Skip to main content

Self-Calibration of a Stereo Rig from Unknown Camera Motions and Point Correspondences

  • Chapter
Calibration and Orientation of Cameras in Computer Vision

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 34))

Summary

The problem of calibrating a stereo rig is extremely important for practical applications. Existing work is based on the use of a calibration pattern whose 3D model is a priori known. We show theoretically and with experiments on real images, how it is possible to completely calibrate a stereo rig, that is to determine each camera’s intrinsic parameters and the relative displacement between the two or three cameras, using only point matches obtained during unknown motions, without any a priori knowledge of the scenes.

The first part of the chapter is devoted to the computation of the intrinsic parameters of the cameras by a method based upon the estimation of the so-called fundamental matrix associated with camera displacement. Three different displacements are sufficient to solve the Kruppa equations which yield these parameters.

The second part of the chapter is devoted to the computation of the extrinsic parameters. We first explain how to recover the unknown motions previously used, once we have an estimate of the intrinsic parameters and the fundamental matrices. The computation is quite robust to the inaccuracy of the determination of the camera parameters. We then present the equations which allow us, from two displacements of the stereo rig, for which the camera motions are computed independently, to compute the relative displacement between the cameras. This technique allows us to compute the relative displacement between two or three cameras and complete the full calibration of the rig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Mundy, A. Zisserman (eds.) Geometric invariance in computer vision. MIT Press, 1992.

    Google Scholar 

  2. J.G. Semple, G.T. Kneebone. Algebraic projective geometry. Oxford Science Publication, 1952.

    Google Scholar 

  3. O.D. Faugeras, G. Toscani. The calibration problem for stereo. In Proceedings of CVPR’86, pp. 15–20, 1986.

    Google Scholar 

  4. R.Y. Tsai. An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision. In Proceedings CVPR ‘86, Miami Beach, Florida, 364–374. IEEE, June 1986.

    Google Scholar 

  5. H. Asada, M. Brady. The curvature primal sketch. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 2–14, 1986.

    Article  Google Scholar 

  6. G. Medioni. Y. Yasumuto. Corner detection and curve representation using cubic b-spline. In Proc. International Conference on Robotics and Automation,pp. 764–769, San Francisco, 1986. IEEE.

    Google Scholar 

  7. F. Veillon, R. Horaud, T. Skordas. Finding geometric and relational structures in an image. In O. Faugeras (ed.) Computer Vision–ECCV’90. (Lecture Notes in Computer Science, Vol. 427) pp. 374–384, Springer, Berlin Heidelberg, 1990.

    Google Scholar 

  8. M.A. Shah, R. Jain. Detecting time-varying corners. Computer Vision, Graphics, and Image Processing 28, 345–355, 1984.

    Article  Google Scholar 

  9. C. Harris, M. Stephens. A combined corner and edge detector. In Proc. Alvey Vision Conference, 189–192, Manchester, 1988.

    Google Scholar 

  10. R. Deriche, G. Giraudon. A Computational Approach for Corner and Vertex Detection. The International Journal of Computer Vision 10 (2), 101–124, 1993.

    Article  Google Scholar 

  11. A. Guiducci. Corner characterization by differential geometry techniques. Pattern Recognition Letters 8, 311–318, 1988.

    Article  MATH  Google Scholar 

  12. K. Rohr. Modelling and identification of characteristic intensity variations. Image and Vision Computing 10 (2), 66–76, 1992.

    Article  MathSciNet  Google Scholar 

  13. R. Deriche and T. Blaszka. Recovering and characterizing image features using an efficient model based approach. In Proc. International Conference on Computer Vision and Pattern Recognition, pp. 530–535, New York, 1993. IEEE.

    Google Scholar 

  14. R.E. Kelly, P.R.H. McConnell, S.J. Mildenberger. The gestalt photomapper. Photogrammetric Engineering and Remote Sensing 43, 1407–1417, 1977.

    Google Scholar 

  15. W. Forstner, A. Pertl. Photogrammetric standard methods and digital image matching techniques for high precision surface measurements. In Gelsema, E.S., Kanal, L.N., (eds.), Pattern Recognition in Practice II, pp. 57–72. Elsevier Science Publishers, 1986.

    Google Scholar 

  16. D.B. Gennery. Modelling the Environment of an Exploring Vehicle by means of Stereo Vision. PhD thesis, Stanford University, June 1980.

    Google Scholar 

  17. R. Deriche, O.D. Faugeras. Tracking line segments. Image and Vision Computing, 8(4), 261–270, 1990. A shorter version appeared in the Proceedings of the 1st ECCV.

    Google Scholar 

  18. O.D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig. In G. Sandini (ed.) Computer Vision–ECCV’92. (Lecture Notes in Computer Science, Vol. 588) pp. 563–578, Springer, Berlin Heidelberg, 1992.

    Google Scholar 

  19. R. Hartley, R. Gupta, T. Chang. Stereo from uncalibrated cameras. In Proc. of the Conference on Computer Vision and Pattern Recognition, pp. 761–764, Urbana, 1992.

    Google Scholar 

  20. L. Robert. Reconstruction de courbes et de surfaces par vision stéréoscopique. Applications a la robotique mobile. PhD thesis, Ecole Polytechnique, 1993.

    Google Scholar 

  21. A. Shashua. Projective structure from two uncalibrated images: structure from motion and recognition. Technical Report A.I. Memo No. 1363, MIT, Sept 1992.

    Google Scholar 

  22. H.C. Longuet-Higgins. A Computer Algorithm for Reconstructing a Scene from Two Projections. Nature 293, 133–135, 1981.

    Article  Google Scholar 

  23. Q.-T. Luong, R. Deriche, O.D. Faugeras, T. Papadopoulo. On determining the Fundamental matrix: analysis of different methods and experimental results. Technical Report 1894, INRIA, 1993.

    Google Scholar 

  24. E. Kruppa. Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Sitz.-Ber. Akad. Wiss., Wien, math. naturw. Kl., Abt. IIa. 122, 1939–1948, 1913.

    MATH  Google Scholar 

  25. O.D. Faugeras, S.J. Maybank. Motion from point matches: multiplicity of solutions. The International Journal of Computer Vision, 4(3), 225–246, 1990. also INRIA Tech. Report 1157.

    Google Scholar 

  26. S.J. Maybank, O.D. Faugeras. A Theory of Self-Calibration of a Moving Camera. The International Journal of Computer Vision, 8 (2), 123–151, 1992.

    Article  Google Scholar 

  27. O.D. Faugeras, Q.-T. Luong, and S.J. Maybank. Camera self-calibration: theory and experiments. In G. Sandini (ed.) Computer Vision–ECCV’92. (Lecture Notes in Computer Science, Vol. 588) pp. 563–578, Springer, Berlin Heidelberg, 1992.

    Google Scholar 

  28. A. Morgan. Solving polynomial systems using continuation for engineering and science problems. Prentice-Hall, 1987.

    Google Scholar 

  29. Q.-T. Luong, O.D. Faugeras. Self-calibration of a camera using multiples images. In Proc. International Conference on Pattern Recognition, pp. 9–12, Den Haag, 1992. IEEE.

    Google Scholar 

  30. Q.-T. Luong. Matrice fondamentale et calibration visuelle sur l’environnement: vers une plus grande autonomie des systèmes robotiques. PhD thesis, Université de Paris-Sud., Dec. 1992.

    Google Scholar 

  31. O.D. Faugeras, F. Lustman, G. Toscani. Motion and Structure from point and line matches. In Proc. International Conference on Computer Vision, pp. 25–34, London, June 1987. IEEE

    Google Scholar 

  32. M.E. Spetsakis, J. Aloimonos. Optimal computing of structure from motion using point correspondences in two frames. In Proc. International Conference on Computer Vision, pp. 449–453, Tarpen Springs, FL, 1988. IEEE.

    Google Scholar 

  33. J. Weng, N. Ahuja, T.S. Huang. Optimal motion and structure estimation. In Proc. International Conference on Computer Vision and Pattern Recognition,pp. 144–152, San Diego, 1989. IEEE.

    Google Scholar 

  34. B.K.P. Horn. Relative orientation. The International Journal of Computer Vision, 4 (1), 59–78, 1990.

    Article  Google Scholar 

  35. R.Y. Tsai, T.S. Huang. Uniqueness and estimation of three-dimensional motion parameters of rigid objects wirth curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 13–27, 1984.

    Article  Google Scholar 

  36. R.I. Hartley. Estimation of relative camera positions for uncalibrated cameras. In G. Sandini (ed.) Computer Vision–ECCV’92. (Lecture Notes in Computer Science, Vol. 588) pp. 563–578, Springer, Berlin Heidelberg, 1992.

    Google Scholar 

  37. R. Kumar and A. Hanson. Sensibility of the pose refinement problem to accurate estimation of camera parameters. In Proceedings of the International Conference on Computer Vision, pp. 365–369, Osaka, Japan, 1990.

    Google Scholar 

  38. J.C.K. Chou and M. Kamel. Quaternions approach to solve the kinematic equation of rotation, AaAx = AxAa, of a sensor-mounted robotic manipulator. In Proc. International Conference on Robotics and Automation,pp. 656–662, Philadelphia, 1988. IEEE.

    Google Scholar 

  39. Y.S. Shiu, S. Ahmad. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX = XB. IEEE Transactions on robotics and automation, 5 (1), 16–29, 1989.

    Article  Google Scholar 

  40. R.Y. Tsai, R.K. Lenz. Real time versatile robotics hamd/eye calibration using 3D machine vision. In Proc. International Conference on Robotics and Automation,pp. 554–561, Philadelphia, 1988. IEEE.

    Google Scholar 

  41. H.H. Chen. A screw motion approach to uniqueness analysis of head-eye geometry. In Proc. of the Conference on Computer Vision and Pattern Recognition,pp. 145–151, Maui, Hawaii, June 1991. IEEE.

    Google Scholar 

  42. E. Pervin, J.A. Webb. Quaternions in computer vision and robotics. In Proc. International Conference on Computer Vision and Pattern Recognition,pp. 382–383, Arlington, VA, 1983. IEEE.

    Google Scholar 

  43. L. Robert, O.D. Faugeras. Curve-Based Stereo: Figural Continuity And Curvature. In IEEE Proc. International Conference on Computer Vision and Pattern Recognition,pp. 57–62, Maui, Hawaii, June 1991. IEEE.

    Google Scholar 

  44. P.R. Beaudet. Rotational invariant image operators. In Proc. International Conference on Pattern Recognition,pp. 579–583, Kyoto, 1978. IEEE.

    Google Scholar 

  45. L. Dreschler, H.H. Nagel. On the selection of critical points and local curvature extrema of region boundaries for interframe matching. In Proc. International Conference on Pattern Recognition,pp. 542–544, Munich, 1982. IEEE.

    Google Scholar 

  46. L. Kitchen, A. Rosenfeld. Gray-level corner detection. Pattern Recognition Letters 95–102, 1982.

    Google Scholar 

  47. H.H. Nagel. Constraints for the estimation of displacement vector fields from image sequences. In Proc. International Joint Conference on Artificial Intelligence,pp. 156–160, Karlsruhe, 1983. Morgan Kaufman.

    Google Scholar 

  48. O.A. Zuniga, R.M. Haralick. Corner detection using the facet model. In Proc. International Conference on Computer Vision and Pattern Recognition,pp. 30–37, Arlington, VA, 1983. IEEE.

    Google Scholar 

  49. Q.-T. Luong, O.D. Faugeras. The fundamental matrix: theory, algorithms, and stability analysis. The International Journal of Computer Vision, 17 (1), 43–76, 1996.

    Article  Google Scholar 

  50. Q.-T. Luong, O.D. Faugeras. Self-calibration of a moving camera from point correspondences and fundamental matrices. The International Journal of Computer Vision, 22 (3), 261–289, 1997.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luong, QT., Faugeras, O.D. (2001). Self-Calibration of a Stereo Rig from Unknown Camera Motions and Point Correspondences. In: Gruen, A., Huang, T.S. (eds) Calibration and Orientation of Cameras in Computer Vision. Springer Series in Information Sciences, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04567-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04567-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08463-8

  • Online ISBN: 978-3-662-04567-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics