Skip to main content

Toxins and Psychoactive Compounds from Mushrooms

  • Chapter
Human and Animal Relationships

Part of the book series: The Mycota ((MYCOTA,volume 6))

Abstract

This chapter describes the toxic and/or hallucinogenic components of mushrooms obtained in pure form and chemically characterized up to now. Attempts to isolate the poisonous alkaloid of a fungus, the red fly agaric Amanita muscaria, were made almost 130 years ago. In 1869, Schmiedeberg and Koppe reported on an enriched preparation of muscarine which was regarded for a long time as the general toxin of all poisonous mushrooms. More than 20 years later, Kobert (1891, 1893), in his attempt to isolate the toxic component of poisonous Amanita mushrooms by precipitation from water with ethyl alcolhol, obtained a substance with strong hemolytic properties, named phallin. Later, Kobert (Raab 1932) reported on the existence of highly poisonous substances in the filtrate of phallin precipitation. At the same time, Ford (1909) in Baltimore (USA) after ten years work presented a toxic, ca. 10% enriched preparation of “amanitatoxin”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres RY, Frei W (1987) 126I-Amatoxin and antiamatoxin for radioimmuno assay prepared by a novel approach of chemical and structural consideration. Toxicon 25: 916–922

    Google Scholar 

  • Antkowiak WZ, Gessner WP (1975) Isolation and characteristics of toxic components of Cortinarius orellanus, Fries. Bull Acad Pol Sci Chim 23:729–733

    CAS  Google Scholar 

  • Antkowiak WZ, Gessner WP (1979) The structures of orellanine and orelline. Tetrahedron Lett 21:1931–1934

    Google Scholar 

  • Antkowiak WZ, Gessner WP (1985) Photodecomposition of orellanine and orellinine, the fungal toxins of Cortinarius orellanus Fries and Cortinarius speciosissimus. Experientia 41:769–771

    CAS  Google Scholar 

  • Baumann KH, Zanotti G, Faulstich H (1994) A β-turn in α-amanitin is the most important structural feature for binding to RNA polymerase II and three monoclonal antibodies. Protein Sci 3:750–756

    PubMed  CAS  Google Scholar 

  • Beutler JA, DerMarderosian AH (1981) Chemical variation in Amanita. J Nat Prod (Lloydia) 44:422–431.

    CAS  Google Scholar 

  • Bowden K, Drysdale AC, Mogey GA (1965) Constituents of Amanita muscaria. Nature (Lond) 206:1959–1960

    Google Scholar 

  • Brehm L, Hjeds H, Krogsgaard-Larsen (1972) The structure of muscimol, a GABA analogŭe of restricted conformation. Arch Chem Scand 26:1298–1299

    CAS  Google Scholar 

  • Bresinsky A, Besl H (1985) Giftpilze. Wissenschaftl Verlagsges, Stuttgart

    Google Scholar 

  • Cantin D, Richard JM, Alany J (1989) Chromatographic behaviour and determination of orellanine, a toxin from the mushroom Cortinarius orellanus. J Chromatogr 478: 232–237

    Google Scholar 

  • De Feudis FV (1980) Binding studies with muscimol: relation to synaptic y-aminobutyrate receptors. Neurosciences 5:675–688

    Google Scholar 

  • Dehmlow WV, Schulz HJ (1985) Synthesis of orellanine, the lethal poison of a toadstool. Tetrahedron Lett 26: 4903–4906

    CAS  Google Scholar 

  • Dehmlow WV, Schulz HJ (1987) Das Pilztoxin Orellanin. Liebigs Ann Chem 1987:857–861

    Google Scholar 

  • Eugster CH (1956) Zur Konstitution des Muscarins. 3. Mitt Helv Chim Acta 39:1023–1037

    CAS  Google Scholar 

  • Eugster CH (1957) Isolierung von Muscarin aus Inocybe patouillardi (Bres.). Helv Chim Acta 40:884–887

    Google Scholar 

  • Eugster CH (1969) Chemie der Wirkstoffe aus dem Fliegenpilz Amanita muscaria. Fortschr Chem Org Naturstoffe 27:267–321

    Google Scholar 

  • Eugster CH, Waser PG (1951) Zur Kenntnis des Muscarins. Experientia 10:298–300

    Google Scholar 

  • Faulstich H (1980) The amatoxins. Prog Mol Subcell Biol 7:88–134

    CAS  Google Scholar 

  • Faulstich H, Wieland T (1994) Mushroom poisons. In: Keeler RF, Tu AT (eds) Handbook of natural toxins, vol 7. Marcel Dekker, New York, pp 208–215

    Google Scholar 

  • Faulstich H, Weckauf-Bloching M (1974) Isolation and toxicity of two cytolytic glycoproteins from Amanita phalloides mushrooms. Hoppe-Seyler’s Z Physiol Chem 355:1489–1494

    PubMed  CAS  Google Scholar 

  • Faulstich H, Wieland T, Walli AK, Birkmann K (1974) Antamamide protects hepatocytes from phalloidin destruction. Hoppe-Seyler’s Z Physiol Chem 355: 1162–1163

    PubMed  CAS  Google Scholar 

  • Faulstich H, Wieland T, Schimassek H, Walli AK, Ehler N (1977) Membrane alterations as basis of liver injury. Falk Symp no 22, MTP Press, Lancaster, pp 301–309

    Google Scholar 

  • Faulstich H, Jahn W, Wieland T (1980a) Silybin inhibition of amatoxin uptake in the perfused rat liver. Arzneim Forsch (Drug Res) 30:452–454

    CAS  Google Scholar 

  • Faulstich H, Kommerell B, Wieland T (1980b) Amanita toxins and poisoning. Witzstrock, Baden-Baden

    Google Scholar 

  • Faulstich H, Buku A, BodenmÜller H, Wieland T (1980c) Virotoxins: actin-binding cyclic peptides of Amanita virosa mushrooms. Biochemistry 19:334–343

    Google Scholar 

  • Faulstich H, Zobeley S, Trischmann H (1982) A rapid radioimmunoassay using a nylon support for amatoxins from Amanita mushrooms. Toxicon 20:913–924

    PubMed  CAS  Google Scholar 

  • Faulstich H, BÜhring HJ, Seitz J (1983) Physical properties and function of phallolysin. Biochemistry 22:4574–4580

    PubMed  CAS  Google Scholar 

  • Fiume L (1965) Mechanism of action of phalloidin. Lancet II 1284–1284

    Google Scholar 

  • Flammer R (1982) Das Orellanus-Syndrom: Pilzvergiftung mit Niereninsuffizienz. Schweiz Med Wochenschr 112: 1181–1184

    PubMed  CAS  Google Scholar 

  • Flammer R (1985) Das Paxillussyndrom: Immunhämolyse nach wiederholtem Pilzgenuß. Schweiz Rundschau Med (Praxis) 74:997–999

    CAS  Google Scholar 

  • Flammer R, Horak E (1983) Giftpilze-Pilzgifte. Kosmos, Stuttgart

    Google Scholar 

  • Ford WW (1909) The distribution of poisons in mushrooms. Science 30:87–108

    Google Scholar 

  • Francis J, Murray VSG (1983) Review of enquiries made to the NPIS concerning Psilocybe mushroom ingestion 1978–1981. Human Toxicol 3:349–352

    Google Scholar 

  • Frank IC, Cummins L (1987) Amanita poisoning treated with endoscopic biliary diversion. J Emerg Nurs 13: 132–136

    PubMed  CAS  Google Scholar 

  • Franke S, Freimuth U, List PH (1967) Über die Giftigkeit der FrÜhjahrslorchel Gyromitra (Helvetia) esculenta. Arch Toxicol 22:293–332

    CAS  Google Scholar 

  • Frimmer M, Petzinger E, Rufeger V, Veil LB (1977) The role of bile acids in phalloidin poisoning. Naunyn-Schmiedeberg’s Arch Pharmacol 301:145–147

    CAS  Google Scholar 

  • Gérault A (1981) Intoxication collective type orellanien provoquée par Cortinarius splendens R. Hy. Bull Soc Myc Fr 97:67–72

    Google Scholar 

  • Gore MC, Jordan PM (1982) Microbore single column analysis of pharmacologically active alkaloids from the fly agaric Amanita muscaria. J Chromatogr 243:323–328

    CAS  Google Scholar 

  • Gosselin RE, Smith RP, Hodge MC (1984) Mushroom Toxins. In: Gosselin RE (ed) Clinical toxicology of commercial products: acute poisoning, 5th edn. William and Wilkins, Baltimore, pp 289–309

    Google Scholar 

  • Göth HAR, Gagneux C, Eugster CH, Schmid H (1967) 2(3H)-oxazolone durch Photoumlagerung von 3-Hydroxyoxazolen. Synthese von Muscazon. Helv Chim Acta 50:137–142

    Google Scholar 

  • Gstraunthaler G, Prast H (1983) The effect of 2,2′ and 4,4′-dipyridyl on renal epithelial cell cultures. Sydowia 34:53–58

    Google Scholar 

  • Grzymala S (1957) Massenvergiftung durch den orangefuchsigen Hautkopf. Z Pilzkd 23:139–142

    Google Scholar 

  • Grzymala S (1962) L’isolement de l’Orellanine poison du Cortinarius orellanus Fries et l’etude de ses effets anatomo-pathologiques. Bull Trimest Soc Mycol Fr 78: 394–404

    Google Scholar 

  • Haines JH, Lichstein E, Glickerman D (1985) A fatal poisoning from an amatoxin-containing Lepiota. Myco-pathologia 93:15–17

    Google Scholar 

  • Hatfield GM, Schaumberg JP (1975) Isolation and structural studies of coprine, the disulfiram-like constituent of Coprinus atramentarius. Lloydia 38:489–496

    PubMed  CAS  Google Scholar 

  • Hatfield GM, Waldes LJ, Smith AH (1978) The occurrence of psilocybin in Gymnopilus species. Lloydia 41:140–144

    PubMed  CAS  Google Scholar 

  • Heim R (1978) Les champignons toxique et hallucinogènes, 2nd edn. Boubee, Paris

    Google Scholar 

  • Heim R, Hofmann A (1958) Isolement de la psilocybin à partir de Stropharia cubensis Earle et d’autres espèces de champignons hallucinogènes mexicains appartement un genre Psilocybe. CR Acad Sci 247:557–564

    Google Scholar 

  • Heim R, Hofmann A, Tscherter F (1966) Sur un intoxication collective, une syndrome psilocybien causée en France par un Copelaudia. CR Acad Sci 262:519–523

    CAS  Google Scholar 

  • Heufler C, Feldmayer G, Prast H (1987) Investigations on the mode of action of the fungus toxin orellanine on renal cell cultures. Agents Actions 21:203–208

    PubMed  CAS  Google Scholar 

  • Hofmann A, Frey A, Ott H, Petrzilka T, Troxler F (1958) Konstitutionsaufklärung und Synthese von Psilocybin. Experientia 14:397–399

    PubMed  CAS  Google Scholar 

  • Hofmann A, Heim R, Brack A, Kobel A, Frey H, Ott H, Petrzilka T, Troxler F (1959) Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen (Psilocybe). Helv Chim Acta 42:1557–1572

    CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature (Lond) 347:44–49

    CAS  Google Scholar 

  • Hulmi SP, Sipponen P, Forsström J, Vilska J (1974) Seitik-kisienen aiheuttama vakava munuais-vaurio (Mushroom poisoning caused by Cortinarius speciosissimus. A report of four cases). Duodecim Helsinki 90:1044–1050

    CAS  Google Scholar 

  • Jahn W, Faulstich H, Deboben A, Wieland T (1980) Formation of actin clusters in rat liver parenchymal cells on phalloidin poisoning as visualized by a fluorescent phallotoxin. Z Naturforsch 35c:467–469

    CAS  Google Scholar 

  • Johnson BC, Preston JF (1980) α-Amanitin resistant RNA polymerase II from carpophores of Amanita species accumulating amatoxins. Biochim Biophys Acta 607: 102–114

    PubMed  CAS  Google Scholar 

  • Keller-Dilitz H, Moser M, Ammirati JH (1985) Orellanine and other fluorescent compounds in the genus Cortinarius section orellani Mycologia 77:667–673

    CAS  Google Scholar 

  • Kessler H, Wein T (1991) Solution structure of phalloidin obtained by NMR spectroscopy in D6 DMSO and molecular dynamics calculation in vacuo and in water. Liebigs Ann Chem 1991:174–184

    Google Scholar 

  • Kessler H, Haupt A, Will M (1989) Design of conformationally restricted cyclopeptides for the inhibition of cholate uptake of hepatocytes. In: Perun JT, Propst CL (eds) Computer-aided drug design. Methods and applications. Marcel Dekker, New York, pp 461–483

    Google Scholar 

  • Klan J, Baudinowa D (1993) Early diagnosis of renal damage by orellanine by elevated level of N-acetyl-a-D-glucosaminidase in urine. Czech Mycol 47:65–72

    Google Scholar 

  • Kobert R (1891) Über Pilzvergiftung. St. Petersburger Med Wochenschr 16:463–471

    Google Scholar 

  • Kobert R (1893) Phallin. In: Lehrbuch der Intoxikationen. Enke, Stuttgart, 457 ff

    Google Scholar 

  • Kögl F, Duesberg H, Erxleben H (1931) Über Muscarin I. Liebigs Ann Chem 489:156–192

    Google Scholar 

  • Kögl F, Salemink CA, Schouten H, Jellinek F (1957) Über Muscarin III. Trav Pays-Bas 76:109–127

    Google Scholar 

  • Kröncke KD, Fricker G, Meier PJ, Gerok W, Wieland T, Kurz G (1986) Alpha-amanitin uptake into hepatocytes. J Biol Chem 27:2562–2567

    Google Scholar 

  • KÜrnsteiner H, Moser M (1981) Isolation of a lethal toxin from Cortinarius orellanus Fr. Mycopathologia 74: 65–72

    PubMed  Google Scholar 

  • Laatsch H, Matthies L (1991) Fluorescent compounds in Cortinarius speciosissimus: investigation for the presence of cortinarins. Mycologia 83:492–500

    CAS  Google Scholar 

  • Lefévre H (1982) Immunhämolytische Anämie nach Genuß des Kahlen Kremplings (Paxillus involutus). Dtsch Med Wochenschr 107:1374–1374

    Google Scholar 

  • Leung AY, Paul AG (1968) Baeocystin, a monomethyl analog of psilocybin from Psilocybe baeocystis saprophytic culture. J Pharm Sci 57:1667–1671

    PubMed  CAS  Google Scholar 

  • Lindberg P, Bergman R, Wickberg B (1975) Isolation and structure of coprine, a novel physiologically active cyclopropane derivative from Coprinus atramentarius and its synthesis via 1-amino-cyclo-propanol. J Chem Soc Chem Commun 1975:946–947

    Google Scholar 

  • Lindell TI, Weinberg F, Morris PW, Roeder RG, Rutter WJ (1970) Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 170:447–449

    PubMed  CAS  Google Scholar 

  • List PH, Luft P (1968) Gyromitrin, das Gift der FrÜhjahrslorchel. Arch Pharm 301:294–305

    CAS  Google Scholar 

  • List PH, Luft P (1969) Nachweis und Gehaltsbestimmung von Gyromitrin in frischen Lorcheln. Arch Pharm 301: 143–146

    Google Scholar 

  • Litten W (1975) The most poisonous mushrooms. Science 232:90–101

    CAS  Google Scholar 

  • Lorenz M, Popp D, Holmes KC (1993) Refinement of the F-actin model against X-ray fiber diffraction data by the use of directed mutation algorithm. J Mol Biol 234: 826–836

    PubMed  CAS  Google Scholar 

  • Lund W (1979) Estimation of muscimol and ibotenic acid in Amanita muscaria using high performance liquid chromatography. Arch Pharm Chem Sci Ed 7:115–118

    CAS  Google Scholar 

  • Lynen F, Wieland U (1938) Über die Giftstoffe des Knollenblätterpilzes IV. Kristallisation von Phalloidin. Liebigs Ann Chem 533:93–117

    Google Scholar 

  • Matschinsky F, Meyer U, Wieland O (1960) Die Wirkung des Knollenblätterpilzgiftes Phalloidin auf die isolierte Rattenleber. Biochem Z 333:48–61

    CAS  Google Scholar 

  • Matthies L, Laatsch H (1991) Cortinarins in Cortinarius speciosissimus: a critical revision. Experientia 47: 634–640

    PubMed  CAS  Google Scholar 

  • Matthies L, Laatsch H, Paetzold W (1991) Fluorescent constituents of Cortinarius rubellus CKE. Steroids, not nephrotoxic cyclopepcdes. Z Mykol 50:273–280

    Google Scholar 

  • Meixner A (1979) Amatoxinnachweis in Pilzen. Z Mykol 45:137–146

    CAS  Google Scholar 

  • Miller F, Wieland O (1967) Elektronenmikroskopische Untersuchungen der Leber von Maus und Ratte bei akuter Phalloidinvergiftung. Virchow’s Arch Pathol Anat 343:83–99

    Google Scholar 

  • Möttönen M, Nieminen L, Heikkilae H (1975) Damage caused by two Finnish mushrooms Cortinarius speciosissimus and C. gentiles on the rat kidney. Z Naturforsch 30c:668–679

    Google Scholar 

  • MÜller GFR, Eugster CH (1965) Muscimol ein pharmako-dynamischer Stoff aus Amanita muscaria. Helv Chim Acta 48:910–926

    Google Scholar 

  • Mullersman JE, Preston JF (1982) A microassay for phal-lotoxins: quantification of phallotoxins in Amanita species. Ann Biochem 119:266–273

    CAS  Google Scholar 

  • Munekata E, Faulstich H, Wieland T (1977) Über die Inhaltsstoffe des grÜnen Knollenblätterpilzes LUI. Totalsynthese von Phalloin und Leu7-phalloidin. Liebigs Ann Chem 1977:1758–1765

    Google Scholar 

  • Ohta T, Nakajima S, Hasanaka S-I, Yamamoto M, Shinmen Y, Nishimura C, Yamaizumi S, Nozoe S (1987) A chlorohydrin amino acid from Amanita abrupta. Phytochemistry 26:565–566

    CAS  Google Scholar 

  • Patel DJ, Tonelli AE, Pfaender P, Faulstich H, Wieland T (1973) Experimental and calculated conformational characteristics of the bicyclic heptapeptide phalloidin. J Mol Biol 79:185–196

    PubMed  CAS  Google Scholar 

  • Petzinger E, Burckhardt J, Schrank M, Faulstich H (1982) Lack of intestinal transport of 3H-demethylphalloin: comparative studies with phallotoxins and bile acids on isolated small intestinal cells and ileal brush borders. Naunyn-Schmiedeberg’s Arch Pharmacol 320:196–260

    CAS  Google Scholar 

  • Piqueras J (1984) Intoxicacion de tipo ciclopeptidico (Faloidina) producida por pequenas Lepiotas. Bull Sec Catalana Micol 8:33–37

    Google Scholar 

  • Prast H, Pfaller WER (1988) Toxic properties of the mushroom Cortinarius orellanus (Fries). II. Impairment of renal functions in rats. Arch Toxicol 62:89–96

    PubMed  CAS  Google Scholar 

  • Prast H, Pfaller WER, Moser M (1985) Toxic properties of the mushroom Cortinarius orellanus (Fries). I. Chemical chracterization of the main toxin of Cortinarius orellanus (Fries) and Cortinarius speciosissimus (KÜhn & Romagn) and acute toxicity in mice. Arch Toxicol 62:81–88

    Google Scholar 

  • Preston JF, Starke HJ, Kombrough JW (1975) Quantitation of amanitins in Amanita verna with calf thymus RNA polymerase B. Lloydia 38:153–161

    PubMed  CAS  Google Scholar 

  • Puchinger H, Wieland T (1969) Suche nach einem Metaboliten bei Vergiftung mit Desmethylphalloin (DMP). Eur J Biochem 11:1–6

    PubMed  CAS  Google Scholar 

  • Pyysalo H (1975) Some new toxic compounds in false morels Gyromitra esculenta. Naturwissenschaftan 62: 395–395

    CAS  Google Scholar 

  • Pyysalo H, Niskanan A (1977) Occurrence of N-methyl-N-formyl-hydrazones in fresh and processed false morel. J Agric Food Chem 25:644–647

    PubMed  CAS  Google Scholar 

  • Raab HA (1932) Beiträge zur Kenntnis des Giftstoffs der Knollenblätterpilze. Hoppe-Seyler’s Z Physiol Chem 207:157–181

    CAS  Google Scholar 

  • Rapior S, Delpech N, Andary C, Huchard G (1989) Intoxication by Cortinarius orellanus: detection and assay of orellanine in biological fluids and renal biopsies. Mycopathologia 108:155–161

    PubMed  CAS  Google Scholar 

  • Reichert A, Heintz D, Voelter W, Mihelic M, Faulstich H (1994) Polymerization of actin from thymosin β4 complex initiated by the addition of actin nuclei, nuclei-stabilizing agents and myosin SI. FEBS Lett 347: 247–250

    PubMed  CAS  Google Scholar 

  • Richard JM, Taillandier G, Benoit-Guyod JL (1985) A quantitative structure-activity relationship study on substituted pyridines as a contribution to the knowledge of the toxic effects of orellanine, a toxin from the mushroom Cortinarius orellanus. Toxicon 23:815–824

    PubMed  CAS  Google Scholar 

  • Richard JM, Ravanel P, Cantin D (1987) Phytotoxicity of orellanine, a mushroom toxin. Toxicon 25:350–354

    PubMed  CAS  Google Scholar 

  • Richard JM, Creppy EE, Benoit-Guyod JL, Dirheimer G (1991) Orellanine inhibits protein synthesis in Madin-Darby canine kidney cells and in rat liver mitochondria, an in vitro indication for its activation prior to in-vitro inhibition. Toxicology 67:53–62

    PubMed  CAS  Google Scholar 

  • Roeder RG, Rutter WJ (1969) Multiple forms of DNA dependent RNA polymerase in eukaryotic organisms. Nature (Lond) 224:234–237

    CAS  Google Scholar 

  • Rumack BH, Salzman E (1978) Mushroom poisoning and treatment. CRC Press, West Palm Beach

    Google Scholar 

  • Sanz P, Reig R, Piqueras J, Marti G, Corbella J (1989) Fatal mushroom poisoning in Barcelona, 1986–1988. Mycopathologia 108:207–209

    PubMed  CAS  Google Scholar 

  • Schmiedeberg O, Koppe R (1869) Das Muscarin, das giftige Alkaloid des Fliegenpilzes. Vogel FCW (ed) Leipzig, 111 pp

    Google Scholar 

  • Schulz-Weddingen I (1986) Eine Intoxication mit Lepiota brunneoin carnata in Nordwestdeutschland. Z Mykol 52:91–110

    Google Scholar 

  • Schumacher T, Hoiland K (1983) Mushroom poisoning caused by species of the genus Cortinarius (Fries). Arch Toxicol 53:87–106

    PubMed  CAS  Google Scholar 

  • Schwartz RH, Smith DE (1988) Hallucinogenic mushrooms. Clin Pediatr 27:70–73

    CAS  Google Scholar 

  • Seeger R, Scharrer H, Haupt M (1973) Phallolysin, ein hoch molekulares Toxin aus Amanita phalloides. Ex-perientia 29:829–829

    CAS  Google Scholar 

  • Stamets P (1978) Psilocybe mushrooms and their allies. Homestead Book Company, Seattle

    Google Scholar 

  • Stijve T (1978) Ethylene gyromitrin and N-methyl-N-formyl hydrazine in commercially available dried false morels. Mitt Geb Lebensmittelunters Hyg 69:492–504

    CAS  Google Scholar 

  • Stijve T (1981) High performance thin layer chromatographic determination of the toxic principles of some poisonous mushrooms. Mitt Geb Lebensmittelunters Hyg 72:44–54

    CAS  Google Scholar 

  • Stirpe F, Fiume L (1967) Studies on the pathogenesis of liver necrosis by a-amanitin, effect of α-amanitin on ribonucleic acid synthesis and on ribonucleic acid polymerase in mouse liver nuclei. Biochem J 105:779–782

    PubMed  CAS  Google Scholar 

  • Takemoto T, Nakajima T (1964) Constitutents of indigenous fungi I. Isolation of the insecticidal constituent from Tricholoma muscarium. Yakugaku Zasshi 84: 1183–1186

    PubMed  CAS  Google Scholar 

  • Takemoto T, Nakajima T, Sakuma R (1964) Isolation of a flycidal constituent “ibotenic acid” from Amanita muscaria, A. pantherina. Yakugaku Zasshi 84:1232–1233

    PubMed  CAS  Google Scholar 

  • Tebbett IR, Caddy B (1984) Mushroom toxins of the genus Cortinarius. Experientia 40–441–446

    Google Scholar 

  • Toth B, Raha CR (1987) Carcinogenesis by pentanal methylformylhydrazone of Gyromitra esculenta in mice. Mycopathologia 98:83–89

    PubMed  CAS  Google Scholar 

  • Tyler VE Jr (1961) Indole derivatives in certain North American mushrooms. Lloydia 24:71–74

    CAS  Google Scholar 

  • Tyler VE Jr, Gröger D (1964) Amanita alkaloids II. Amanita carina and A. porphyria. Planta Med 12: 397–402

    CAS  Google Scholar 

  • Vergeer PP (1983) Poisonous fungi: mushrooms. In: Howard HDH, Howard LT (eds) Fungi pathogenic for humans and animals part B. Marcel Dekker, New York, pp 374–412

    Google Scholar 

  • Vogel G, Trost W, Mengs U (1977) Counteraction of a-amanitin induced kidney damage in rats by Silymarin. Naunyn-Schmiedeberg’s Arch Pharhmacol 297:R19

    Google Scholar 

  • Vogel G, Tuchweber G, Trost W, Mengs U (1984) Protection by silybinin against Amanilta phalloides intoxication in beagles. Toxicol Appl Pharmacol 73:355–362

    PubMed  CAS  Google Scholar 

  • Waser PG (1961) Chemistry and pharmacology of muscarine, muscazone and some related compounds. Pharmacol Rev 13:465–506

    PubMed  CAS  Google Scholar 

  • Wasson VP, Wasson RG (1957) Mushrooms, Russia and History, vols 1 and 2. Pantheon Books, New York

    Google Scholar 

  • Weiss E, Sterz I, Frimmer M, Kroker R (1973) Electron microscopy of isolated rat hepatocytes before and after treatment with phalloidin. Beitr Pathol 150:345–356

    PubMed  CAS  Google Scholar 

  • Wieland H, Hallermayer R (1941) Über die Giftstoffe des Knollenblätterpilzes VI. Amanitin, das Hauptgift des Knollenblätterpilzes. Liebigs Ann Chem 548:1–18

    CAS  Google Scholar 

  • Wieland T (1967) The toxic peptides of Amanita phalloides. In: Zechmeister L (ed) Progr Chem of Org Natl Prod, vol 25. Springer, Vienna, pp 214–250

    Google Scholar 

  • Wieland T (1968) Poisonous principles of mushrooms of the genus Amanita. Science 159:946–952

    PubMed  CAS  Google Scholar 

  • Wieland T (1977) Modification of actins by phalloidin. Naturwissenschaften 64:303–307

    PubMed  CAS  Google Scholar 

  • Wieland T (1986) Peptides of poisonous Amanita mushrooms. In: Rich A (ed) Springer, Berlin Heidelberg New York, p 256

    Google Scholar 

  • Wieland T (1987) 50 Jahre Phalloidin. Naturwissenschaften 74:367–373

    PubMed  CAS  Google Scholar 

  • Wieland T, Faulstich H (1978) Amatoxins, phallotoxins, phallolysin and antamanide, the biologically active compounds of poisonous Amanita mushrooms. Crit Rev Biochem 5:185–260

    CAS  Google Scholar 

  • Wieland T, Faulstich H (1983) Peptide toxins from Amanita. In: Keeler RF, Tu AT (eds) Handbook of natural toxins, vol I. Marcel Dekker, New York, pp 585–635

    Google Scholar 

  • Wieland T, Faulstich H (1991) Fifty years of amanitin. Experientia 47:1186–1193

    PubMed  CAS  Google Scholar 

  • Wieland T, Schnabel HW (1962) Über die Giftstoffe des grÜnen Knollenblätterpilzes XXI. Die Konstitution des Phallacidins. Liebigs Ann Chem 657:218–225

    CAS  Google Scholar 

  • Wieland T, Schön W (1955) Über die Giftstoffe des grÜnen Knollenblätterpilzes X. Die Konstitution des Phalloi-dins. Liebigs Ann Chem 593:157–178

    CAS  Google Scholar 

  • Wieland T, Wieland O (1959) Chemistry and toxicology of the toxins of Amanita phalloides. Pharmacol Rev 11: 87–107

    PubMed  CAS  Google Scholar 

  • Wieland T, Wieland O (1971) The toxic peptides of Amanita species. In: Kadis S, Ciegler A, Ajl SJ (eds) Microbial toxins, vol 8. Academic Press, New York, pp 249–279

    Google Scholar 

  • Wieland T, Wirth L, Fischer E (1949) Über die Giftstoffe des Knollenblätterpilzes VII. β-Amanitin, eine dritte Komponente des Knollenblätterpilzgiftes. Liebigs Ann Chem 564:152–160

    CAS  Google Scholar 

  • Wieland T, Motzel W, Merz H (1953) Über das Vorkommen von Bufotenin im gelben Knollenblätterpilz. Liebigs Ann Chem 581:1–16

    Google Scholar 

  • Wieland T, LÜben G, Ottenheym H, Faesel J, de Vries JX, Konz W, Prox A, Schmid J (1968) Über die Inhaltsstoffe des grÜnen Knollenblätterpilzes XXXVI. Antamanid. Seine Entdeckung, Isolierung, Strukturaufklärung und Synthese. Angew Chem 80:209–213.

    Google Scholar 

  • Wieland T, LÜben G, Ottenheym H, Faesel J, de Vries JX, Konz W, Prox A, Schmid J (1968) Über die Inhaltsstoffe des grÜnen Knollenblätterpilzes XXXVI. Antamanid. Seine Entdeckung, Isolierung, Strukturaufklärung und Synthese. Angew Chem Int Ed Engl 7:204–208

    PubMed  CAS  Google Scholar 

  • Wieland T, Nassal M, Kramer W, Fricker G, Bickel U, Kurz G (1984) Identify of hepatic membrane transport systems for bile salts, phalloidin and antamanide by photoaffinity labeling. Proc Natl Acad Sci USA 81: 5232–5236

    PubMed  CAS  Google Scholar 

  • Winkelmann M, Borchard F, Stangel W, Grabensee B (1982) Tödlich verlaufene immunhämolytische Anämie nach Genuß des Kahlen Kremplings (Paxillus involutus). Dtsch Med Wochenschr 107:1190–1194

    PubMed  CAS  Google Scholar 

  • Wisemann IS, Abeles RH (1979) Mechanism of inhibition of aldehyde dehydrogenase by cyclopropanone hydrate and the mushroom toxin coprine. Biochemistry 18: 427–435

    Google Scholar 

  • Yamaura Y, Fukuhara M, Takabatake E, Oto N, Hashimoto T (1986) Hepatotoxic action of a poisonous mushroom Amanita abrupta in mice and its toxic component. Toxicology 38:161–173

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wieland, T. (1996). Toxins and Psychoactive Compounds from Mushrooms. In: Howard, D.H., Miller, J.D. (eds) Human and Animal Relationships. The Mycota, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10373-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10373-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10375-3

  • Online ISBN: 978-3-662-10373-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics