Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 283 Accesses

Abstract

The detection of malignant lymph nodes remains a major challenge in spite of the marked improvement in currently available imaging modalities (Van den Brekel and Castelijns 1999). Cross-sectional techniques capable of 3D reconstruction such as computed tomography (CT) and magnetic resonance imaging (MRI) are now in standard use for the radiological staging of nodal status. However in spite of improved technology regarding the speed of image acquisition, spatial resolution, 3D image post-processing and even tissue contrast modulation, their capacity for tissue characterization is limited (Carrington 1998). Integrating other modalities to obtain additional information on e.g. the vascular architecture of the nodes (color Doppler ultrasound), or on metabolic indexes such as glucose uptake [positron emission tomography (PET)] is essential to achieve increased sensitivity and specificity of the pre- and post-treatment nodal work-up of patients with neoplastic disease (Jabour et al. 1993; Moritz et al. 2000). Vast research areas are being explored in the field of MRI on intrinsic tissue parameter measurements and organ-targeted contrast agents (Anzai and Prince 1997; Dooms et al. 1985; Hoffman et al. 2000). The combined anatomical (CT/MR) and metabolic (PET) data provided in a single view through image fusion is being increasingly used, as this technological refinement has been reported to provide enhanced sensitivity and specificity thresholds in malignant lymph node depiction (Wahl et al. 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aassar et al (1999) Metastatic head and neck cancer: role and usefulness of FDG PET in locating occult primary tumors. Radiology 210: 177–181

    CAS  PubMed  Google Scholar 

  • Abdel-Nabi H et al (1998) Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 206: 755–760

    CAS  PubMed  Google Scholar 

  • Adams S et al (1998) Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med 25: 1255–1260

    CAS  PubMed  Google Scholar 

  • Adler L et al (1997) Axillary lymph node metastases: screening with [F-1812-deoxy-2-D-glucose (FDG) PET. Radiology 203: 323–327

    CAS  PubMed  Google Scholar 

  • American Joint Committee on Cancer (1992) Lung. In: Beahrs OH, Henson DE, Hutter RVP et al (eds) Manual for staging cancer, 4th edn. Lippincott, Philadelphia, pp 115–121

    Google Scholar 

  • American Thoracic Society (1983) Medical Section of the American Lung Association. Clinical staging of primary lung cancer. Am Rev Respir Dis 127: 659–664

    Google Scholar 

  • Anzaï Y,Prince MR (1997) Iron-oxide enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. J Magn Reson Imag 7:75–81

    Google Scholar 

  • Avril N et al (1996) Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabelled 2-(fluorine-18)-fluoro-2deoxy-D-glucose. J Natl Cancer Inst 88: 1204–1209

    CAS  PubMed  Google Scholar 

  • Barrington S, Maisey M (1996) Skeletal muscular uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 37: 1127–1129

    CAS  PubMed  Google Scholar 

  • Benchaou M et al (1996) The role of FDG-PET in the preoperative assessment of N-staging in head and neck cancer. Acta Otolaryngol 116: 332–335

    CAS  PubMed  Google Scholar 

  • Block M et al (1997) Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg 64: 770–776

    CAS  PubMed  Google Scholar 

  • Bohuslavizki KH et al (2000) FDG PET detection of unknown primary tumors. J Nucl Med 41: 816–822

    CAS  PubMed  Google Scholar 

  • Braams J et al (1995) Detection of lymph node metastases of squamous-cell cancer of the head and neck with FDG-PET and MRI. J Nucl Med 36: 211–216

    CAS  PubMed  Google Scholar 

  • Brink J (1995) Technical aspects of helical (spiral) CT. Radiol Clin North Am 33: 834–851

    Google Scholar 

  • Brown R, Wahl R (1993) Overexpression of GLUT-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72: 2979–2985

    CAS  PubMed  Google Scholar 

  • Brown R et al (1996) Intratumoral distribution of tritiated FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 37: 1043–1047

    Google Scholar 

  • Burgman P et al (2001) Hypoxia-induced increase in FDG uptake in MCF7 cells. J Nucl Med 42: 170–175

    CAS  PubMed  Google Scholar 

  • Bury T et al (1996) Staging of the mediastinum: value of positron emission tomography imaging in non-small cell lung cancer. Eur Respir J 9: 2560–2564

    CAS  PubMed  Google Scholar 

  • Bustamente E, Pedersen P (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74: 3735–3739

    Google Scholar 

  • Carrington B (1998) Lymph nodes. In: Husband JHS, Reznek RH (eds) Imaging in oncologic. Isis Medical Media, Oxford, pp 729–748

    Google Scholar 

  • Chin R et al (1995) Mediastinal staging of non-small-cell lung cancer with positron emission tomography. Am J Respir Crit Care Med 152: 2090–2096

    PubMed  Google Scholar 

  • Chong VFH et al (1996) MR features of cervical node necrosis in metastatic disease. Clin Radiol 51: 103–109

    CAS  PubMed  Google Scholar 

  • Cline HE et al (1991) 3D surface rendered MR images of the brain and its vasculature. J Comput Assist Tomogr 15:344–351

    Google Scholar 

  • Cremerius U et al (1998) FDG-PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med 39: 815–822

    CAS  PubMed  Google Scholar 

  • Curtin HD et al (1998) Comparison of CT and MR imaging in staging of neck metastases. Radiology 207: 123–130

    CAS  PubMed  Google Scholar 

  • Cymbalista M et al (1999) CT demonstration of the 1996 AJCCUICC regional lymph node classification for lung cancer staging. Radiographics 19: 899–900

    CAS  PubMed  Google Scholar 

  • Delbeke D et al (1999) FDG PET and dual-head gamma camera positron coincidence detection imaging of suspected malignancies and brain disorders. J Nucl Med 40: 110–117

    CAS  PubMed  Google Scholar 

  • Diederichs C et al (2000) Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 20: 109–116

    CAS  PubMed  Google Scholar 

  • Dillon WP, Harnsberger HR (1991) The impact of radiologic imaging on staging of cancer of the head and neck. Semin Oncol 18: 64–79

    CAS  PubMed  Google Scholar 

  • DiMartino E et al (2000) Diagnosis and staging of head and neck caner. Arch Otolaryngol Head Neck Surg 126: 1457–1461

    CAS  Google Scholar 

  • Dolan PA (1963) Tumor calcification following therapy. Am J Ro entgen of 89: 166–174

    CAS  Google Scholar 

  • Dooms GC et al (1985) Characterization of lymphadenopathy by magnetic resonance relaxation times: preliminary results. Radiology 155: 691–697

    CAS  PubMed  Google Scholar 

  • Dorfman RE et al (1991) Upper abdominal lymph nodes: criteria for normal size determined with CT. Radiology180: 319–322

    Google Scholar 

  • Eisenkraft BL, Som PM (1999) The spectrum of benign and malignant etiologies of cervical node calcification. Am J Roentgenol 172: 1433–1437

    CAS  Google Scholar 

  • Flamen P et al (2000) Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol 18: 3202–3210

    CAS  PubMed  Google Scholar 

  • Fuchs T et al (2000) Technical advances in multi-slice spiral CT. Eur J Radiol 36: 69–73

    CAS  PubMed  Google Scholar 

  • Fujimoto Y et al (2000) Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium diethylenetriamine pentaacetic acid. Biol Pharm Bull 23: 97–100

    CAS  PubMed  Google Scholar 

  • Fullbright et al (1994) MR of the head and neck: comparison of fast spin-echo and conventional spin-echo sequences. Am J Neuroradiol 15: 767–773

    Google Scholar 

  • Ghahremani GG, Straus FH (1971) Calcification of distant lymph node metastases from carcinoma of colon. Radiology 99: 65–66

    CAS  PubMed  Google Scholar 

  • Gillams et al (1996) Magnetization transfer contrast MR in lesions of the head and neck. Am J Neuroradiol 17: 355–360

    CAS  PubMed  Google Scholar 

  • Giraud P et al (2001) CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 49: 1249–1257

    CAS  PubMed  Google Scholar 

  • Grégoire V et al (2000) Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol 56: 135–150

    PubMed  Google Scholar 

  • Grossman RI et al (1994) Magnetization transfer: theory and applications in neuroradiology. Radiographics 14: 279–90

    CAS  PubMed  Google Scholar 

  • Guhlmann A et al (1997) Lymph node staging in non-small cell lung cancer: evaluation by [F]FDG positron emission tomography (PET). Thorax 52: 438–441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gussack GS, Hudgins PA (1991) Imaging modalities in recur- rent head and neck tumors. Laryngoscope 101: 119–124

    CAS  PubMed  Google Scholar 

  • Han JK et al (2000) Factors influencing vascular and hepatic enhancement at CT: experimental study on injection protocol using a canine model. J Comput Assist Tomogr 24: 400–406

    CAS  PubMed  Google Scholar 

  • Hanasono MM et al (1999) Uses and limitations of FDG positron emission tomography in patients with head and neck cancer. Laryngoscope 109: 880–885

    CAS  PubMed  Google Scholar 

  • Harika et al (1996) Macromolecular intravenous contrast agent for MR lymphography: characterization and efficacy studies. Radiology 198: 365–370

    CAS  PubMed  Google Scholar 

  • Harris EW et al (1996) Enhanced CT of the neck: improved visualization of lesions with delayed imaging. Am J Roentgenol 167: 1057–1058

    CAS  Google Scholar 

  • Held P, Breit A (1994) MRI and CT of tumors of the pharynx: comparison of two imaging procedures including fast and ultrafast MR sequences. Eur J Radiol 18: 81–89

    CAS  PubMed  Google Scholar 

  • Hennig J et al (1986) RARE-imaging. A fast imaging method for clinical MR. Magn Reson Med 3: 829–833

    Google Scholar 

  • Hoffman HT et al (2000) Functional magnetic resonance imaging using iron oxide particles in characterizing head and neck adenopathy. Laryngoscope 110: 1425–1430

    CAS  PubMed  Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography). Description of system. Br J Radiol 46: 1016–1022

    CAS  PubMed  Google Scholar 

  • Hustinx R et al (2000) Impact of attenuation correction on the accuracy of FDG-PET in patient with abdominal tumors: a free-response ROC analysis. Eur J Nucl Med 27: 1365–1371

    CAS  PubMed  Google Scholar 

  • labour BA et al (1993) Extracranial head and neck: PET imaging with 2-(18)fluoro-2-deoxy-n-glucose and MR imaging correlations. Radiology 186: 27–35

    Google Scholar 

  • Kalender WA et al (1990) Spiral volumetric CT with singlebreath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176: 181–183

    CAS  PubMed  Google Scholar 

  • Kalender WA et al (1994) A comparison of conventional and spiral CT: an experimental study on the detection of spherical lesions. J Comput Assist Tomogr 18: 167–176

    CAS  PubMed  Google Scholar 

  • Klingenbeck-Regn K et al (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31: 110–124

    CAS  PubMed  Google Scholar 

  • Kubota R et al (1992) Intratumoral distribution of fluorine18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33: 1972–1980

    CAS  PubMed  Google Scholar 

  • Laissey JP et al (1994) Enlarged mediastinal lymph nodes in bronchogenic carcinoma: assessment with dynamic contrast-enhanced MR imaging. Radiology 191: 263–267

    Google Scholar 

  • Landoni C et al (1999) Comparison of dual-head coincidence PET versus ring PET in tumor patients. J Nucl Med 40: 1617–1622

    CAS  PubMed  Google Scholar 

  • Langen K et al (1993) The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 34: 355–359

    CAS  PubMed  Google Scholar 

  • Laubenbacher C et al (1995) Comparison of fluorine-18fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med 36: 1747–1757

    CAS  PubMed  Google Scholar 

  • Lebihan D, Turner R (1991) Intravoxel incoherent motion imaging using spin echoes. Magn Reson Med 19: 211–227

    Google Scholar 

  • Lerut T et al (2000) Hitopathologic validation of lymph node staging with FDG-PET scan in cancer of the esophagus and gastroesophageal junction. A prospective study based on primary surgery with extensive lymphadenectomy. Ann Surg 232: 743–752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leung AN (1997) Spiral CT of the thorax in daily practice: optimization of the technique. J Thoracic Imag 12. 2–10

    CAS  Google Scholar 

  • Lonneux M et al (1998) Can dual-headed 18F-FDG SPECT imaging reliably supersede PET in clinical oncology? A comparative study in lung and gastrointestinal tract cancer. Nucl Med Commun 19: 1047–1054

    CAS  PubMed  Google Scholar 

  • Lonneux M et al (1999) Attenuation correction in whole body FDG oncological studies: the role of statistical reconstruction. Eur J Nucl Med 6: 591–598

    Google Scholar 

  • Magnusson M et al (1991) Evaluation of methods for shaded surface display of CT volumes. Comput Med Imaging Graphics 15: 247–256

    CAS  Google Scholar 

  • Mancuso AA et al (1983) Computed tomography of cervical and retropharyngeal lymph nodes: normal anatomy, variants of normal, and application in staging head and neck cancer. Radiology 148: 715–723

    CAS  PubMed  Google Scholar 

  • Martin Wet al (1995) FDG-SPECT: correlation with FDG-PET. J Nucl Med 36: 988–995

    Google Scholar 

  • McLoud TC et al (1992) Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling. Radiology 182: 319–323

    CAS  PubMed  Google Scholar 

  • Mellanen P et al (1994) Expression of glucose transporters in head and neck tumors. Int J Cancer 56: 622–629

    CAS  PubMed  Google Scholar 

  • Misselwitz B et al (1999) Gadoflurorine 8: initial experience with a new contrast medium for interstitial MR lymphography. MAGMA 8: 190–195

    CAS  PubMed  Google Scholar 

  • Mitchell DG (1999) MRI principles. Saunders, Philadelphia Moog F et al (1997) Lymphoma: role of whole-body 2-deoxy2-[F-18]fluoro-D-glucose ( FDG) PET in nodal staging. Radiology 203: 795–800

    Google Scholar 

  • Moog F et al (1998a) 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphoma-tous bone marrow. J Clin Oncol 16:603–609

    Google Scholar 

  • Moog F et al (1998b) Extranodal malignant lymphoma: detec- tion with FDG PET versus CT. Radiology 206: 475–481

    CAS  PubMed  Google Scholar 

  • Moritz JD, Ludwig A, Oestmann JW (2000) Contrast-enhanced color Doppler sonography of enlarged cervical lymph nodes in head and neck tumors. Am J Roentgenol 174: 1279–1284

    CAS  Google Scholar 

  • Mukherji SK et al (2000) The ability of dual camera coincidence tomography 18F fluorodeoxyglucose imaging to differentiate recurrent head and neck SCC from post-treatment changes. The Radiological Society of North America, 88th annual scientific assembly, Chicago, paper 473

    Google Scholar 

  • Myers L et al (1998) Positron emission tomography in the evaluation of the NO neck. Laryngoscope 108: 232–236

    CAS  PubMed  Google Scholar 

  • Naidich DP et al (1999) Computed tomography and magnetic resonance of the thorax. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Nehmeh SA, Ford E, Rosenzweig K et al (2001) Gated positron emission tomography: a technique for reducing lung tumor motion effect. J Nucl Med 42: 34 P

    Google Scholar 

  • Nestle U et al (1999) 18F-deoxyglucose positrom emission tomogrpahy (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597

    Google Scholar 

  • Patz E et al (1995) Thoracic nodal staging with PET imaging with 18FDG in patients with bronchogenic carcinoma. Chest 108: 1617–1621

    PubMed  Google Scholar 

  • Paulus P et al (1998) 18FDG-PET for the assessment of primary head and neck tumors: clinical, computed tomography and histopathological correlation in 38 patients. Laryngoscope 108:1578–1583

    Google Scholar 

  • Petrella J, Provenzale J (2000) MR perfusion of the brain: techniques and applications. Am J Roentgenol 175: 207–19

    CAS  Google Scholar 

  • Petterson H (1995) The NICER centennial book. A global textbook of radiology. Nicer Institute, Oslo

    Google Scholar 

  • Reske S et al (1997) Overexpression of glucose transporter and increased FDG uptake in pancreatic carcinoma. J Nucl Med 38: 1344–1348

    CAS  PubMed  Google Scholar 

  • Rinck PA (1993) Magnetic resonance in medicine - the basic textbook of the European MR forum, 3rd edn. Blackwell Scientific, London

    Google Scholar 

  • Rubbin GD et al (1998) Thoracic spiral CT: influence of sub-second gantry rotation on image quality. Radiology 208: 771–776

    Google Scholar 

  • Rouvière H (1948) Anatomie humaine descriptive et topographique, 6th edn. Masson, Paris

    Google Scholar 

  • Rydberg J et al (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20: 1787–1806

    CAS  PubMed  Google Scholar 

  • Sakai O et al (1997) Asymmetrical or heterogenous enhancement of the internal jugular veins in contrast-enhanced CT of the head and neck. Neuroradiology 39: 292–295

    CAS  PubMed  Google Scholar 

  • Sakai O et al (2000) Lymph node pathology. Benign proliferative lymphoma, and metastatic disease. Radiol Clin North Am 5: 979–998

    Google Scholar 

  • Sazaki M et al (1996) The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: a comparative study with X-ray computed tomography. Eur J Nucl Med 23: 741–747

    Google Scholar 

  • Sazon D et al (1996) Fluorodeoxyglucose positron emission tomography in the detection and staging of lung cancer. Am J Respir Crit Care Med 153: 417–421

    CAS  PubMed  Google Scholar 

  • Scott W et al (1996) Mediastinal lymph node staging of non-small cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thorac Cardiovasc Surg 111: 642–648

    CAS  PubMed  Google Scholar 

  • Shah N et al (2000) The impact of FDG positron emission tomography imaging on the management of lymphomas. Br J Radiol 73: 482–487

    CAS  PubMed  Google Scholar 

  • Sheppard LM, Yousem DM (1994) MTI of cervical adenopathies. ASNR, paper 130

    Google Scholar 

  • Shreve P et al (1998) Oncologic diagnosis with 2-[fluorine18]fluoro-2-deoxy-D-glucose imaging: dual-head coincidence gamma camera versus positron emission torno-graphic scanner. Radiology 207: 431–437

    CAS  PubMed  Google Scholar 

  • Som PM (1987) Lymph nodes of the neck. Radiology 165: 593–600

    CAS  PubMed  Google Scholar 

  • Som PM (1992) Detection of metastasis in cervical lymph nodes: CT and MR criteria and differential diagnosis. Am J Roentgenol 158: 961–969

    CAS  Google Scholar 

  • Som PM et al (1999) An imaging-based classification for the cervical nodes designed as an adjunct to recent clinically based nodal classifications. Arch Otolaryngol Head Neck Surg 125: 388–396

    CAS  PubMed  Google Scholar 

  • Staatz G et al (2001) Interstitial T1-weighted MR lymphography: lipophilic perfiuorinated gadolinium chelates in pigs. Radiology 220: 129–136

    CAS  PubMed  Google Scholar 

  • Steinert H et al (1997) Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology 202: 441–446

    CAS  PubMed  Google Scholar 

  • Stokkel M et al (2000) Preoperative evaluation of patients with primary head and neck cancer using dual-head 18fluorodeoxyglucose positron emission tomography. Ann Surg 231: 229–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugawara Y et al (1999) Evaluation of FDG PET in patients with cervical cancer. J Nucl Med 40: 1125–1131

    CAS  PubMed  Google Scholar 

  • Tatsumi M et al (1999) Feasibility of fluorodeoxyglucose dual-head gamma camera coinidence imaging in the evaluation of lung cancer: comparison with FDG PET. J Nucl Med 40: 566–573

    CAS  PubMed  Google Scholar 

  • Torizuka T et al (1998) Effect of insulin on uptake of FDG by experimental mammary carcinoma in diabetic rats. Radiology 208: 499–504

    CAS  PubMed  Google Scholar 

  • Towers JM (1993) Spiral or helical CT? Am J Roentgenol 161 (4): 901–902

    CAS  Google Scholar 

  • Valk P et al (1995) Staging non-small cell lung cancer by whole-body positron emision tomographic imaging. Ann Thorac Surg 60: 1573–1582

    CAS  PubMed  Google Scholar 

  • Van den Brekel MWM, Castelijns JA (1999) New developments in imaging of neck node metastases. In: Mukherji SK, Castelijns JA (eds) Modern head and neck imaging. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Van den Brekel MWM, Castelijns JA (2000) Imaging of lymph nodes in the neck. Semin Roentgenol 1: 42–53

    Google Scholar 

  • Van den Brekel MWM et al (1990a) Cervical lymph node metastasis: assessment of radiologic criteria. Radiology 177: 379–384

    PubMed  Google Scholar 

  • Van den Brekel MWM et al (1990b) Detection and characterization of of metastatic cervical adenopathies by MR imaging: comparison of different MR techniques. J Comput Assist Tomogr 14: 581–589

    PubMed  Google Scholar 

  • Vansteenkiste JF, Mortelmans L (1999) FDG-PET in the locoregional lymph node staging of non-small cell lung cancer: a comprehensive review of the Leuven lung cancer group experience. Clin Pos Imaging 2: 223–231

    Google Scholar 

  • Vansteenkiste JF et al (1998a) Lymph node staging in non-small cell lung cancer with FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol 16: 2142–2149

    CAS  PubMed  Google Scholar 

  • Vansteenkiste JF et al (1998b) FDG-PET scan in potentially operable non-small cell lung cancer: do anatomometabolic PET-CT fusion images improve the localisation of regional lymph node metastases? Eur J Nucl Med 25: 1495–1501

    CAS  PubMed  Google Scholar 

  • Vanuystel L, Vansteenkiste JF, Stroobants S et al (2000) The impact of (18)F-fluoro-2-deoxy-n-glucose positron emission tomography ( FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55: 317–324

    Google Scholar 

  • Vuillez JP (1998) Métabolisme glucidique des cellules tumorales: conséquences pour l’utilisation de radiopharmaceutiques analogues du glucose. Med Nucl Imag Fonct Metab 22: 9–29

    Google Scholar 

  • Wahl RL et al (1994) Staging of mediastinal non-small cell lung cancer FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology 191: 371–377

    CAS  PubMed  Google Scholar 

  • Wang G, Vannier MW (1994) Longitudinal resolution in volumetric X-ray CT-analytical comparison between conventional and helical CT. Med Phys 21: 429–433

    CAS  PubMed  Google Scholar 

  • Wang G, Vannier MW (1997) Optimal pitch in spiral computed tomography. Med Phys 24: 1635–1639

    CAS  PubMed  Google Scholar 

  • Wang G et al (1994) Theoretical FWTM values in helical CT. Med Phys 21: 753–754

    CAS  PubMed  Google Scholar 

  • Warburg O (1930) The metabolism of tumors. Arnold Constable, London, pp 75–327

    Google Scholar 

  • Weber G, Cantero A (1955) Glucose-6-phosphatase activity in normal, precancerous, and neoplastic tissues. Cancer Res 15: 105–108

    CAS  PubMed  Google Scholar 

  • Weber W et al (1999) Assessment of pulmonary lesions with 18F-fluorodeoxyglucose positron imaging using coincidence mode gamma cameras. J Nucl Med 40: 574–578

    CAS  PubMed  Google Scholar 

  • Wiener JI et al (1986) Breast and axillary tissue MR imaging: correlation of the signal intensities and relaxation times with pathological findings. Radiology 160: 299–305

    CAS  PubMed  Google Scholar 

  • Younes M et al (1995) GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res 15: 2895–2898

    CAS  PubMed  Google Scholar 

  • Yousem DM (1999) Magnetization transfer imaging of the extracranial head and neck. In: Mukherji SK, Castelijns JA (eds) Modern head and neck imaging. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Yousem DM, Hurst RW (1994) MR of cervical lymph nodes: comparison of fast spin echo and conventional T2 W scans. Clin Radiol 49: 670–675

    CAS  PubMed  Google Scholar 

  • Yousem DM et al (1992) Central nodal necrosis and extra-capsular neoplastic spread in cervical lymph nodes: MR imaging versus CT. Radiology 182: 753–759

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coche, E.E., Duprez, T., Lonneux, M. (2004). Imaging the Lymph Nodes: CT, MRI, and PET. In: Grégoire, V., Scalliet, P., Ang, K.K. (eds) Clinical Target Volumes in Conformal and Intensity Modulated Radiation Therapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06270-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06270-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07463-9

  • Online ISBN: 978-3-662-06270-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics