Skip to main content

Mechanisms of Glomerular Fibrin Deposition in Glomerulonephritis

  • Chapter
Nephrology

Summary

Evidence points to glomerular fibrin deposition (GFD) as an important mediator of renal injury and crescent formation. GFD appears to be initiated by intraglomerular stimuli related to local immune inflammatory events. Macrophages expressing augmented procoagulant activity (PCA) are likely to be important initiators of GFD. Antibody Fc direction or delayed type hypersensitivity (DTH) mechanisms may be the primary initiating event. Other factors, including contact activation of coagulation and inhibition of fibrinolytic clearance, may act in concert to exacerbate fibrin accumulation, especially in Bowman’s space. The importance of GFD in human GN is highlighted by evidence that it may be prevented or reversed by therapeutic intervention, thereby offering the potential for limiting the progression of injury in these forms of GN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kincaid-Smith P (1972) Coagulation and renal disease. Kidney Int 2: 183–190

    Article  PubMed  CAS  Google Scholar 

  2. McCluskey RT, Vassalli P, Gallo G, Baldwin DS (1966) An immunofluorescent study of pathogenic mechanisms in glomerular diseases. N Engl J Med 274: 695–701

    Article  PubMed  CAS  Google Scholar 

  3. Naish P, Penn GB, Evans DJ, Peters, DK (1972). The effect of defibrination on nephrotoxic serum nephritis in rabbits. Clin Sci 42: 643–646

    PubMed  CAS  Google Scholar 

  4. Naish PF, Evans DJ, Peters DK (1975) The effects of defibrination with ancrod in experimental allergic glomerular injuries. Clin Exp Immunol 20: 303–309

    PubMed  CAS  Google Scholar 

  5. Thomson NM, Simpson IJ, Evans DJ, Peters, DK (1975) Defibrination with ancrod in experimental chronic immune complex nephritis. Clin Exp Immunol 20: 527–535

    Google Scholar 

  6. Tipping PG, Holdsworth SR (1986) Fibrinolytic therapy with streptokinase in established experimental glomerulonephritis. Nephron 43: 258–264

    Article  PubMed  CAS  Google Scholar 

  7. Tipping PG, Thomson NM, Holdsworth SR (1986) A comparison of fibrinolytic and defibrinating agents in established experimental glomerulonephritis. Brit J Exp Pathol 67: 481–491

    CAS  Google Scholar 

  8. Humair L, Kwann HC, Potter E (1969) The role of fibrinogen in renal disease II. Effects of anticoagulants and urokinase on experimental lesions in mice. J Lab Clin Med 74: 72–78

    Google Scholar 

  9. Tsumagari T, Tanaka K (1984) Effects of fibrinogen degradation products on glomerular mesangial cells in culture. Kidney Int 26: 712–718

    Article  PubMed  CAS  Google Scholar 

  10. Salem HH, Whitworth JA, Koutts J (1981) Hypercoagulation in glomerulonephritis. Br Med J 282: 2083–2086

    Article  CAS  Google Scholar 

  11. Adhikari M, Coovadia HM, Greig HBW, Christensen S (1978) Factor VIII procoagulant activity in children with nephrotic syndrome and post-streptococcal glomerulonephritis. Nephron 22: 301–305

    Article  PubMed  CAS  Google Scholar 

  12. Esmon CT (1987) The regulations of natural anticoagulant pathways. Science 235: 1348–1352

    Article  PubMed  CAS  Google Scholar 

  13. Kendall AG, Lohmann RC, Dossetor JB Nephrotic syndrome a hypercoagulable state. Ann Intern Med 127: 1021–1031

    Google Scholar 

  14. Vaziri ND (1983) Nephrotic syndrome and coagulation and fibrinolytic abnormalities. Am J Nephrol 3: 1

    Article  PubMed  CAS  Google Scholar 

  15. Holdsworth SR, Tipping PG (1985) Macrophage induced fibrin deposition in experimental glomerulonephritis in the rabbit. J Clin Invest 76: 1367–1374

    Article  PubMed  CAS  Google Scholar 

  16. Hoyer JR, Michael AF, Hoyer LW (1974) Immunofluorescent localization of antihemophiliac factor antigen and fibrinogen in human renal disease. J Clin Invest 53: 1375–1384

    Article  PubMed  CAS  Google Scholar 

  17. Villaro J, Errasti P, Goni M, Monzo A, Purroy A, Sanchez-Ibarrola A (1984) Pathogenesis of glomerular fibrin deposition: Role of the contact system (abstract). Kidney Int 26: 219

    Google Scholar 

  18. Wiggins RG (1985) Hageman factor in experimental nephrotoxic nephritis in the rabbit. Lab Invest 53: 335–348

    PubMed  CAS  Google Scholar 

  19. Tipping PG, Holdsworth SR (1986) The participation of macrophages, glomerular procoagulant activity and factor VIII in glomerular fibrin deposition. Studies in antiglomerulonephritis basement membrane antibody induced glomerulonephritis in rabbits. Am J Pathol 124: 10–17

    Google Scholar 

  20. George CPR, Clark WF, Cameron JS (1975) The role of platelets in glomerulonephritis. Adv Nephrol 5: 19–65

    CAS  Google Scholar 

  21. Vassali P, McCluskey RT (1964) The pathogenic role of the coagulation process in rabbit Masugi nephritis. Am J Path 45: 653–677

    Google Scholar 

  22. Gabbiani G, Boadonnel MC, Vassoli P (1975) Experimental focal glomerular lesion elicited by insoluble immune complexes: ultrastructural and immunofluorescent studies. Lab Invest 32: 33–45

    PubMed  CAS  Google Scholar 

  23. Ogawa S, Naruse T (1982) Effects of various antiplatelet drugs and a defibrinating agent on experimental glomerulonephritis in rats. J Lab Clin Med 99: 428–435

    PubMed  CAS  Google Scholar 

  24. Sindrey M, Marshall TI, Naish P (1979) Quantitative assessment of the effects of platelet depletion in the autologous phase of nephrotoxic serum nephritis. Clin Exp Immunol 36: 90–96

    PubMed  CAS  Google Scholar 

  25. Atkins RC, Holdsworth SR, Glasgow EF, Matthews FE (1976) The macrophage in human rapidly progressive glomerulonephritis. Lancet 1: 830–832

    Article  PubMed  CAS  Google Scholar 

  26. Monga G, Mazzucco G, Barbiano di Belgiojoso GB, Busnach G (1979) The presence and possible role of monocyte infiltration in human chronic proliferative glomerulonephritides. Light microscopic, immunofluorescence and histochemical correlation. Am J Pathol 94: 271–284

    Google Scholar 

  27. Ferrario F, Castiglione A, Colasanti G, Barbiano di Belgiojoso G, Bertoli S, D’Amico G (1985) The detection of monocytes in human glomerulonephritis. Kidney Int 28: 513–519

    Article  PubMed  CAS  Google Scholar 

  28. Magil AB, Wadsworth AB (1981) Monocytes in human glomerulonephritis. An electromicroscopic study. Lab Invest 34: 77–81

    Google Scholar 

  29. Tipping PG, Worthington LA, Holdsworth SR (1987) The quantitation and characterization of glomerular procoagulant activity in experimental glomerulonephritis. Lab Invest 56: 155–159

    PubMed  CAS  Google Scholar 

  30. Tipping PG, Lowe MG, Holdsworth SR (1988) Glomerular macrophages express augmented procoagulant activity in experimental glomerulonephritis in rabbits. J Clin Invest 82: 1253–1259

    Article  PubMed  CAS  Google Scholar 

  31. Cotran RS (1987) New roles for the endothelium in inflammation and immunity. Am J Pathol 129: 407–413

    PubMed  CAS  Google Scholar 

  32. Bevilacqua MP, Schleef RR, Gimbrone MA, Loskutoff DJ (1986) Regulation of the fibrinolytic system of cultured human vascular endothelium by interleukin 1. J Clin Invest 78: 581–591

    Article  Google Scholar 

  33. Mulfelder TW, Niemetz J, Kreutzer D, Beebe D, Ward PA, Rosenfeld SI (1979) C5 chemotactic fragment induces leukocyte production of tissue factor activity: A link between complement and coagulation. J Clin Invest 63: 147–150

    Google Scholar 

  34. Rothberger H. Zimmerman TS, Spiegleberg HL, Vaughan JH (1977) Leukocyte pro-coagulant activity. Enhancement of production “in vitro” by IgG and antigen-antibody complexes. J Clin Invest 59: 549–557

    Article  PubMed  CAS  Google Scholar 

  35. Schwartz BS, Edgington TS (1981) Immune complex-induced human monocyte procoagulant activity. I. A rapid unidirectional lymphocyte instructed pathway. J Exp Med 154: 892–906

    Article  PubMed  CAS  Google Scholar 

  36. Edwards RL, Rickles FR, Bolorove AM (1979) Mononuclear cell tissue factor. Cell of origin and requirements for activation. Blood 54: 359–370

    PubMed  CAS  Google Scholar 

  37. Helin H, Edgington TS (1983) Allogenic induction of the human T cell instructed monocyte procoagulant response is rapid and is elicited by HLA-DR. J Exp Med 58: 962–975

    Article  Google Scholar 

  38. Gregory SM, Edgington TS (1985) Tissue factor induction in human monocytes. Two distinct mechanisms displayed by different alloantigen-responsive T cell clones. J Clin Invest 76: 2440–2445

    Google Scholar 

  39. Tipping PG, Neale TJ, Holdsworth SR (1985) T-lymphocyte participation in antibody induced experimental glomerulonephritis. Kidney Int 27: 530–537

    Article  PubMed  CAS  Google Scholar 

  40. Stachura I, Si L, Whiteside TL (1984) Mononuclear cell subsets in human idiopathic crescentic glomerulonephritis: Analysis in tissue sections with monoclonal antibodies. J Clin Immunol 4: 203–208

    Google Scholar 

  41. Nolasco FEB, Cameron JS, Hartley B, Coelho A, Hildreth G, Reuben R (1987) Intraglomerular T cells and monocytes in nephritis: Study with monoclonal antibodies. Kidney Int 31: 1160–1166

    Google Scholar 

  42. Neale TJ, Tipping PG, Carson S, Holdsworth SR (1988) Evidence for the participation of cell mediated immunity in the deposition of fibrin in glomerulonephritis. Lancet 11: 421–424

    Article  Google Scholar 

  43. Baud L, Sraer J, Delarue F, Bens M, Balavoine F, Schlondorff D, Ardaillou R, Sraer JD (1985) Lipoxygenase products mediate the attachment of rat macrophages to glomeruli in vitro. Kidney Int 27: 855–863

    Article  PubMed  CAS  Google Scholar 

  44. Wiggins RC, Njoku N, Sedor JR (1990) Tissue factor production by cultured rat mesangial cells. Stimulation by TNFu and lipopolysaccharide. Kidney Int 37: 1281–1285

    Google Scholar 

  45. Boswell JM, Tui MA, Burt DW, Kelly VE (1988) Increased tumor necrosis factor and IL1–13 gene expression in the kidneys of mice with lupus nephritis. J Immunol 141: 3052–3054

    Google Scholar 

  46. Angles Cano E, Balaton A, Le Bonniec B, Genot E, Elion J, Sultan Y (1985) Production and immunolocalization of monoclonal antibodies to the high fibrin affinity tissue type plasminogen activator of human plasma: Demonstration of its endothelial origin by immunolocalization. Blood. 66: 913–920

    Google Scholar 

  47. Hancock WW (1990) IL and TNF depress glomerular endothelial thrombomodulin expression in vitro and in vivo (abstract). Kidney Int 38: 557.

    Google Scholar 

  48. Sraer JD, Kanfer A, Rondeau E, Lacaux R (1988) Glomerular hemostasis in normal and pathologic conditions. Adv Nephrol 17: 27–56

    CAS  Google Scholar 

  49. Tipping PG, Lowe MG, Holdsworth SR (1991) Glomerular interleukin I production is dependent on macrophage infiltration in anti-GBM glomerulonephritis. Kidney Int (in press)

    Google Scholar 

  50. Stark H, Miller K, Michael AF (1979) Renal cortical fibrinolytic activity in rabbits with chronic immune complex nephritis. Isr J Med Sci 14: 610–612

    Google Scholar 

  51. Giroux L, Verroust P, Morel-Maroger L, Delarue F, Delauche M, Sraer JD (1979) Glomerular fibrinolytic activity during nephrotoxic nephritis. Lab Invest 40: 415–422

    PubMed  CAS  Google Scholar 

  52. Kanter A, De Prost D, Le Floch V (1985) Procoagulant activity in isolated glomeruli from normal and glomerulonephritic rats (abstract). Eur J Clin Invest 15: A43.

    Google Scholar 

  53. Clark BE, Ham KN, Tange JD, Ryan GB (1983) Macrophages and glomerular crescent formation: Studies with rat nephrotoxic nephritis. Pathology 15: 75–81

    Article  Google Scholar 

  54. Kanter A, de Prost D, Guettier C, Nochy D, Le Floch V, Hinglais N, Druet P (1987) Enhanced glomerular procoagulant activity and fibrin deposition in rats with mercuric chloride-induced autoimmune nephritis. Lab Invest 57: 138–143

    Google Scholar 

  55. Ekberg M, Pandolli M (1975) Origin of urinary fibrin fibrinogen degradation products in glomerulonephritis. Br Med J [Clin Res] 2: 17–21

    Article  CAS  Google Scholar 

  56. Clarkson AR, McDonald MK, Petrie JJB, Cash JD, Robson JS (1971) Serum and urine fibrin/fibrinogen degradation products in glomerulonephritis. Br Med J [Clin Res] 3: 447–451

    Article  CAS  Google Scholar 

  57. Tipping PG, Dowling JP, Holdsworth SR (1988) Glomerular procoagulant activity in human proliferative glomerulonephritis. J Clin Invest 81: 119–125

    Article  PubMed  CAS  Google Scholar 

  58. Bergstein JM, Michael AF (1972) Cortical fibrinolytic activity in normal and diseased human kidneys. J Lab Clin Med 79: 701–709

    PubMed  CAS  Google Scholar 

  59. Mougenot B, Rondeau E, Kruithof B, Sraer JD (1988) Presence of type 1 plasminogen activator inhibitor (PA1–1) in renal fibrin deposits in human pathological conditions (abstract) Kidney Int 33: 330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Holdsworth, S.R., Tipping, P.G. (1991). Mechanisms of Glomerular Fibrin Deposition in Glomerulonephritis. In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics