Skip to main content

Stress Echocardiography and Nuclear Imaging

  • Chapter
Stress Echocardiography
  • 84 Accesses

Abstract

Although a number of tools have been used to image the heart, echocardiography and nuclear cardiology are the principal competitors. Although the comparison of these techniques previously involved a fundamental philosophical issue between the diagnosis of coronary disease based on perfusion (hence the possibility of influencing these data on the basis of small-vessel disease, hypertrophy and other causes of abnormal coronary flow reserve) and evidence of ischemia (hence less sensitivity to mild disease that may engender submaximal attainment of flow without ischemia), recent advances have made it possible for both techniques to offer function and perfusion data. However, not all of the differences between the techniques are likely to be altered by these advances. Nuclear techniques are widely practiced and have a huge evidence base, but have disadvantages with respect to availability, cost (especially recurrent cost such as isotopes and disposables) and patient convenience [1]. Echocardiography is potentially widely available but remains subjective and a trained, experienced reader remains critical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rocchi G, Poldermans D, Bax JJ, et al (2000) Usefulness of the ejection fraction response to dobutamine infusion in predicting functional recovery after coronary artery bypass grafting in patients with left ventricular dysfunction. Am J Cardiol 85:1440–1444

    Article  PubMed  CAS  Google Scholar 

  2. Van Reet RE, Quinones MA, Poliner LR, et al (1984) Comparison of two-dimensional echocardiography with gated radionuclide ventriculography in the evaluation of global and regional left ventricular function in acute myocardial infarction. J Am Coll Cardiol 3:243–252

    Article  PubMed  Google Scholar 

  3. Sharir T, Germano G, Kavanagh PB, et al (1999) Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 100:1035–1042

    Article  PubMed  CAS  Google Scholar 

  4. Borer JS, Kent KM, Bacharach SL, et al (1979) Sensitivity, specificity and predictive accuracy of radionuclide cineangiography during exercise in patients with coronary artery disease. Comparison with exercise electrocardiography. Circulation 60:572–580

    Article  PubMed  CAS  Google Scholar 

  5. Gibbons RJ, Lee KL, Cobb FR, et al (1982) Ejection fraction response to exercise in patients with chest pain, coronary artery disease and normal resting ventricular function. Circulation 66:643–648

    Article  PubMed  CAS  Google Scholar 

  6. Austin EH, Cobb FR, Coleman RE, et al (1982) Prospective evaluation of radionuclide angiocardiography for the diagnosis of coronary artery disease. Am J Cardiol 50:1212–1216

    Article  PubMed  CAS  Google Scholar 

  7. Gibbons RJ, Lee KL, Cobb F, et al (1981) Ejection fraction response to exercise in patients with chest pain and normal coronary arteriograms. Circulation 64:952–957

    Article  PubMed  CAS  Google Scholar 

  8. Jones RH, McEwan P, Newman GE, et al (1981) Accuracy of diagnosis of coronary artery disease by radionuclide measurement of left ventricular function during rest and exercise. Circulation 64:586–601

    Article  PubMed  CAS  Google Scholar 

  9. Limacher MC, Quinones MA, Poliner LR, et al (1983) Detection of coronary artery disease with exercise two-dimensional echocardiography. Description of a clinically applicable method and comparison with radionuclide ventriculography. Circulation 67:1211–1218

    Article  PubMed  CAS  Google Scholar 

  10. Visser CA, van der Wieken RL, Kan G, et al (1983) Comparison of two-dimensional echocardiography with radionuclide angiography during dynamic exercise for the detection of coronary artery disease. Am Heart J 106:528–534

    Article  PubMed  CAS  Google Scholar 

  11. Crawford MH, Petru MA, Amon KW, et al (1984) Comparative value of 2-dimensional echocardiography and radionuclide angiography for quantitating changes in left ventricular performance during exercise limited by angina pectoris. Am J Cardiol 53:42–46

    Article  PubMed  CAS  Google Scholar 

  12. Maddahi J, Rodrigues E, Berman DS, et al (1994) State of the art myocardial perfusion imaging. In: Verani MS (ed) Nuclear cardiology: state of the art. W.B. Saunders, Philadelphia, pp199–222

    Google Scholar 

  13. Lu C, Carlino M, Fragasso G, et al (2000) Enoximone echocardiography for predicting recovery of left ventricular dysfunction after revascularization: a novel test for detecting myocardial viability. Circulation 101:1255–1260

    Article  PubMed  CAS  Google Scholar 

  14. Chua T, Kiat H, Germano G, et al (1994) Gated technetium-99m sestamibi for simultaneous assessment of stress myocardial perfusion, postexercise regional ventricular function and myocardial viability. Correlation with echocardiography and rest thallium-201 scintigraphy. J Am Coll Cardiol 23:1107–1114

    Article  PubMed  CAS  Google Scholar 

  15. DePuey EG, Nichols K, Dobrinsky C (1993) Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 34:1871–1876

    PubMed  CAS  Google Scholar 

  16. Faber TL, Cooke CD, Folks RD, et al (1999) Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 40:650–659

    PubMed  CAS  Google Scholar 

  17. Kiat H, Berman DS, Maddahi J, et al (1988) Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 12:1456–1463

    Article  PubMed  CAS  Google Scholar 

  18. Dilsizian V, Rocco TP, Freedman NM, et al (1990) Enhanced detection of ischemie but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146

    Article  PubMed  CAS  Google Scholar 

  19. Gould KL, Westcott RJ, Albro PC, et al (1978) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. II. Clinical methodology and feasibility. Am J Cardiol 41:279–287

    Article  PubMed  CAS  Google Scholar 

  20. Fragasso G, Lu C, Dabrowski P, et al (1999) Comparison of stress/rest myocardial perfusion tomography, dipyridamole and dobutamine stress echocardiography for the detection of coronary disease in hypertensive patients with chest pain and positive exercise test. J Am Coll Cardiol 34:441–447

    Article  PubMed  CAS  Google Scholar 

  21. Iskandrian AS, Heo J, Kong B,, et al (1989) Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 14:1477–1486

    Article  PubMed  CAS  Google Scholar 

  22. Lattanzi F, Picano E, Bolognese L, et al (1991) Inhibition of dipyridamole-induced ischemia by antianginal therapy in humans. Correlation with exercise electrocardiography. Circulation 83:1256–1262

    Article  PubMed  CAS  Google Scholar 

  23. Kotler TS, Diamond GA (1990) Exercise thallium-201 scintigraphy in the diagnosis and prognosis of coronary artery disease. Ann Intern Med 113:684–702

    PubMed  CAS  Google Scholar 

  24. Van Train KF, Maddahi J, Berman DS, et al (1990) Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 31:1168–1179

    PubMed  Google Scholar 

  25. Fleischmann KE, Hunink MG, Kuntz KM, et al (1998) Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA 280:913–920

    Article  PubMed  CAS  Google Scholar 

  26. Maurer G, Nanda NC (1981) Two dimensional echocardiographic evaluation of exercise-induced left and right ventricular asynergy: correlation with thallium scanning. Am J Cardiol 48:720–727

    Article  PubMed  CAS  Google Scholar 

  27. Quinones MA, Verani MS, Haichin RM, et al (1992) Exercise echocardiography versus 201Tl single-photon emission computed tomography in evaluation of coronary artery disease. Analysis of 292 patients. Circulation 85:1026–1031

    Article  PubMed  CAS  Google Scholar 

  28. Pozzoli MM, Fioretti PM, Salustri A, et al (1991) Exercise echocardiography and technetium 99m MIBI single photon emission computed tomography in the detection of coronary artery disease. Am J Cardiol 67:350–355

    Article  PubMed  CAS  Google Scholar 

  29. Galanti G, Sciagra R, Comeglio M, et al (1991) Diagnostic accuracy of peak exercise echocardiography in coronary artery disease: comparison with thallium-201 myocardial scintigraphy. Am Heart J 122:1609–1616

    Article  PubMed  CAS  Google Scholar 

  30. Salustri A, Pozzoli MM, Hermans W, et al (1992) Relationship between exercise echocardiography and perfusion single-photon emission computed tomography in patients with single-vessel coronary artery disease. Am Heart J 124:75–83

    Article  PubMed  CAS  Google Scholar 

  31. Hecht HS, DeBord L, Shaw R, et al (1993) Supine bicycle stress echocardiography versus tomographic thallium-201 exercise imaging for the detection of coronary artery disease. J Am Soc Echocardiogr 6:177–185

    PubMed  CAS  Google Scholar 

  32. Marwick T, D’Hondt AM, Baudhuin T, et al (1993) Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: combination with echocardiography or scintigraphy, or both? J Am Coll Cardiol 22:159–167

    Article  PubMed  CAS  Google Scholar 

  33. Forster T, McNeill AJ, Salustri A, et al (1993) Simultaneous dobutamine stress echocardiography and technetium-99m isonitrile single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 21:1591–1596

    Article  PubMed  CAS  Google Scholar 

  34. Gunalp B, Dokumaci B, Uyan C, et al (1993) Value of dobutamine technetium-99m-sestamibi SPECT and echocardiography in the detection of coronary artery disease compared with coronary angiography. J Nucl Med 34:889–894

    PubMed  CAS  Google Scholar 

  35. Takeuchi M, Araki M, Nakashima Y, et al (1993) Comparison of dobutamine stress echocardiography and stress thallium-201 single-photon emission computed tomography for detecting coronary artery disease. J Am Soc Echocardiogr 6:593–602

    PubMed  CAS  Google Scholar 

  36. Senior R, Sridhara BS, Anagnostou E, et al (1994) Synergistic value of simultaneous stress dobutamine sestamibi single-photon-emission computerized tomography and echocardiography in the detection of coronary artery disease. Am Heart J 128:713–718

    Article  PubMed  CAS  Google Scholar 

  37. Ho FM, Huang PJ, Liau CS, et al (1995) Dobutamine stress echocardiography compared with dipyridamole thallium-201 single-photon emission computed tomography in detecting coronary artery disease. Eur Heart J 16:570–575

    Article  PubMed  CAS  Google Scholar 

  38. Huang PJ, Ho YL, Wu CC, et al (1997) Simultaneous dobutamine stress echocardiography and thallium-201 perfusion imaging for the detection of coronary artery disease. Cardiology 88:556–562

    Article  PubMed  CAS  Google Scholar 

  39. Santoro GM, Sciagra R, Buonamici P, et al (1998) Head-to-head comparison of exercise stress testing, pharmacologic stress echocardiography, and perfusion tomography as first-line examination for chest pain in patients without history of coronary artery disease. J Nucl Cardiol 5:19–27

    Article  PubMed  CAS  Google Scholar 

  40. San Roman JA, Rollan MJ, Vilacosta I, et al (1995) Echocardiography and MIBI-SPECT scintigraphy during dobutamine infusion in the diagnosis of coronary disease. Rev Esp Cardiol 48:606–614

    PubMed  CAS  Google Scholar 

  41. Smart SC, Bhatia A, Hellman R, et al (2000) Dobutamine-atropine stress echocardiography and dipyridamole sestamibi scintigraphy for the detection of coronary artery disease: limitations and concordance. J Am Coll Cardiol 36:1265–1273

    Article  PubMed  CAS  Google Scholar 

  42. Perin EC, Moore W, Blume M, et al (1991) Comparison of dipyridamole-echocardiography with dipyridamole-thallium scintigraphy for the diagnosis of myocardial ischemia. Clin Nucl Med 16:417–420

    Article  PubMed  CAS  Google Scholar 

  43. Simonetti I, Rezai K, Rossen JD, et al (1991) Physiological assessment of sensitivity of noninvasive testing for coronary artery disease. Circulation 83:III43–III49

    PubMed  CAS  Google Scholar 

  44. Nguyen T, Heo J, Ogilby JD, et al (1990) Single photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia: correlation with coronary arteriography, exercise thallium imaging and two-dimensional echocardiography [see comments]. J Am Coll Cardiol 16:1375–1383

    Article  PubMed  CAS  Google Scholar 

  45. Amanullah AM, Bevegard S, Lindvall K, et al (1993) Assessment of left ventricular wall motion in angina pectoris by two-dimensional echocardiography and myocardial perfusion by technetium-99m sestamibi tomography during adenosine-induced coronary vasodilation and comparison with coronary angiography. Am J Cardiol 72:983–989

    Article  PubMed  CAS  Google Scholar 

  46. Marwick T, Willemart B, D’Hondt AM, et al (1993) Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion. Comparison of dobutamine and adenosine using echocardiography and 99mTc-MIBI single photon emission computed tomography. Circulation 87:345–354

    Article  PubMed  CAS  Google Scholar 

  47. Stolzenberg J, Kaminsky J (1978) Overlying breast as cause of false-positive thallium scans. Clin Nucl Med 3:229

    Article  PubMed  CAS  Google Scholar 

  48. Hansen CL, Crabbe D, Rubin S (1996) Lower diagnostic accuracy of thallium-201 SPECT myocardial perfusion imaging in women: an effect of smaller chamber size. J Am Coll Cardiol 28:1214–1219

    Article  PubMed  CAS  Google Scholar 

  49. DePuey EG, Guerrier-Krawczynska E, Robbins WL (1988) Thallium-201 SPECT in coronary disease patients with left bundle branch block. J Nucl Med 29:1479–1485

    PubMed  CAS  Google Scholar 

  50. DePuey EG, Guertier-Krawczynska E, Perkins JV, et al (1988) Alterations in myocardial thallium-201 distribution in patients with chronic systemic hypertension undergoing single photon emission computed tomography. Am J Cardiol 62:234–238

    Article  PubMed  CAS  Google Scholar 

  51. Houghton TL, Frank MJ, Carr AA, et al (1990) Relations among impaired coronary flow reserve, left ventricular hypertrophy, and thallium perfusion defects in hypertensive patients without obstructive coronary artery disease. J Am Coll Cardiol 15:43–51

    Article  PubMed  CAS  Google Scholar 

  52. Kwok Y, Kim C, Grady D, et al (1999) Meta-analysis of exercise testing to detect coronary artery disease in women. Am J Cardiol 83:660–666

    Article  PubMed  CAS  Google Scholar 

  53. Mairesse GH, Marwick TH, Arnese M, et al (1995) Improved identification of coronary artery disease in patients with left bundle branch block by use of dobutamine stress echocardiography and comparison with myocardial perfusion tomography. Am J Cardiol 76:321–325

    Article  PubMed  CAS  Google Scholar 

  54. Smart SC, Knickelbine T, Malik F, et al (2000) Dobutamine-atropine stress echocardiography for the detection of coronary artery disease in patients with left ventricular hypertrophy. Importance of chamber size and systolic wall stress. Circulation 101:258–263

    Article  PubMed  CAS  Google Scholar 

  55. O’Keefe JH Jr, Barnhart CS, Bateman TM (1995) Comparison of stress echocardiography and stress myocardial perfusion scintigraphy for diagnosing coronary artery disease and assessing its severity [Review]. Am J Cardiol 75:250–340

    Google Scholar 

  56. Marwick TH, Nemec JJ, Stewart WJ, et al (1992) Diagnosis of coronary artery disease using exercise echocardiography and positron emission tomography: comparison and analysis of discrepant results. J Am Soc Echocardiogr 5:231–238

    PubMed  CAS  Google Scholar 

  57. Firoozan S, Wei K, Linka A, et al (1999) A canine model of chronic ischemic cardiomyopathy: characterization of regional flow-function relations. Am J Physiol 276:H446–H455

    PubMed  CAS  Google Scholar 

  58. Lieberman AN, Weiss JL, Jugdutt BI, et al (1981) Relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63:739–746

    Article  PubMed  CAS  Google Scholar 

  59. Marzullo P, Parodi O, Reisenhofer B, et al (1993) Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 71:166–172

    Article  PubMed  CAS  Google Scholar 

  60. Charney R, Schwinger ME, Chun J, et al (1994) Dobutamine echocardiography and resting-redistribution thallium-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J 128:864–869

    Article  PubMed  CAS  Google Scholar 

  61. Kostopoulos KG, Kranidis AI, Bouki KP, et al (1996) Detection of myocardial viability in the prediction of improvement in left ventricular function after successful coronary revascularization by using the dobutamine stress echocardiography and quantitative SPECT rest-redis-tribution-reinjection 201TI imaging after dipyridamole infusion. Angiology 47:1039–1046

    Article  PubMed  CAS  Google Scholar 

  62. Qureshi U, Nagueh SF, Afridi I, et al (1997) Dobutamine echocardiography and quantitative rest-redistribution 201Tl tomography in myocardial hibernation. Relation of contractile reserve to 201Tl uptake and comparative prediction of recovery of function. Circulation 95:626–635

    Article  PubMed  CAS  Google Scholar 

  63. Nagueh SF, Vaduganathan P, Ali N, et al (1997) Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography. J Am Coll Cardiol 29:985–993

    Article  PubMed  CAS  Google Scholar 

  64. Cornel JH, Bax JJ, Elhendy A, et al (1998) Biphasic response to dobutamine predicts improvement of global left ventricular function after surgical revascularization in patients with stable coronary artery disease: implications of time course of recovery on diagnostic accuracy. J Am Coll Cardiol 31:1002–1010

    Article  PubMed  CAS  Google Scholar 

  65. Pasquet A, Lauer MS, Williams MJ, et al (2000) Prediction of global left ventricular function after bypass surgery in patients with severe left ventricular dysfunction. Impact of pre-operative myocardial function, perfusion, and metabolism. Eur Heart J 21:125–136

    Article  PubMed  CAS  Google Scholar 

  66. Ragosta M, Beller GA, Watson DD, et al (1993) Quantitative planar rest-redistribution 201TI imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation 87:1630–1641

    Article  PubMed  CAS  Google Scholar 

  67. Marwick TH, Zuchowski C, Lauer MS, et al (1999) Functional status and quality of life in patients with heart failure undergoing coronary bypass surgery after assessment of myocardial viability. J Am Coll Cardiol 33:750–758

    Article  PubMed  CAS  Google Scholar 

  68. Allman KC, Shaw LJ, Hachamovitch R, et al (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158

    Article  PubMed  Google Scholar 

  69. Meluzin J, Cerny J, Frelich MS, et al (1998) Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 32:912–920

    Article  PubMed  CAS  Google Scholar 

  70. Berman DS, Hachamovitch R, Kiat H, et al (1995) Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 26:639–647

    Article  PubMed  CAS  Google Scholar 

  71. Iskandrian AS, Chae SC, Heo J, et al (1993) Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 22:665–670

    Article  PubMed  CAS  Google Scholar 

  72. Marwick TH, Shaw LJ, Lauer MS, et al (1999) The noninvasive prediction of cardiac mortality in men and women with known or suspected coronary artery disease. Economics of Noninvasive Diagnosis (END) Study Group. Am J Med 106:172–178

    Article  PubMed  CAS  Google Scholar 

  73. Marwick TH, Mehta R, Arheart K, et al (1997) Use of exercise echocardiography for prognostic evaluation of patients with known or suspected coronary artery disease. J Am Coll Cardiol 30:83–90

    Article  PubMed  CAS  Google Scholar 

  74. McCully RB, Roger VL, Mahoney DW, et al (1998) Outcome after normal exercise echocardiography and predictors of subsequent cardiac events: follow-up of 1,325 patients. J Am Coll Cardiol 31:144–149

    Article  PubMed  CAS  Google Scholar 

  75. Picano E, Severi S, Michelassi C, et al (1989) Prognostic importance of dipyridamole-echocardiography test in coronary artery disease. Circulation 80:450–457

    Article  PubMed  CAS  Google Scholar 

  76. Brown KA (1998) Do stress echocardiography and myocardial perfusion imaging have the same ability to identify the low-risk patient with known or suspected coronary artery disease? Am J Cardiol 81:1050–1053

    Article  PubMed  CAS  Google Scholar 

  77. Olmos LI, Dakik H, Gordon R, et al (1998) Long-term prognostic value of exercise echocardiography compared with exercise 201TI, ECG, and clinical variables in patients evaluated for coronary artery disease. Circulation 98:2679–2686

    Article  PubMed  CAS  Google Scholar 

  78. Marwick TH, Case C, Sawada S, et al (2002) Use of stress echocardiography to predict mortality in patients with diabetes and known or suspected coronary artery disease. Diabetes Care 25:1042–1048

    Article  PubMed  Google Scholar 

  79. Pryor DB, Shaw L, McCants CB, et al (1993) Value of the history and physical in identifying patients at increased risk for coronary artery disease. Ann Intern Med 118:81–90

    PubMed  CAS  Google Scholar 

  80. Mark DB, Hlatky MA, Harrell FE, et al (1987) Exercise treadmill score for predicting prognosis in coronary artery disease. Ann Intern Med 106:793–800

    PubMed  CAS  Google Scholar 

  81. Marwick TH, Case C, Vasey C, et al (2001) Prediction of mortality by exercise echocardiography: a strategy for combination with the Duke treadmill score. Circulation 103:2566–2571

    Article  PubMed  CAS  Google Scholar 

  82. Berman DS, Hachamovitch R, Kiat H, et al (1995) Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 26:639–647

    Article  PubMed  CAS  Google Scholar 

  83. Chuah SC, Pellikka PA, Roger VL, et al (1998) Role of dobutamine stress echocardiography in predicting outcome in 860 patients with known or suspected coronary artery disease. Circulation 97:1474–1480

    Article  PubMed  CAS  Google Scholar 

  84. Poldermans D, Arnese M, Fioretti PM, et al (1995) Improved cardiac risk stratification in major vascular surgery with dobutamine-atropine stress echocardiography. J Am Coll Cardiol 26:648–653

    Article  PubMed  CAS  Google Scholar 

  85. Van Daele ME, McNeill AJ, Fioretti PM, et al (1994) Prognostic value of dipyridamole sestamibi single-photon emission computed tomography and dipyridamole stress echocardiography for new cardiac events after an uncomplicated myocardial infarction. J Am Soc Echocardiogr 7:370–380

    PubMed  Google Scholar 

  86. Shaw LJ, Peterson ED, Kesler K, et al (1996) A metaanalysis of predischarge risk stratification after acute myocardial infarction with stress electrocardiographic, myocardial perfusion, and ventricular function imaging. Am J Cardiol 78:1327–1337

    Article  PubMed  CAS  Google Scholar 

  87. Eagle KA, Brundage BH, Chaitman BR, et al (1996) Guidelines for perioperative cardiovascular evaluation for noncardiac surgery. Report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines. Committee on Perioperative Cardiovascular Evaluation for Noncardiac Surgery. Circulation 93:1278–1317

    PubMed  CAS  Google Scholar 

  88. Shaw LJ, Eagle KA, Gersh BJ, et al (1996) Meta-analysis of intravenous dipyridamole-thallium-201 imaging (1985 to 1994) and dobutamine echocardiography (1991 to 1994) for risk stratification before vascular surgery. J Am Coll Cardiol 27:787–798

    Article  PubMed  CAS  Google Scholar 

  89. Pasquet A, D’Hondt AM, Verhelst R, et al (1998) Comparison of dipyridamole stress echocardiography and perfusion scintigraphy for cardiac risk stratification in vascular surgery patients. Am J Cardiol 82:1468–1474

    Article  PubMed  CAS  Google Scholar 

  90. Marwick TH, Anderson T, Williams MJ, et al (1995) Exercise echocardiography is an accurate and cost-efficient technique for the detection of coronary artery disease in women. J Am Coll Cardiol 26:335–341

    Article  PubMed  CAS  Google Scholar 

  91. Marwick TH, Torelli J, Harjai K, et al (1995) Influence of left ventricular hypertrophy on detection of coronary artery disease using exercise echocardiography. J Am Coll Cardiol 26:1180–1186

    Article  PubMed  CAS  Google Scholar 

  92. Patterson RE, Eisner RL, Horowitz SF (1995) Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 91:54–65

    Article  PubMed  CAS  Google Scholar 

  93. Kuntz KM, Fleischmann KE, Hunink MG, et al (1999) Cost-effectiveness of diagnostic strategies for patients with chest pain. Ann Intern Med 130:709–718

    PubMed  CAS  Google Scholar 

  94. Underwood SR, Godman B, Salyani S, et al (1999) Economics of myocardial perfusion imaging in Europe — the EMPIRE Study. Eur Heart J 20:157–166

    Article  PubMed  CAS  Google Scholar 

  95. Shaw LJ, Hachamovitch R, Berman DS, et al (1999) The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. J Am Coll Cardiol 33:661–669

    Article  PubMed  CAS  Google Scholar 

  96. Marwick TH, Shaw LJ, Case C et al (2003) Clinical and economic impact of exercise-electro-cardiography and exercise echocardiography in clinical practice. Eur Heart J 25:111–118

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marwick, T. (2003). Stress Echocardiography and Nuclear Imaging. In: Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05096-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05096-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05098-9

  • Online ISBN: 978-3-662-05096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics