 8(6):746–752

    Article  Google Scholar 

  353. Xie J, Wood DL, More KL, Atanassov P, Borup RL (2005) Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J Electrochem Soc 152(5):A1011–A1020

    Article  Google Scholar 

  354. Schulze M, Schneider A, Gulzow E (2004) Alteration of the distribution of the platinum catalyst in membrane-electrode assemblies during PEFC operation. J Power Sources 127(1–2):213–221

    Article  Google Scholar 

  355. Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K (2006) Analytical TEM study of Pt particle deposition in the proton-exchange membrane of a membrane-electrode-assembly. J Power Sources 159(1):461–467

    Article  Google Scholar 

  356. Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) Characteristics of a platinum black catalyst layer with regard to platinum dissolution phenomena in a membrane electrode assembly. J Electrochem Soc 153(8):A1599–A1603

    Article  Google Scholar 

  357. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S (1993) Surface-area loss of supported platinum in polymer electrolyte fuel-cells. J Electrochem Soc 140(10):2872–2877

    Article  Google Scholar 

  358. Borup RL, Davey JR, Garzon FH, Wood DL, Inbody MA (2006) PEM fuel cell electrocatalyst durability measurements. J Power Sources 163(1):76–81

    Article  Google Scholar 

  359. Ascarelli P, Contini V, Giorgi R (2002) Formation process of nanocrystalline materials from x-ray diffraction profile analysis: application to platinum catalysts. J Appl Phys 91(7):4556–4561

    Article  Google Scholar 

  360. Giorgi R, Ascarelli P, Turtu S, Contini V (2001) Nanosized metal catalysts in electrodes for solid polymeric electrolyte fuel cells: an XPS and XRD study. Appl Surf Sci 178(1–4):149–155

    Article  Google Scholar 

  361. Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) Electronic structures of Pt-Co and Pt-Ru alloys for Co-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J Phys Chem B 110(46):23489–23496

    Article  Google Scholar 

  362. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2008) Increased oxygen coverage at Pt-Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC-XPS. J Phys Chem C 112(7):2750–2755

    Article  Google Scholar 

  363. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2009) Identification and quantification of oxygen species adsorbed on Pt(111) single-crystal and polycrystalline Pt electrodes by photoelectron spectroscopy. Langmuir 25(4):1897–1900

    Article  Google Scholar 

  364. Wakisaka M, Udagawa Y, Suzuki H, Uchida H, Watanabe M (2011) Structural effects on the surface oxidation processes at Pt single-crystal electrodes studied by x-ray photoelectron spectroscopy. Energy Environ Sci 4(5):1662–1666

    Article  Google Scholar 

  365. Ishiguro N, Uruga T, Sekizawa O, Tsuji T, Suzuki M, Kawamura N, Mizumaki M, Nitta K, Yokoyama T, Tada M (2014) Visualization of the heterogeneity of cerium oxidation states in single Pt/Ce2Zr2Ox catalyst particles by nano-XAFS. ChemPhysChem 15(8):1563–1568

    Article  Google Scholar 

  366. Jerkiewicz G (1999) Surface oxidation of noble metal electrodes. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, New York, pp 559–576

    Google Scholar 

  367. Markovic NM, Ross PN (1999) In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, New York, pp 821–842

    Google Scholar 

  368. You H, Zurawski DJ, Nagy Z, Yonco RM (1994) In-situ x-ray reflectivity study of incipient oxidation of Pt(111) surface in electrolyte-solutions. J Chem Phys 100(6):4699–4702

    Article  Google Scholar 

  369. Matsumoto M, Miyazaki T, Imai H (2011) Oxygen-enhanced dissolution of platinum in acidic electrochemical environments. J Phys Chem C 115(22):11163–11169

    Article  Google Scholar 

  370. Carino EV, Crooks RM (2011) Characterization of Pt@Cu Core@Shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition. Langmuir 27(7):4227–4235

    Article  Google Scholar 

  371. Taguchi S, Kondo M, Mori H, Aramata A (2013) Formation of zinc-oxianion complex adlayer by underpotential deposition of Zn on Au(111) electrode: preferential formation of zinc monohydrogen phosphate complex in weakly acidic solutions. Electrochim Acta 111:642–655

    Article  Google Scholar 

  372. Friebel D, Miller DJ, Nordlund D, Ogasawara H, Nilsson A (2011) Degradation of bimetallic model electrocatalysts: an in situ x-ray absorption spectroscopy study. Angew Chem-Int Ed 50(43):10190–10192

    Article  Google Scholar 

  373. Tadjeddine A, Guay D, Ladouceur M, Tourillon G (1991) Electronic and structural characterization of underpotentially deposited submonolayers and monolayer of copper on gold (111) studied by in situ x-ray-absorption spectroscopy. Phys Rev Lett 66(17):2235–2238

    Article  Google Scholar 

  374. Tadjeddine A, Tourillon G, Guay D (1991) Structural and electronic characterization of underpotentially deposited copper on gold single-crystal probed by in situ x-ray absorption-spectroscopy. Electrochim Acta 36(11–12):1859–1862

    Article  Google Scholar 

  375. Gordon JG, Melroy OR, Toney MF (1995) Structure of metal electrolyte interfaces – copper on gold(111), water on silver(111). Electrochim Acta 40(1):3–8

    Article  Google Scholar 

  376. Wu S, Lipkowski J, Tyliszczak T, Hitchcock AP (1995) Effect of anion adsorption on early stages of copper electrocrystallization at Au(111) surface. Prog Surf Sci 50(1–4):227–236

    Article  Google Scholar 

  377. Wu S, Shi Z, Lipkowski J, Hitchcock AP, Tyliszczak T (1997) Early stages of copper electrocrystallization: electrochemical and in situ x-ray absorption fine structure studies of coadsorption of copper and chloride at the Au(111) electrode surface. J Phys Chem B 101(49):10310–10322

    Article  Google Scholar 

  378. Friebel D, Mbuga F, Rajasekaran S, Miller DJ, Ogasawara H, Alonso-Mori R, Sokaras D, Nordlund D, Weng TC, Nilsson A (2014) Structure, redox chemistry, and interfacial alloy formation in monolayer and multilayer Cu/Au(111) model catalysts for CO2 electroreduction. J Phys Chem C 118(15):7954–7961

    Article  Google Scholar 

  379. Love CT, Korovina A, Patridge CJ, Swider-Lyons KE, Twigg ME, Ramaker DE (2013) Review of LiFePO4 phase transition mechanisms and new observations from x-ray absorption spectroscopy. J Electrochem Soc 160(5):A3153–A3161

    Article  Google Scholar 

  380. Yang MC, Xu B, Cheng JH, Pan CJ, Hwang BJ, Meng YS (2011) Electronic, structural, and electrochemical properties of LiNixCuyMn2-x-yO4 (0 < x < 0.5, 0 < y < 0.5) high-voltage spinel materials. Chem Mater 23(11):2832–2841

    Article  Google Scholar 

  381. Yoon J, Muhammad S, Jang D, Sivakumar N, Kim J, Jang WH, Lee YS, Park YU, Kang K, Yoon WS (2013) Study on structure and electrochemical properties of carbon-coated monoclinic Li3V2(PO4)3 using synchrotron based in situ x-ray diffraction and absorption. J Alloys Compd 569:76–81

    Article  Google Scholar 

  382. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1981) LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high-energy density. Solid State Ion 3–4(Aug):171–174

    Article  Google Scholar 

  383. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high-energy density. Mater Res Bull 15(6):783–789

    Article  Google Scholar 

  384. Shin HC, Chung KY, Min WS, Byun DJ, Jang H, Cho BW (2008) Asymmetry between charge and discharge during high rate cycling in LiFePO4 – in situ x-ray diffraction study. Electrochem Commun 10(4):536–540

    Article  Google Scholar 

  385. Kodama R, Terada Y, Nakai I, Komaba S, Kumagai N (2006) Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. J Electrochem Soc 153(3):A583–A588

    Article  Google Scholar 

  386. Yabuuchi N, Sugano M, Yamakawa Y, Nakai I, Sakamoto K., Muramatsu H, Komaba S (2011) Effect of heat-treatment process on FeF3 nanocomposite electrodes for rechargeable Li batteries. J Mater Chem 21(27):10035–10041

    Article  Google Scholar 

  387. Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I (2012) Study on the Reversible Electrode Reaction of Na1-xNi0.5Mn0.5O2 for a Rechargeable Sodium-Ion Battery. Inorg Chem 51(11):6211–6220

    Article  Google Scholar 

  388. Yabuuchi N, Yamamoto K, Yoshii K, Nakai I, Nishizawa T, Omaru A, Toyooka T, Komaba S (2013) Structural and Electrochemical Characterizations on Li2MnO3-LiCoO2-LiCrO2 System as Positive Electrode Materials for Rechargeable Lithium Batteries. J Electrochem Soc 160(1):A39–A45

    Article  Google Scholar 

  389. Masuda T, Uosaki K (2004) Construction of organic monolayers with electron transfer function on a hydrogen terminated Si(111) surface via silicon-carbon bond and their electrochemical characteristics in dark and under illumination. Chem Lett 33(7):788–789

    Article  Google Scholar 

  390. Masuda T, Shimazu K, Uosaki K (2008) Construction of mono- and multimolecular layers with electron transfer mediation function and catalytic activity for hydrogen evolution on a hydrogen-terminated Si(111) surface via Si-C bond. J Phys Chem C 112(29):10923–10930

    Article  Google Scholar 

  391. Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42(12):1935–1943

    Article  Google Scholar 

  392. Brimblecombe R, Swiegers GF, Dismukes GC, Spiccia L (2008) Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew Chem Int Ed 47(38):7335–7338

    Article  Google Scholar 

  393. Brimblecombe R, Kolling DRJ, Bond AM, Dismukes GC, Swiegers GF, Spiccia L (2009) Sustained water oxidation by [Mn4O4]7+ core complexes inspired by oxygenic photosynthesis. Inorg Chem 48(15):7269–7279

    Article  Google Scholar 

  394. Brimblecombe R, Dismukes GC, Swiegers GF, Spiccia L (2009) Molecular water-oxidation catalysts for photoelectrochemical cells. Dalton Trans 43:9374–9384

    Article  Google Scholar 

  395. Hocking RK, Brimblecombe R, Chang LY, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3(6):461–466

    Google Scholar 

  396. Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132(39):13612–13614

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Uosaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kondo, T., Masuda, T., Uosaki, K. (2016). In Situ SXS and XAFS Measurements of Electrochemical Interface. In: Kumar, C. (eds) X-ray and Neutron Techniques for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48606-1_7

Download citation

Publish with us

Policies and ethics