Skip to main content

Analytical strategies for arsenic speciation in environmental and biological samples

  • Chapter
Organic Metal and Metalloid Species in the Environment

Abstract

Arsenic as a metalloid has a rich inorganic and organic chemistry, because of the bond strength to sulfur and carbon. It occurs mainly in two different valencies: +III and +V. The standard redox potential for the inorganic arsenic oxo-compounds (As(III) / As(V)) is moderate (E° = +0.57 V) and can therefore easily be interchanged in the natural environment. The inorganic oxo-compounds As2O3 in solution as As(OH)3 and As2O5 as H3AsO4 are very soluble in water in contrast to arsenic-sulfur species As2S3, AsS, etc. This indicates that it is more important to focus on the oxides and their hydrolyzed counterparts than the sulfide species, if biogeochemical processes are studied. However, they might be important in sulfide-rich environments, in which arsenic can form sulfide-containing compounds. The sulfide replaces the oxide in their oxoanions for instance in thioarsenate (H3AsO3S). This is an understudied area and only few papers have ever covered this area (Schwedt and Rieckhoff 1996). In contrast to the other members of the group 15 in the Periodic Table of the Elements arsenic does not form oligoanions or polymers like phosphorous or the more metallic antimony. Halogenated arsenic compounds such as AsC13 might exist in the environment (Mester and Sturgeon 2002), but tend to hydrolyse quickly to their oxide, while arsine (AsH3) seems to occur in small concentrations as a metabolite of microorganisms (Cullen and Reimer 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Abedin MJ, Cresser M, Meharg AA, Feldmann J, Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice ( Oryza sativa L. ). Environ Sci Technol 36: 962–968

    Google Scholar 

  • Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157: 33–38

    Article  CAS  Google Scholar 

  • Bartram ME (2001) GC/MS analyses of chemical vapor deposition precursors. Anal Chem 73: 534A - 539A

    Article  CAS  Google Scholar 

  • Challenger FE (1945) Biological methylation. Chem Rev 36: 315–361

    Article  CAS  Google Scholar 

  • Chen J, Zhou LM, Qu GL (2001) Derivatization by toluol-3,4-dithiol for arsenic speciation and gas chromatographic analysis. Chin J Anal Chem 29: 1276–1279

    CAS  Google Scholar 

  • Chen ZL, Lin JM, Naidu R (2003) Separation of arsenic species by capillary electrophoresis with sample-stacking techniques. Anal Bioanal Chem 375: 679–684

    CAS  Google Scholar 

  • Clamagirand V, Man- IL, Wardell JL (1993) Ethylation of methylarsenic(III) compounds by sodium tetraethylborate. Appl Organmet Chem 7: 577–581

    Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89: 713764

    Google Scholar 

  • Dean JR, Ebdon L, Foulkes, ME, Crews, HM, Massey RC (1994) Determination of the growth promoter, 4-hydroxy-3-nitrophenyl-arsonic acid in chicken tissue by coupled high-performance liquid-chromatography inductively-coupled plasma-mass spectrometry. J Anal At Spectrom 9: 615–618

    Article  CAS  Google Scholar 

  • Devalla S, Raab A, Feldmann J (2002) unpublished data

    Google Scholar 

  • Drugov YS (1998) Gas chromatography of inorganic substances. J Anal At Spectrom 53: 606–620

    CAS  Google Scholar 

  • Edmonds JS, Francesconi KA, Hansen JA (1982) Dimethyloxarsylethanol from anaerobic decomposition of brown kelp Ecklonia radiata: a likely precursor of arsenobetaine in marine fauna. Experientia 38: 643–644

    Article  CAS  Google Scholar 

  • Feldmann J, Koch I, Cullen WR (1998) Complementary use of capillary gas chromatography-mass spectrometry (ion trap) and gas chromatography-inductively coupled plasma mass spectrometry for the speciation of volatile antimony, tin and bismuth compounds in landfill and fermentation gases. Analyst 123: 815–820

    Article  CAS  Google Scholar 

  • Feldmann J, Naëls L, Haas K (2001) Cryotrapping of CO2-rich atmospheres for the analysis of volatile metal compounds using capillary GC-ICP-MS. J Anal At Spectrom 16: 1040–1043

    Article  CAS  Google Scholar 

  • Francesconi K, Khokiattiwong S, Goessler W, Pedersen SN, Pavkov, M (2000) A new arsenobetaine from marine organisms identified by liquid chromatography-mass spectrometry. Chem Comm 12: 1083–1084

    Article  Google Scholar 

  • Francesconi KA, Tanggaard R, McKenzie CJ, Goessler W (2001) Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem 48: 92–101

    Google Scholar 

  • Geiszinger A, Goessler W, Kosmus (2002) Organoarsenic compounds in plants and soil on top of an ore vein. Appl Organmet Chem 16: 245–249

    Article  CAS  Google Scholar 

  • Grüter UM, Kresimon J Hirner AV (2000) A new HG/LT-GC/ICP-MS multi-element speciation technique for real samples in different matrices. Fresenius J Anal Chem 368: 67–72

    Article  Google Scholar 

  • Haas K, Feldmann J (2000) Sampling of trace volatile metal(loid) compounds in ambient air using polymer bags: A convenient method. Anal Chem 72: 4205–4211

    Google Scholar 

  • Haas K, Feldmann J (2002) unpublished data

    Google Scholar 

  • Hanaoka K, Goessler W, Yoshida K, Fujitaka Y, Kaise T, Irgolic KJ (1999) Arsenocholineand dimethylated arsenic-containing lipids in starspotted shark Mustelus manazo. Appl Organomet Chem 13: 765–770

    Article  CAS  Google Scholar 

  • Hirner AV, Feldmann J, Krupp E, Grumping R, Goguel R, Cullen WR (1998) Metal(loid)organic compounds in geothermal gases and waters. Org Geochem 29: 1765–1778

    Article  CAS  Google Scholar 

  • Jackson BP, Bertsch PM, Cabrera ML, Camberato JJ, Seaman JC, Wood CW (2003) Trace element speciation in poultry litter. J Environ Qual 32: 535–540

    CAS  Google Scholar 

  • Jenkins RO, Craig PJ, Miller DP, Stoop LCAM, Ostah N, Morris TA (1998) Antimony biomethylation by mixed cultures of micro-organisms under anaerobic conditions. Appl Organomet Chem 12: 449–455

    Article  CAS  Google Scholar 

  • Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275: 33404–33408

    Article  CAS  Google Scholar 

  • Kaise T, Horiguchi Y, Fukui S (1992a) Acute toxicity and metabolism of arsenocholine in mice. Appl Organomet Chem 6: 369–373

    Article  CAS  Google Scholar 

  • Kaise T, Fukui S (1992b) The chemical form and acute toxicity of arsenic compounds in marine organisms. Appl Organomet Chem 6: 155–160

    Article  CAS  Google Scholar 

  • Kaise T, Oya-Ohta Y, Ochi T, Okubo T, Hanaoka K, lrgolic KJ, Sakurai T, Matsubara C (1996) Toxicological study of organic arsenic compound in marine algae using mammalian cell culture technique. J Food Hyg Soc Jpn 37: 135–141

    Article  Google Scholar 

  • Hansen HR, Raab A, Francesconi KA, Feldmann J (2003) Metabolism of arsenic by sheep chronically exposed to arsenosugars as a normal part of their diet. 1. Quantitative intake, uptake, and excretion. Environ Sci Technol 37: 845–851

    Google Scholar 

  • Koch I, Feldmann J, Lintschinger J, Serves SV, Cullen WR, Reimer KJ (1998) Demethylation of trimethylantimony species in aqueous solution during analysis by hydride generation gas chromatography with AAS and ICP MS detection. Appl Organmet Chem 12: 129–136

    Article  CAS  Google Scholar 

  • Koellensperger G, Nurmi J, Hann S, Stingeder G, Fitz WJ, Wenzel WW (2002) CE-ICPSFMS and HPIC-ICP-SFMS for arsenic speciation in soil solution and soil water extracts. J Anal At Spectrom 17: 1042–1047

    Article  CAS  Google Scholar 

  • Kuehnelt D, Goessler W, Francesconi KA (2002) Workshop Arsenic Speciation September 2002, Gent, Belgium

    Google Scholar 

  • Langdon C, Meharg AA, Feldmann J, Balger T, Charnock J, Farquhar M, Piearce T, Semple K, Cotter-Howells J (2002) Arsenic-speciation in arsenate-resistant and non- resistant populations of the earthworm, Lumbricus rubellus. J Environ Monit 4: 603608

    Google Scholar 

  • Mester Z, Sturgeon RE (2002) Detection of volatile organometal chloride species in model atmosphere above seawater and sediment. Environ Sci Technol 36: 1198–1201

    Article  CAS  Google Scholar 

  • Miguens-Rodriguez M, Pickford R, Thomas-Oates JE, Pergantis SA (2002) Arsenosugar identification in seaweed extracts using high-performance liquid chromatography/electrospray ion trap mass spectrometry. Rapid Comm Mass Spectrom 16: 323–331

    Article  CAS  Google Scholar 

  • Pickford R, Miguens-Rodriguez M, Afzaal S, Speir P, Pergantis SA, Thomas-Oates JE (2002) Application of the high mass accuracy capabilities of FT-ICR-MS and Q-ToFMS to the characterisation of arsenic compounds in complex biological matrices. J Anal At Spectrom 17: 173–176

    Article  CAS  Google Scholar 

  • Prange A, Schaumloffel D, Bratter P, Richarz AN (2001) Species analysis of metallothionein isoforms in human brain cytosols by use of capillary electrophoresis hyphenated to inductively coupled plasma-sector field mass spectrometry. Fresenius J Anal Chem 371: 764–774

    Article  CAS  Google Scholar 

  • Pengprecha P (2002) PhD thesis, University of Aberdeen, Aberdeen, UK

    Google Scholar 

  • Pengprecha P, Raab A, Wilson M, Feldmann J (2003) Biodegradation of arsenosugars in marine sediment. Appl Organmet Chem (submitted)

    Google Scholar 

  • Petrick JS, Jagadish B, Mash EA, Aposhian, HV (2001) Monomethylarsonous acid (MMA(III)) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 14: 651–656

    Article  CAS  Google Scholar 

  • Quaghebeur M, Rengel Z, Smirk M (2003) Arsenic speciation in terrestrial plant material using microwave-assisted extraction, ion chromatography and inductively coupled plasma mass spectrometry. J Anal At Spectrom 18: 124–234

    Article  Google Scholar 

  • Raab A, Hansen HR, Zhuang L, Feldmann J (2002) Arsenic accumulation and speciation analysis in wool from sheep exposed to arsenosugars. Talanta 58: 67–76

    Article  CAS  Google Scholar 

  • Raab A, Genney, DR, Meharg AA, Feldmann J (2003) Identification of arsenic species in sheep-wool extracts by different chromatographic methods. Appl Organomet Chem 17: 684–692

    Article  CAS  Google Scholar 

  • Schwedt G, Rieckhoff M (1996) Separation of thio-and oxothioarsenates by capillary zone electrophoresis and ion chromatography. J Chromatogr A 736: 341–350

    Article  CAS  Google Scholar 

  • Tatken RL, Lewis RJ (eds) (1983) Registry of toxic effects chemical substances. US Department of Health and Human Services, Cincinnati OH.

    Google Scholar 

  • Toyama M, Yamashita M, Hirayama N, Murooka Y (2002) Interactions of arsenic with human metallothionein-2. J Biochem 132: 217–221

    Article  CAS  Google Scholar 

  • Wooten JV, Ashley DL, Calafat AM (2002) Quantitation of 2-chlorovinylarsonous acid in human urine by automated solid-phase microextraction-gas chromatography-mass spectrometry. J Chromatogr B 772: 147–153

    Article  CAS  Google Scholar 

  • Zakharyan RA, Sampayo-Reyes A, Healy SM, Tsaprailis G, Board PG, Liebler DC, Aposhian HV (2001) Human monomethylarsonic acid ( MMA(V)) reductase is a member of the glutathione-S-transferase superfamily. Chem Res Toxicol 14: 10511057

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feldmann, J., Devalla, S., Raab, A., Hansen, H.R. (2004). Analytical strategies for arsenic speciation in environmental and biological samples. In: Hirner, A.V., Emons, H. (eds) Organic Metal and Metalloid Species in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09135-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09135-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05873-8

  • Online ISBN: 978-3-662-09135-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics